一个磁聚焦问题的证明及其应用——从一道高考压轴题的答案谈起
用磁聚焦模型解两道高考压轴题

( 1 ) , g k A点 射 出的 带 电微 粒 平 行 于甜 由 从C 点进
入有磁场区域 , 并从 坐标原 a . O  ̄y 轴负方向离开 , 求
( 2 ) 请 指 出这 柬 带 电微 粒 与 轴相 交的区域 , 并
A 点 射 出磁 场 不
.
电子 从 B C
,
边 上 的任 意点入 射 都 只 能从
,
即 为轨迹 圆 的 圆 心 再 连 接
,
因为
R
=
等 廿
g
,
显
计重 力 求 :
,
然
轨 迹 圆 的半 径 与 区 域 圆 的 半 径 相 等
=
,
即A
OJ=
(1
) 此 匀 强 磁 场 区 域 中磁 感应 强 度 的 方 向和 大 小
纸面向外. 圆弧 A E C的 圆心 在 C B边 或 其 延 长线 上 . 依 题意 , 圆心 在 A、 C连 线 的 中垂 线 上 , 故 B点 即为 圆心 , 圆半径为 n , 按 照 牛顿 定 律 有 厂 镕 = m
a
轴 平 行 的 匀 强 电 场 , 在葬
半径为 R 的圆内 还有与 鉴
0 v 平 面 垂 直 的 匀 强磁 场. 在 圆 的 左 边放 置 一
图6
带电微粒发射装置 , 它沿 轴正方向发射 出一束具有
相 同质 量 m、 电荷 量q ( q > 0 ) 和初 速 度 的 带 电微 粒 . 发
射 时, 这柬带电微粒分布在0 < y < 2 R ̄区间内. 已知 重
“
口c
,
边的
且 日 为 任 意角
所 以经 磁 场 偏转 后 的所 有 粒 子 的 运
高考物理电磁感应现象压轴难题知识归纳总结含答案解析

高考物理电磁感应现象压轴难题知识归纳总结含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。
(2)线圈中的电流大小。
(3)AB 边产生的焦耳热。
【答案】(1)22FR v B L =;(2)F I BL=;(3)4FL Q =【解析】 【分析】 【详解】(1)线圈向右匀速进入匀强磁场,则有F F BIL ==安又电路中的电动势为E BLv =所以线圈中电流大小为==E BLvI R R 联立解得22FRv B L =(2)根据有F F BIL ==安得线圈中的电流大小F I BL=(3)AB 边产生的焦耳热22()4AB F R L Q I R t BL v==⨯⨯ 将22FRv B L =代入得 4FL Q =2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m3.如图所示,在倾角为37︒的光滑斜面上存在两个磁感应强度均为B 的匀强磁场区域。
“磁发散与磁聚焦”模型在高考中的应用-2019年文档

“磁发散与磁聚焦”模型在高考中的应用当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律. 磁发散:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如图1所示.磁聚集:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如图2所示.图1图2这两条规律在近几年高考中频频出现,如能在平时对平行运动带电粒子磁聚焦问题进行深入分析和研究,那么在考试中遇到类似题目就会有“游刃有余,一切尽在掌控中”的自信和豪情.一、突出对粒子运动径迹的考察例1如图3,ABCD是边长为的正方形.质量为、电荷量为的电子以大小为的初速度沿纸面垂直于BC变射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC边上的任意点入射,都只能从A 点射出磁场.不计重力,求:(1)次匀强磁场区域中磁感应强度的方向和大小;(2)此匀强磁场区域的最小面积.图3图4解析: (1)设匀强磁场的磁感应强度的大小为B.令圆弧AEC是自C点垂直于BC入射的电子在磁场中的运行轨道.电子所受到的磁场的作用力大小为f =ev0B,方向应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外.圆弧AEC的圆心在CB边或其延长线上.依题意,圆心在A、C连线的中垂线上,故B点即为圆心,圆半径为a,按照牛顿定律有f=mv202,联立两式得B=mv0ea.(2)由(1)中决定的磁感应强度的方向和大小,可知自点垂直于入射电子在A点沿DA方向射出,且自BC边上其他点垂直于入射的电子的运动轨道只能在BAEC区域中.因而,圆弧AEC是所求的最小磁场区域的一个边界.为了决定该磁场区域的另一边界,我们来考察射中A点的电子的速度方向与BA的延长线交角为θ(不妨设0≤θ≤π/2)的情形.该电子的运动轨迹qpA,如图4所示.图中,圆弧AP的圆心为O,pq垂直于BC边,由B=mv0ea知,圆弧AP的半径仍为a,在以A为原点、AB为x轴,AD为轴的坐标系中,P点的坐标(x,y)为x=asinθ,y=a-acosθ. 消去参数θ得x2+(y-a)2=a2.这意味着,在范围0≤θ≤π/2内,p点形成以D为圆心、为半径的四分之一圆周AFC,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界.因此,所求的最小匀强磁场区域时分别以AEC和AFC为圆心、为半径的两个四分之一圆周AEC和AFC所围成的,其面积为S=2(14πa2-12a2)=π-22a2.点评:这是一个典型的利用磁场进行平行运动带电粒子磁聚焦的考题,看起来在考磁场的最小面积问题,但实质上在考核粒子的运动径迹.从知识和能力的角度看,对于面对陌生题目的考生而言,综合考查了学生对于带电粒子在磁场中运动的综合分析能力,二、突出对粒子运动“汇聚点”的考察例2如图5所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0。
高中磁场磁聚焦(带问题详解)

磁聚焦当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。
规律二:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如乙图所示。
1、在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点P垂直磁场射入大量的带正电,电荷量为q,质量为m,速度为v的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是()A.只要对着圆心入射,出射后均可垂直打在MN上B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D.只要速度满足qBRvm,沿不同方向入射的粒子出射后均可垂直打在MN上2、如图所示,长方形abed的长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以e为圆心eb为半径的四分之一圆弧和以O为圆心Od为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T。
一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带正电粒子以速度v=5×102m/s沿垂直ad方向且垂直于磁场射人磁场区域,则下列判断正确的是()A.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C.从Od边射入的粒子,出射点分布在ab边D.从ad边射人的粒子,出射点全部通过b点3、在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场,在直线y=a的上方和直线x=2a的左侧区域内,有一沿x轴负方向的匀强电场,场强大小为E,一质量为m、电荷量为+q(q>0)的粒子以速度v从O点垂直于磁场方向射入,当入射速度方向沿x轴方向时,粒子恰好从O1点正上方的A点射出磁场,不计粒子重力,求:(1)磁感应强度B的大小;(2)粒子离开第一象限时速度方向与y轴正方向的夹角;(3)若将电场方向变为沿y轴负方向,电场强度大小不变,粒子以速度v从O点垂直于磁场方向、并与x轴正方向夹角θ=300射入第一象限,求粒子从射入磁场到最终离开磁场的总时间t。
高考磁场原创压轴题含答案

1.在实验室中,需要控制某些带电粒子在某区域内的滞留时间,以达到预想的实验效果。
现设想在xOy的纸面内存在以下的匀强磁场区域,在O点到P点区域的x轴上方,磁感应强度为B,方向垂直纸面向外,在x轴下方,磁感应强度大小也为B,方向垂直纸面向里,OP两点距离为x0(如图所示)。
现在原点O处以恒定速度v0不断地向第一象限内发射氘核粒子。
(1)设粒子以与x轴成45°角从O点射出,第一次与x轴相交于A点,第n次与x轴交于P点,求氘核粒子的比荷q/m(用已知量B、x0、v0、n表示),并求OA段粒子运动轨迹的弧长(用已知量x0、v0、n表示)。
(2)求粒子从O点到A点所经历时间t1和从O点到P点所经历时间t(用已知量x0、v0、n表示)。
2如图所示,在一底边长为2L,θ=45°的等腰三角形区域内(O为底边中点)有垂直纸面向外的匀强磁场. 现有一质量为m,电量为q的带正电粒子从静止开始经过电势差为U的电场加速后,从O点垂直于AB进入磁场,不计重力与空气阻力的影响.(1)粒子经电场加速射入磁场时的速度?(2)磁感应强度B为多少时,粒子能以最大的圆周半径偏转后打到OA板?(3)增大B,可延长粒子在磁场中的运动时间,求粒子在磁场中运动的极限时间.(不计粒子与AB板碰撞的作用时间,设粒子与AB板碰撞前后,电量保持不变并以相同的速率反弹)3.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E≪E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.4. 如图甲所示,两平行金属板A、B的板长l=0.20 m,板间距d=0.20 m,两金属板间加如图乙所示的交变电压,并在两板间形成交变的匀强电场,忽略其边缘效应.在金属板右侧有一方向垂直于纸面向里的匀强磁场,其左右宽度D=0.40 m,上下范围足够大,边界MN和PQ均与金属板垂直.匀强磁场的磁感应强度B=1.0×10-2 T.现从t=0开始,从两极板左端的中点O处以每秒钟1 000个的速率不停地释放出某种带正电的粒子,这些粒子均以v0=2.0×105 m/s的速度沿两板间的中线射入电场,已知带电粒子的比q/m=1.0×108C/kg,粒子的重力和粒子间的相互作用都忽略不计,在粒子通过电场区域的极短时间内极板间的电压可以看作不变.求:(1)t=0时刻进入的粒子,经边界MN射入磁场和射出磁场时两点间的距离;(2)当两金属板间的电压至少为多少时,带电粒子不能进入磁场;(3)u=3.14v时经边界MN射入磁场和射出磁场时两点间的距离;(4)粒子在磁场中运动最长时间与最短时间之比;(5)粒子在磁场中运动最长时间,此时A、B两极板所加的电压;(6)在电压变化的第一个周期内有多少个带电粒子能进入磁场.5.(16分)在如图所示的xoy坐标系中,y>0的区域内存在着沿y轴正方向、场强为E的匀强电场,y<0的区域内存在着垂直纸面向里、磁感应强度为B的匀强磁场.一带电粒子从y轴上的P(0,h)点以沿x轴正方向的初速度射出.己知带电粒子的质量为m,带电量为-q,D点坐标(d,0),不计重力的影响.(1)若粒子只在电场作用下直接通过D点,求粒子初速度的大小v(2)若粒子在第二次经过x轴时通过D点,求粒子初速度的大小v(3)若粒子在从电场进入磁场时通过D点,求粒子初速度的大小v;6.(12分)如图所示,在无限长的竖直边界AC和DE间,上、下部分分别充满方向垂直于ADEC平面向外的匀强磁场,上部分区域的磁感应强度大小为B0,OF为上、下磁场的水平分界线。
专题07 磁聚焦和磁发散问题(解析版)

浙江高考物理尖子生核心素养提升之磁聚焦和磁发散问题磁聚焦磁发散电性相同的带电粒子平行射入圆形有界匀强磁场,如果轨迹半径与磁场半径相等,则粒子从磁场边界上同一点射出,该点切线与入射方向平行带电粒子从圆形有界匀强磁场边界上同一点射入,如果轨迹半径与磁场半径相等,则粒子出射方向与入射点的切线方向平行[例1] 如图甲所示,平行金属板A 和B 间的距离为d ,现在A 、B 板上加上如图乙所示的方波形电压,t =0时,A 板比B 板的电势高,电压的正向值为u 0,反向值为-u 0。
现有质量为m 、带电荷量为q 的正粒子组成的粒子束,沿A 、B 板间的中心线O 1O 2以速度v 0=3qu 0T3dm射入,所有粒子在A 、B 板间的飞行时间均为T ,不计重力影响。
求:(1)粒子射出电场时的位置离O 2点的距离范围及对应的速度;(2)若要使射出电场的粒子经某一圆形区域的匀强磁场偏转后都能通过圆形磁场边界的一个点处,而便于再收集,对应磁场区域的最小半径和相应的磁感应强度大小。
[解析] (1)由题意知,当粒子由t =nT (n =0,1,2,3,…)时刻进入电场,向下侧移最大, 则s 1=qu 02dm ⎝⎛⎭⎫2T 32+qu 0dm ·2T 3·T 3-qu 02dm ⎝⎛⎭⎫T 32=7qu 0T 218dm,当粒子由t =nT +2T3(n =0,1,2,3,…)时刻进入电场,向上侧移最大,则s 2=qu 02dm ⎝⎛⎭⎫T 32=qu 0T 218dm,在距离O 2点下方7qu 0T 218dm 至O 2点上方qu 0T 218dm的范围内有粒子射出电场,由上述分析知,粒子射出电场的速度都是相同的,方向垂直于v 0向下的速度大小为 v y =u 0q dm ·T 3=u 0qT3dm,所以射出速度大小为 v =v 02+v y 2=⎝⎛⎭⎫3u 0qT 3dm 2+⎝⎛⎭⎫u 0qT 3dm 2=2u 0qT 3dm, 设速度方向与v 0的夹角为θ, 则tan θ=v y v 0=13,θ=30°。
专题05 磁聚焦模型-高考物理模型(解析版)

一模型界定本模型是指速率相同的同种带电粒子在经过圆形匀强磁场运动的过程中,当粒子运动轨迹半径与磁场区域半径相等时所引起的一类会聚与发散现象.二模型破解如图1所示,设粒子在磁场中沿逆时针旋转,粒子从磁场边界上P点以相同速率沿各个方向进入圆形有界匀强磁场.粒子运动轨迹半径为r,磁场区域半径为R.(i)沿任意方向入射的粒子出射方向都相同,出射速度都在垂直于入射点所在直径的方向上.(ii)若初速度与磁场边界上过P点的切线之间的夹角为θ,则粒子在磁场中转过的圆心角度也为θ.如图2所示,当2πθ=时,粒子出射点在与PO垂直的直径端点上;当32πθ=时(即与入射点所在磁场直径成300夹角时)粒子在磁场中运动的轨迹圆心在磁场边界上,运动轨迹通过磁场区域的圆心,出射点的坐标为(R23,R23).(iii)如图3所示,相同速率的同种粒子以相同的初速度射向圆形匀强磁场时,若粒子在磁场中运动的轨迹半径与磁场区域的半径相等,则经过磁场区域的所有粒子都会聚到磁场区域的一条直径的端点处,该直径与粒子初速度相垂直.欲使所有粒子都会聚到同一点,磁场区域的直径应等于粒子束的宽度d,从而磁场强弱也随之确定:qBmvd=2.如图4所示,粒子进入磁场时速度与所在磁场半径的夹角与穿出磁场时速度与所在磁场半径的夹角相等。
图3图1 图2例1.如图所示,真空中有一以(r ,O )为圆心,半径为r 的圆柱形匀强磁场区域,磁场的磁感应强度大小为B ,方向垂直于纸面向里,在y≤一r 的范围内,有方向水平向右的匀强电场,电场强度的大小为E 。
从0点向不同方向发射速率相同的电子,电子的运动轨迹均在纸面内。
已知电子的电量为e ,质量为m ,电子在磁场中的偏转半径也为r ,不计重力及阻力的作用,求:(1)电子射入磁场时的速度大小;(3)速度方向与x 轴正方向成30°角(如图中所示)射入磁场的电子,到达y 轴的位置到原点O 的距离。
【答案】(1)m eBr v=(2)22m mr eB eE π+(3)mEer Br r r y 3+=+∆例1题图(3)电子在磁场中转过120°角后从P 点垂直电场方向进入电场,如图所示 P 点距y 轴的距离为r r r x 5.160cos 1=︒+=设电子从进入电场到达到y 轴所需时间为t 3,则 由23121t meE x =得: eEm rt 33=在y 方向上电子做匀速直线运动,因此有mEer Brvt y 33==∆ 所以,电子到达y 轴的位置与原点O 的距离为mEer Brr r y 3+=+∆ 。
高考物理电磁感应现象压轴难题知识归纳总结及答案

高考物理电磁感应现象压轴难题知识归纳总结及答案一、高中物理解题方法:电磁感应现象的两类情况1.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“”字型(如图乙)通电后使其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“”字型线圈依次通电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)(2)求列车能达到的最大速度m v ;(3)列车以最大速度运行一段时间后,断开接在“” 字型线圈上的电源,使线圈与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ⨯、磁感应强度为B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“”字型线圈时,电容器中贮存的电量Q .【答案】(1) 012() BL v v R -222210122BL B L kR v B L +-24nB Lb R ' 【解析】 【详解】解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =-由欧姆定律得:12E I R = 解得:01(2 )BL v v I R -=(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:B F BIL =由平衡条件得:20B f F F -= ,已知:2f F kv =解得:222210122m BL B L kR v B L v kR +-=(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:感应电动势:n E tφ∆=∆,而B Lb φ∆=' 电流:12E I R =电荷量:11Q I t =∆ 解得:12nB LbQ R '= 电磁铁通过字型线圈中间时,电路情况如图2所示:B Lb φ∆=',2222E nI R tφ∆==∆ 22Q I t =∆解得:222nB LbQ R '= 电磁铁通过字型线圈右边界时,电路情况如图3所示:n E tφ∆=∆, B Lb φ∆=',32E I R =33Q I t =∆解得:32nB LbQ R '=, 总的电荷量:123Q Q Q Q =++ 解得:24nB LbQ R '=2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个磁聚焦问题的证明及其应用——从一道高考压轴题
的答案谈起
近年来,随着科学技术的迅猛发展,磁聚焦技术在各个领域得到了广泛应用。
在物理学中,磁聚焦是指通过磁场将带电粒子聚集起来,使其运动轨道受到控制,以达到聚焦的目的。
然而,要深入理解磁聚焦问题,并探讨其应用,需要具备扎实的基础知识和数理推导能力。
在我国高考物理试题中,经常会涉及到一些经典的磁聚焦问题。
其中一道压轴题引起了广大考生的关注和研究。
该题描述了这样一个情景:一个电子素具有速度v且电量为e,在通过一段长度L的均匀磁感应强度为B的磁场后,由于受到磁力的作用而发生了轨道偏转。
考生需要回答这个电子偏转的偏转角度θ,并进行证明。
首先,我们来分析一下这个问题。
根据洛伦兹力的公式
F=qvBsinθ,可以得到电子受到的磁力大小为F=evBsinθ,其中e和v分别为电子的电量和速度。
根据牛顿第二定律,力的合力与物体加速度的关系为F=ma,其中m为电子的质量,a 为加速度。
所以,我们可以得到加速度与力的关系为
a=evBsinθ/m。
进一步考虑加速度与速度的关系,可以得到速度与时间的关系为a=Δv/Δt,其中Δv和Δt分别为速度和时间的变化量。
如果我们对时间进行微分,可以得到a=dv/dt。
所以,将时间微分后的式子代入加速度与力的关系式中,可以得到:dv/dt = evBsinθ/m
接下来,进行变量的分离。
我们可以将与速度有关的项移
到方程的左边,将与时间有关的项移到方程的右边,得到: dv/(v) = (eBs inθ/m)dt
然后,对等式两边进行积分。
对速度的积分可以得到
ln(v) = (eBsinθ/m)t + C,其中C为积分常数。
再对时间的积分可以得到t = ∫dt = ∫(1)dt = T,其中T为时间的变量。
所以,我们可以得到:
ln(v) = (eBsinθ/m)T + C
接下来,我们需要利用题目中给出的条件,即电子通过长度为L的均匀磁场,所以其速度变为v',即v' = v + aL,其中a为加速度。
将该条件代入上述等式中,可以得到:
ln(v') = (eBsinθ/m)T + C
然后,我们将ln(v')减去ln(v),即可得到:
ln(v') - ln(v) = (eBsinθ/m)T
根据ln的性质,我们可以将其转化为指数形式,得到
v'/v = e^((eBsinθ/m)T)
接下来,我们需要利用边界条件来求解该等式,即当T=0时,v=v0,即速度在初始位置上的大小为v0。
所以我们可以得到:
v'/v = e^((eBsinθ/m)T) = e^((eBsinθ/m) x 0) =
e^0 = 1
所以,我们可以得到v' = v
根据等式v' = v + aL,我们可以得知aL = 0
由此可知,当T=0时,电子的轨道偏转角度θ在受到磁场作用后为0。
因此,答案为θ=0,即磁场对电子的轨道没有偏转。
通过以上的数学推导和证明,我们证明了这个磁聚焦问题中电子的轨道偏转角度始终为0。
这个证明在物理学中具有一
定的意义和应用。
例如,在加速器和粒子物理实验中,磁聚焦是非常重要的技术手段。
了解电子在磁场中的运动规律可以帮助科学家更好地设计和优化磁聚焦装置,以实现更高精度的粒子轨道控制,从而在物理研究和应用中发挥更大的作用。
总结起来,通过对一道高考压轴题的数学推导和证明,我们解决了一个磁聚焦问题,并讨论了其在物理学中的应用。
然而,磁聚焦问题及相关研究领域仍然存在许多待解答的问题。
通过不断深入的研究和探索,相信我们能够更好地理解和应用磁聚焦技术,为科学的进步和人类的发展做出更大的贡献
经过数学推导和证明,我们得出了一个重要的结论:在受到磁场作用后,电子的轨道偏转角度始终为0。
这个结论对磁聚焦技术的研究和应用具有重要意义。
在加速器和粒子物理实验中,磁聚焦是一项关键技术,了解电子在磁场中的运动规律有助于设计和优化磁聚焦装置,实现更精确的粒子轨道控制。
我们相信,通过不断深入的研究和探索,我们能够进一步理解和应用磁聚焦技术,为科学的进步和人类的发展做出更大的贡献。