八年级下学期期中考试数学试卷(含有答案)
山东省枣庄市台儿庄区2023-2024学年八年级下学期期中考试数学试卷(含解析)

2023-2024学年度第二学期阶段性检测八年级数学试题亲爱的同学:祝贺你完成了一个阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥,祝你成功!一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在下面的表格内.1. 下列图形中,既是轴对称图形又是中心对称图形是()A. B. C. D.【答案】A解析:解:、既是轴对称图形,又是中心对称图形,符合题意;、既不是轴对称图形,也不是中心对称图形,不符合题意;、是轴对称图形,不是中心对称图形,不符合题意;、是中心对称图形,不是轴对称图形,不符合题意;故选:.2. 实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A. B. C. D.【答案】C解析:由数轴可知,∴,故A选项错误;∴,故B选项错误;∴,故C选项正确;∴,故D选项错误;故选:C.3. 如图,直线经过点,则关于x不等式的解集是()A. B. C. D.【答案】A解析:解:由函数图象可知,当直线的图象在直线上方时,,∴关于x的不等式的解集是,故选A.4. 将一副直角三角板和一把宽度为2cm的直尺按如图方式摆放:先把和角的顶点及它们的直角边重合,再将此直角边垂直于直尺的上沿,重合的顶点落在直尺下沿上,这两个三角板的斜边分别交直尺上沿于,两点,则的长是()A. B. C. 2 D.【答案】B解析:解:如图,在中,,∴,∴,在中,,∴,∴,∴,∴.故选:B.5. 在平面直角坐标系中,将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A. B. C. D.【答案】D解析:解:将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是.故选:D.6. 如图,直线,直线与直线分别相交于点,点在直线上,且.若,则的度数为()A. B. C. D.【答案】C解析:解:∵,,∴,∵,∴,故选:C.7. 已知不等式组的解集是,则()A. B. C. D.【答案】C解析:解:,解得,,解得,,∴,∵,∴,,∴,,∴,故选:.8. 如图,将绕点A逆时针旋转到,旋转角为,点B的对应点D恰好落在边上,若,则旋转角的度数为()A. B. C. D.【答案】C解析:解:如图,,∵,∴,∵,∴,∵旋转,∴,,∴,∴,即旋转角的度数是.故选:C.9. 如图,在正方形网格内,线段的两个端点都在格点上,网格内另有四个格点,下面四个结论中,正确的是()A. 连接,则B. 连接,则C. 连接,则D. 连接,则【答案】B解析:解:如图,连接,取与格线的交点,则,而,∴四边形不是平行四边形,∴,不平行,故A不符合题意;如图,取格点,连接,由勾股定理可得:,∴四边形是平行四边形,∴,故B符合题意;如图,取格点,根据网格图的特点可得:,根据垂线的性质可得:,,都错误,故C,D不符合题意;故选B10. 如果点P(m,1+2m)在第三象限内,那么m的取值范围是( )A. B. C. D. 【答案】D解析:解:∵点P(m,1+2m)在第三象限内,∴,解不等式①得:,解不等式②得:,∴不等式组的解集为:,故选D.11. 如图,在中,,将绕点C顺时针旋转得到,其中点与点A是对应点,点与点B是对应点.若点恰好落在边上,则点A到直线的距离等于()A. B. C. 3 D. 2【答案】C解析:解:如图,过作于由,结合旋转:为等边三角形,∴A到的距离为3.故选C12. 如图,在平面直角坐标系中,已知点,点B在第一象限内,,,将绕点O逆时针旋转,每次旋转,则第2023次旋转后点B坐标为()A. B. C. D.【答案】C解析:解:过点B作轴于H,在中,,,,∴,∴,,由勾股定理得,∴B(,3),∵,,∴,∴逆时针旋转后,得,以此类推,,,,,...,6次一个循环,∵,∴第2023次旋转后,点B的坐标为,故选:C.二、填空题:每题4分,共24分,将答案填在答题纸的横线上.13. 等腰三角形的一个内角是,则它顶角的度数是_____.【答案】或解析:解:当度数为的内角是顶角时,则顶角的度数为;当度数为的内角为底角时,则顶角的度数为;综上所述,顶角的度数为或,故答案为:或.14. 如图,在中,以A为圆心,长为半径作弧,交于C,D两点,分别以点C和点D为圆心,大于长为半径作弧,两弧交于点P,作直线,交于点E,若,,则______.【答案】4解析:解:根据题意可知,以点C和点D为圆心,大于长为半径作弧,两弧交于点P,∴垂直平分,即,∴,又∵在中,以A为圆心,长为半径作弧,交于C,D两点,其中,∴,在中,,故答案为:4.15. 已知关于x的不等式组无解,则a的取值范围是_____.【答案】a≥2解析】解:,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为a≥2.16. 某种商品进价为700元,标价为1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于,则至多可以打_____折.【答案】7##七解析:解:设该商品打x折出售,由题意得,,解得,∴至多可以打7折,故答案为:7.17. 如图,点的坐标是(0,3),将沿轴向右平移至,点的对应点E恰好落在直线上,则点移动的距离是______.【答案】3解析:解:当时,,点的坐标为,沿轴向右平移个单位得到,点与其对应点间的距离为,即点移动的距离是3.故答案为:.18. 如图所示,在中,,,一动点从向以每秒的速度移动,当点移动______秒时,与腰垂直.【答案】或解析:解:如图,当时,则,∵,,∴,,∴,,∴,∵,∴,∴,∴,∴,∴点移动的时间为(秒);如图,当时,,∵,∴,∵,∴,∴,∴点移动的时间为(秒);综上,点移动的时间为或秒时,与腰垂直,故答案为:或.三、解答题:(满分60分)19. 解不等式组【答案】解析:解:,解不等式得,,解不等式得,,∴不等式组的解集为.20. 已知两个有理数:-9和5.(1)计算:;(2)若再添一个负整数,且-9,5与这三个数的平均数仍小于,求的值.【答案】(1)-2;(2).解析:(1)=;(2)依题意得<m解得m>-2∴负整数=-1.21. 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)平移,点A的对应点的坐标为,画出平移后对应的,并直接写出点的坐标;(2)绕点C逆时针方向旋转90°得到,按要求作出图形;(3)如果通过旋转可以得到,请直接写出旋转中心P的坐标.【答案】(1)见解析,坐标为(2,-2)(2)见解析(3)P【小问1解析】(1)如图所示,的对应点的坐标为,沿横轴正方向平移6上单位,沿纵轴负方向平移6个单位;△即为所求.点B的坐标,坐标为(2,-2)【小问2解析】如图所示,△即为所求【小问3解析】旋转中心P的坐标22. 某礼品店经销A,B两种礼品盒,第一次购进A种礼品盒10盒,B种礼品盒15盒,共花费2800元;第二次购进A种礼品盒6盒,B种礼品盒5盒,共花费1200元(1)求购进A,B两种礼品盒的单价分别是多少元;(2)若该礼品店准备再次购进两种礼品盒共40盒,总费用不超过4500元,那么至少购进A种礼品盒多少盒?【答案】(1)A礼品盒的单价是100元,B礼品盒的单价是120元;(2)至少购进A种礼品盒15盒.【小问1解析】解:设A礼品盒的单价是a元,B礼品盒的单价是b元,根据题意得:,解得:,答:A礼品盒的单价是100元,B礼品盒的单价是120元;【小问2解析】解:设购进A礼品盒x盒,则购进B礼品盒盒,根据题意得:,解得:,∵x为整数,∴x的最小整数解为15,∴至少购进A种礼品盒15盒.23. 如图,在中,为的角平分线.以点圆心,长为半径画弧,与分别交于点,连接.(1)求证:;(2)若,求的度数.【答案】(1)见解析(2)【小问1解析】证明:∵为的角平分线,∴,由作图可得,在和中,,∴;【小问2解析】∵,为的角平分线,∴由作图可得,∴,∵,为的角平分线,∴,∴24. 在中,,交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作垂足为E.此时请你通过观察、测量DE,DF与CG的长度,猜想并写出DE、DF 与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)【答案】(1)证明见解析;(2)DE+DF=CG,证明见解析;(3)成立.解析:(1)∵,∴∠ABC=∠ACB,在△BFC和△CGB中,∴△BFC≌△CGB,∴(2)DE+DF=CG,如图,过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,∵,∴∠ABC=∠ACB,在△BMC和△CGB中,∴△BMC≌△CGB,∴BM=CG,由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,∴四边形MHDF为矩形,∴MH=DF,DH∥MF,∴∠HDB=∠MCB,∴∠HDB=∠ABC,在△BDH和△DBE中,∴△BDH≌△DBE,∴BH=DE,∵BM=CG,BM=BH+HM,∴DE+DF=CG,(3)成立,如图,过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,同(2)中的方法∵,∴∠ABC=∠ACB,在△BMC和△CGB中,∴△BMC≌△CGB,∴BM=CG,由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,∴四边形MHDF为矩形,∴MH=DF,DH∥MF,∴∠HDB=∠MCB,∴∠HDB=∠ABC,在△BDH和△DBE中,∴△BDH≌△DBE,∴BH=DE,∵BM=CG,BM=BH+HM,∴DE+DF=CG.25. 如图,在△ABC中,∠ABC=∠ACB,E为BC边上一点,以E为顶点作∠AEF,∠AEF的一边交AC于点F,使∠AEF=∠B.(1)如果∠ABC=40°,则∠BAC=;(2)判断∠BAE与∠CEF的大小关系,并说明理由;(3)当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.【答案】(1)100°(2)∠BAE=∠CEF,理由见解析(3)∠AEF与∠BAE的数量关系是互余或2∠AEF与∠BAE的数量关系是互余.【小问1解析】解:∵在△ABC中,∠ABC=∠ACB,∠ABC=40°,∴∠ACB=40°,∴∠BAC=180°﹣40°﹣40°=100°,故答案为:100°.【小问2解析】∠BAE=∠CEF;理由如下:∵∠B+∠BAE=∠AEC,∠AEF=∠B,∴∠BAE=∠CEF;小问3解析】如图1,当∠AFE=90°时,∵∠B+∠BAE=∠AEF+∠CEF,∠B=∠AEF=∠C,∴∠BAE=∠CEF,∵∠C+∠CEF=90°,∴∠BAE+∠AEF=90°,即∠AEF与∠BAE的数量关系是互余;如图2,当∠EAF=90°时,∵∠B+∠BAE=∠AEF+∠1,∠B=∠AEF=∠C,∴∠BAE=∠1,∵∠C+∠1+∠AEF=90°,∴2∠AEF+∠1=90°,∴2∠AEF+∠BAE=90°即2∠AEF与∠BAE的数量关系是互余.。
湖北省武汉市湖北华宜寄宿学校2023-2024学年八年级下学期期中考试数学试卷(含解析)

湖北省武汉市湖北华宜寄宿学校2023-2024学年八年级(下)期中数学试卷一、单选题(共10小题,每小题3分,共30分)1.(3分)下列二次根式是最简二次根式的是( )A.B.C.D.2.(3分)下列各组数中,是勾股数的是( )A.9,16,25B.1,1,C.1,,2D.8,15,173.(3分)在式子5,x=2,a,a+b,,m+n>0,中,属于代数式的有( )A.3B.4C.5D.64.(3分)在下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AD∥BC,AD=BC D.AB=AD,CD=BC5.(3分)下列各命题的逆命题成立的是( )A.菱形四条边相等B.如果两个实数相等,那么它们的绝对值相等C.等边三角形是锐角三角形D.全等三角形的对应角相等6.(3分)已知,那么a应满足什么条件( )A.a>0B.a≥0C.a=0D.a任何实数7.(3分)矩形和菱形都一定具有的性质是( )A.对角线互相垂直B.对角线互相平分C.对角线长度相等D.对角线平分一组对角8.(3分)如图所示,平面直角坐标系中,已知三点A(﹣1,0),B(2,0),C(0,1),若以A、B、C、D为顶点的四边形是平行四边形,则D点的坐标不可能是( )A.(3,1)B.(﹣3,1)C.(1,3)D.(1,﹣1)9.(3分)如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt△ABC的顶点都是图中的格点,其中点A、点B的位置如图所示,则点C可能的位置共有( )A.9个B.8个C.7个D.6个10.(3分)如图,AF平分∠BAD,E为矩形ABCD的对角线BD上的一点,EC⊥BD于点E,EC的延长线与AG的延长线交于点F,若BD=10,则CF的值是( )A.6B.7C.8D.10二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)化简:= .12.(3分)在平行四边形ABCD中,∠A=60°,AD=BD=2,则平行四边形ABCD的面积等于 .13.(3分)与最接近的整数为: .14.(3分)如图,四边形ABCD中,AB∥DC,∠A=90°,AB=AE=4,CD=DE=3.点F为BC的中点,则EF的长度为 .15.(3分)2023年暑假,我校顺利完成了大门改造,新大门气势磅礴,宏伟壮观,彰显着非凡的尊贵气息.小蓝为了测量大门的高度AB,采取了以下方法:在校门口D点处测得大门顶A点处的仰角为45°,步行过马路后,马路宽度约为12米,在马路对面的F点处测得大门顶A点处的仰角为30°,已知小蓝的眼睛距离地面高度为CD=EF=1.6米,则大门高度AB约为 米.(仰角:是从低处向高处观察目标时,视线与水平线所形成的角度.结果保留2位小数,参考数据:≈1.732)16.(3分)如图,在△ABC中,∠ABC=15°,∠ACB=37.5°,点D是边BC上的一点,且∠BAD=52.5°,S△ACD=3,则S△ABD= .三、解答题(共8小题,共72分)17.计算:(1)2﹣6+3;(2)(+3)(﹣5).18.已知a=2+,b=2﹣,求值:a2+b2.19.如图,将▱ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF.求证:四边形AECF 是平行四边形.20.如图是由边长为1的小正方形构成的8×8格,每个小正方形的点叫做格点.四边形ABDC的顶点是格点,点M是边AB与格线的交点,仅用无刻度的直尺在给定网格中按步骤完成下列画图,画图过程用虚线表示,画图结果用实线表示.(1)过点C画线段CE,使CE∥AB,且CE=AB;(2)在边AB上画一点F,使直线DF平分四边形ABEC的面积;(3)过点M画线段MN,使MN∥CD,且MN=CD.21.把一张长方形的纸片ABCD沿对角线BD折叠,折叠后,边BC的对应边BE交AD于F.(1)求证:BF=DF;(长方形各内角均为90°)(2)若AB=6,BC=8.求DF的长.22.如图,在△ABC中,∠C=90°,∠BAC,∠ABC的角平分线交于点G,GE⊥BC于点E,GF⊥AC于点F.(1)求证:四边形GECF是正方形;(2)若AC=4,BC=3,求四边形GECF的面积.23.(1)问题背景:小刚遇到一个这样问题:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.通过尝试他发现通过平移可以解决这个问题.证明:过点C作AB∥CE且使AB=CE,连接BE,∴四边形ABEC为平行四边形,则AC= ,∵AB∥CE、∴∠DCE=∠ =60°,又∵CD=AB=CE,∴△DCE为等边三角形,∴CD= ,∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的三个填空.并参考小刚同学思考的方法,解决下列问题:(2)类比运用:如图2,AB与CD相交于点O,AC=3,BD=4,AB=5,∠AOC=30°,∠ACD+∠ABD =240°,求线段CD的长;(3)联系拓展:如图3,△ABC的三条中线分别为AD,BE,CF.三条中线的交点为G.若△BDG的面积为3,则以AD,BE,CF的长度为三边长的三角形的面积等于 (请直接写出答案).24.在平面直角坐标系中,四边形OABC为矩形,A(a,0),C(0,c),且.点E 从B点出发沿BC运动,点F从B点出发沿BA运动,点G从O点出发沿OC运动.(1)如图1,将△AOF沿OF折叠,点A恰好落在点E处,则E点的坐标为 ,F点的坐标为 ;(2)如图2,若E,F两点以相同的速度同时出发运动,使∠EOF=45°,求OC+CE的值;(3)如图3,已知点D为AO的中点,若F,G两点以相同的速度同时出发运动,连接FG,作AH⊥FG于H,直接写出DH的最大值.参考答案与试题解析一、单选题(共10小题,每小题3分,共30分)1.(3分)下列二次根式是最简二次根式的是( )A.B.C.D.【解答】解:(A)原式=2,故A不选;(C)原式=2,故C不选;(D)原式=,故D不选;故选:B.2.(3分)下列各组数中,是勾股数的是( )A.9,16,25B.1,1,C.1,,2D.8,15,17【解答】解:A、92+162≠252,不是勾股数,故此选项不合题意;B、不是正整数,不是勾股数,故此选项不合题意;C、不是正整数,不是勾股数,故此选项不合题意;D、82+152=172,都是正整数,是勾股数,故此选项符合题意;故选:D.3.(3分)在式子5,x=2,a,a+b,,m+n>0,中,属于代数式的有( )A.3B.4C.5D.6【解答】解:在式子5,x=2,a,a+b,,m+n>0,中,属于代数式的有5,a,a+b,,共4个,故选:B.4.(3分)在下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AD∥BC,AD=BC D.AB=AD,CD=BC【解答】解:A、由AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,故选项A不符合题意;B、由∠A=∠B,∠C=∠D,不能判定四边形ABCD为平行四边形,故选项B不符合题意;C、∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,故选项C符合题意;D、AB=AD,CB=CD,由不能判定四边形ABCD为平行四边形,故选项D不符合题意;故选:C.5.(3分)下列各命题的逆命题成立的是( )A.菱形四条边相等B.如果两个实数相等,那么它们的绝对值相等C.等边三角形是锐角三角形D.全等三角形的对应角相等【解答】解:A、逆命题为:四条边相等的四边形是菱形,成立,符合题意;B、逆命题为:如果两个实数的绝对值相等,那么这两个实数也相等,不成立,不符合题意;C、逆命题为:锐角三角形是等边三角形,不成立,不符合题意;D、逆命题为:对应角相等的三角形全等,不成立,不符合题意.故选:A.6.(3分)已知,那么a应满足什么条件( )A.a>0B.a≥0C.a=0D.a任何实数【解答】解:∵()2=a≥0且a≥0,=|a|≥0,∴|a|=a,∴a≥0.故选:B.7.(3分)矩形和菱形都一定具有的性质是( )A.对角线互相垂直B.对角线互相平分C.对角线长度相等D.对角线平分一组对角【解答】解:矩形的性质是:①矩形的四个角度数直角,②矩形的对边相等且互相平行,③矩形对角线相等且互相平分;菱形的性质是:①菱形的四条边都相等,菱形的对边互相平行;②菱形的对角相等,③菱形的对角线互相平分且垂直,并且每条对角线平分一组对角,所以矩形和菱形都具有的性质是对角线互相平分,故选:B.8.(3分)如图所示,平面直角坐标系中,已知三点A(﹣1,0),B(2,0),C(0,1),若以A、B、C、D为顶点的四边形是平行四边形,则D点的坐标不可能是( )A.(3,1)B.(﹣3,1)C.(1,3)D.(1,﹣1)【解答】解:当以BC为对角线时:CD=AB=3,此时D(3,1);当以AC为对角线时,CD=AB=3,此时(﹣3,1);当以AB为对角线时,AD=BC==,此时点D(1,﹣1).∴D点的坐标不可能是:(1,3).故选:C.9.(3分)如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt△ABC的顶点都是图中的格点,其中点A、点B的位置如图所示,则点C可能的位置共有( )A.9个B.8个C.7个D.6个【解答】解:如图:符合条件的点C一共有9个.故选:A.10.(3分)如图,AF平分∠BAD,E为矩形ABCD的对角线BD上的一点,EC⊥BD于点E,EC的延长线与AG的延长线交于点F,若BD=10,则CF的值是( )A.6B.7C.8D.10【解答】解:过A作AH⊥BD于H,连接AC,∵AF平分∠BAD,∴∠BAG=∠DAG∵四边形ABCD是矩形,∴AC=BD=10,∠BAD=90°,OA=OD,∴∠BAH+∠DAH=∠ADB+∠DAH=90°,∴∠BAH=∠ADH,∵OA=OD,∴∠ADH=∠DAC,∴∠BAH=DAC,∴∠BAG﹣∠BAH=∠DAG﹣∠DAC,∴∠GAH=∠CAH,∵EC⊥BD,AH⊥BD,∴AH∥CE,∴∠F=∠GAH,∴∠F=∠CAH,∴CF=AC=10.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)化简:= 5 .【解答】解:=5.故答案为:5.12.(3分)在平行四边形ABCD中,∠A=60°,AD=BD=2,则平行四边形ABCD的面积等于 6 .【解答】解:如图,过点B作BE⊥AD于点E.∵AD=DB=2,∠A=60°,∴△ABD是等边三角形,∴AB=BD=2,∵BE⊥AD,∴AE=ED=,∴BE===3,∴平行四边形ABCD的面积=2×3=6.故答案为:6.13.(3分)与最接近的整数为: 7 .【解答】解:∵=6.5,=7,且<<,∴6.5<<7,∴与最接近的整数为7,故答案为:7.14.(3分)如图,四边形ABCD中,AB∥DC,∠A=90°,AB=AE=4,CD=DE=3.点F为BC的中点,则EF的长度为 .【解答】解:连接DF并延长交AB的延长线于H,过点C作CM⊥AB于M,如下图所示:∵AB∥DC,∠DAB=90°,AB=AE=4,CD=DE=3,∴四边形ADCM为矩形,∴CM=AD=AE+DE=7,AM=CD=3,∴BM=AB﹣AM=4﹣3=1,在Rt△CMB中,由勾股定理得:BC===,∵点F为BC的中点,∴CF=BF=BC=,∵DC∥AB,∴∠1=∠H,∠DCF=∠HBF,在△DCF和△HBF中,∠1=∠H,∠DCF=∠HBF,CF=BF,∴△DCF≌△HBF(AAS),∴CD=BH=3,DF=HF,∴AH=AB+BH=4+3=7,∴AD=AH,∴∠2=∠H,∴∠1=∠2,在△DCF和△DEF中,CD=DE,∠1=∠2,DF=DF,∴△DCF≌△DEF(SAS),∴EF=CF=.故答案为:.15.(3分)2023年暑假,我校顺利完成了大门改造,新大门气势磅礴,宏伟壮观,彰显着非凡的尊贵气息.小蓝为了测量大门的高度AB,采取了以下方法:在校门口D点处测得大门顶A点处的仰角为45°,步行过马路后,马路宽度约为12米,在马路对面的F点处测得大门顶A点处的仰角为30°,已知小蓝的眼睛距离地面高度为CD=EF=1.6米,则大门高度AB约为 7.06 米.(仰角:是从低处向高处观察目标时,视线与水平线所形成的角度.结果保留2位小数,参考数据:≈1.732)【解答】解:在Rt△ADG中,∵∠ADG=45°,∴∠DAG=45°=∠ADG,∴AG=DG,在Rt△AEG中,∠AEG=30°,GE=DG+DE=12+AG,tan∠AEG=,∴AG=GE•tan30°,∴AG=(12+AG)解得AG≈5.46(米),由题意知四边形BFEG是矩形,∴BG=EF=1.6米,∴AB=AG+BG=5.46+1.6=7.06(米).答:大门高度AB约为7.06米.故答案为:7.06.16.(3分)如图,在△ABC中,∠ABC=15°,∠ACB=37.5°,点D是边BC上的一点,且∠BAD=52.5°,S△ACD=3,则S△ABD= .【解答】解:以点A为圆心,AB为半径画弧交BC的延长线于E,连接AE,则AB=AE,把△ABD绕点A逆时针旋转150°得到△AEF,连接CF,过点C作CH⊥EF于H,设CH=a,如下图所示:由旋转的性质可知:∠DAF=150°,∠AEF=∠B=15°,BD=EF,AD=AF,在△ABE中,AB=AE,∴∠AEB=∠B=15°,∴∠CEF=∠AEB+∠AEF=30°,在△ABC中,∠B=15°,∠ACB=37.5°,∴∠BAC=180°﹣(∠B+∠ACB)=180°﹣(15°+37.5°)=127.5°,又∵∠BAD=52.5°,∴∠DAC=∠BAC﹣∠BAD=127.5°﹣52.5°=75°,∴∠FAC=∠DAF﹣∠DAC=150°﹣75°=75°,即∠DAC=∠FAC,在△DAC和△FAC中,,∴△DAC≌△FAC(SAS),∴∠DCA=∠FCA=37.5°,CD=CF,即∠DAF=∠DCA+∠FCA=75°,∴∠FCE=180°﹣∠DAF=180°﹣75°=105°,在Rt△CEH中,∠CEF=30°,CH=a,∴∠HCE=60°,CE=2CH=2a,由勾股定理得:EH==,∴∠FCH=∠FCE﹣∠HCE=105°﹣60°=45°,∴△FCH为等腰直角三角形,即FH=CH=a,由勾股定理得:CF==,∴CD=CF=,BD=EF=EH+FH==,∴=,∵△ABD的边BD和△ACD的边CD上的高相同,∴得=,又∵S△ACD=,∴S△ABD==.故答案为:.三、解答题(共8小题,共72分)17.计算:(1)2﹣6+3;(2)(+3)(﹣5).【解答】解:(1)原式=4﹣2+12=14;(2)原式=2﹣5+3﹣15=﹣13﹣2.18.已知a=2+,b=2﹣,求值:a2+b2.【解答】解:∵a=2+,b=2﹣,∴a+b=4,ab=1,∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14.19.如图,将▱ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF.求证:四边形AECF 是平行四边形.【解答】证明:连接AC,设AC与BD交于点O.如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵BE=DF,∴OE=OF.∴四边形AECF是平行四边形.20.如图是由边长为1的小正方形构成的8×8格,每个小正方形的点叫做格点.四边形ABDC的顶点是格点,点M是边AB与格线的交点,仅用无刻度的直尺在给定网格中按步骤完成下列画图,画图过程用虚线表示,画图结果用实线表示.(1)过点C画线段CE,使CE∥AB,且CE=AB;(2)在边AB上画一点F,使直线DF平分四边形ABEC的面积;(3)过点M画线段MN,使MN∥CD,且MN=CD.【解答】解:(1)如图,线段CE即为所求.(2)如图,直线DF即为所求.(3)如图,线段MN即为所求.21.把一张长方形的纸片ABCD沿对角线BD折叠,折叠后,边BC的对应边BE交AD于F.(1)求证:BF=DF;(长方形各内角均为90°)(2)若AB=6,BC=8.求DF的长.【解答】(1)证明:由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,在△ABF和△EDF中,,∴△ABF≌△EDF(AAS),∴BF=DF;(2)解:∵四边形ABCD是矩形,∴∠A=90°,AD=BC=8,∴,由(1)知BF=DF,∴AF=8﹣DF=8﹣BF,∵AB2+AF2=BF2,∴62+(8﹣BF)2=BF2,∴,22.如图,在△ABC中,∠C=90°,∠BAC,∠ABC的角平分线交于点G,GE⊥BC于点E,GF⊥AC于点F.(1)求证:四边形GECF是正方形;(2)若AC=4,BC=3,求四边形GECF的面积.【解答】(1)证明:过G作GD⊥AB于D,∵∠CAB、∠CBA的角平分线交于G点,GE⊥BC于点E,GF⊥AC于点F,∴DG=EG,DG=FG,∴EG=FG,∵△ABC是直角三角形,∠C=90°,GE⊥BC,GF⊥AC,∴∠C=∠CEG=∠CFG=90°,∴四边形GECF是矩形,∵EG=FG,∴四边形GECF为正方形;(2)解:如图2,连接CG,过G作GD⊥AB于D,由勾股定理得:AB==5,设EG=x,则DG=FG=x,∵S△ABC=S△AGB+S△AGC+S△BCG,∴×3×4=•5x+•4x+•3x,∴x=1,∴四边形GECF的面积=EG2=1.23.(1)问题背景:小刚遇到一个这样问题:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.通过尝试他发现通过平移可以解决这个问题.证明:过点C作AB∥CE且使AB=CE,连接BE,∴四边形ABEC为平行四边形,则AC= BE ,∵AB∥CE、∴∠DCE=∠ AOC =60°,又∵CD=AB=CE,∴△DCE为等边三角形,∴CD= DE ,∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的三个填空.并参考小刚同学思考的方法,解决下列问题:(2)类比运用:如图2,AB与CD相交于点O,AC=3,BD=4,AB=5,∠AOC=30°,∠ACD+∠ABD =240°,求线段CD的长;(3)联系拓展:如图3,△ABC的三条中线分别为AD,BE,CF.三条中线的交点为G.若△BDG的面积为3,则以AD,BE,CF的长度为三边长的三角形的面积等于 (请直接写出答案).【解答】(1)证明:过点C作AB∥CE且使AB=CE.连接BE.∴四边形ABEC为平行四边形,则AC=BE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,∴CD=DE.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.故答案为:BE、AOC、DE;(2)解:过A作AF∥CD,过D作DF∥AC,两直线交于F,连接BF,则四边形AFDC是平行四边形,所以∠FAB=∠AOC=30°,∠C=∠AFD,AC=DF=3,∵∠ABD+∠C=240°,∴∠ABD+∠DFA=240°,∴∠FDB=360°﹣240°﹣30°=90°,∴△FDB是直角三角形,∵DF=3,BD=4,∴由勾股定理得:FB=5,∴AB=FB,∴∠BAF=∠AFB=45°,∴∠ABF=90°,∴由勾股定理得:AF=5,∵四边形AFDC是平行四边形,∴CD=AF=5.(3)解:平移AF到PE,可得AF∥PE,AF=PE,∴四边形AFEP为平行四边形,∴AE与PF互相平分,即M为PF的中点,又∵AP∥FN∥BC,F为AB的中点,∴N为PC的中点,∴E为△PFC各边中线的交点,∴△PEC的面积为△PFC面积的,连接DE,可知DE与PE在一条直线上,∴△EDC的面积是△ABC面积的,∴S△PFC=3S△CFE=3S△EDC=,∵△BDG的面积为3,∴S△ABG=2S△BDG=6,∴S△ABC=2S△ABD=18,所以△PFC的面积是18×=,∴以AD、BE、CF的长度为三边长的三角形的面积等于,故答案为:.24.在平面直角坐标系中,四边形OABC为矩形,A(a,0),C(0,c),且.点E 从B点出发沿BC运动,点F从B点出发沿BA运动,点G从O点出发沿OC运动.(1)如图1,将△AOF沿OF折叠,点A恰好落在点E处,则E点的坐标为 (6,8) ,F点的坐标为 (10,5) ;(2)如图2,若E,F两点以相同的速度同时出发运动,使∠EOF=45°,求OC+CE的值;(3)如图3,已知点D为AO的中点,若F,G两点以相同的速度同时出发运动,连接FG,作AH⊥FG 于H,直接写出DH的最大值.【解答】解:(1)∵,≥0,(c﹣8)2≥0,∴10﹣a=0,c﹣8=0,∴a=10,c=8.∴A(10,0),C(0,8).∴OA=10,OC=8.∵四边形OABC为矩形,∴AB=OC=8,BC=OA=10.∵将△AOF沿OF折叠,点A恰好落在点E处,∴EF=FA,OE=OA=4,∴CE==6,∴E(6,8);∴BE=BC﹣CE=4,设EF=FA=x,则BF=8﹣x,∵BE2+BF2=EF2,∴42+(8﹣x)2=x2,∴x=5.∴AF=5.∴F(10,5).故答案为:(6,8);(10,5);(2)延长EF交x轴于点G,延长FE交y轴于点D,过点O作OH⊥OF,使OH=OF,连接EH,HD ,如图,∵OH⊥OF,∠EOF=45°,∴∠HOE=∠FOE=45°.在△OEH和△OEF中,,∴△OEH≌△OEF(SAS),∴HE=EF.∵∠HOF=∠COA=90°,∴∠HOD=∠FOG.∵E,F两点以相同的速度同时出发运动,∴BE=BF,∴△BEF为等腰直角三角形,∴∠BEF=∠BFE=45°,∴∠DEC=∠BEF=∠AFG=∠BFE=45°,∴△CED和△AFG为等腰直角三角形,∴DC=CE,AF=AG,∠AGF=∠ADE=45°,∴DE2=2CE2,FG2=2AF2,△ODG为等腰直角三角形,∴OD=OG.在△ODH和△OGF中,,∴△ODH≌△OGF(SAS),∴DH=FG,∠HDO=∠FGA=45°,∴∠HDE=∠HDO+∠CDE=45°+45°=90°,DH2=2AF2,∴DH2+DE2=EF2.∴2AF2+2CE2=2BE2,∴AF2+CE2=BE2,设CE=m,则BE=BF=10﹣m,∴AF=AB﹣BF=m﹣2,∴(m﹣2)2+m2=(10﹣m)2,∴m2+16m﹣96=0.∴m=﹣8(负数不合题意,舍去),∴CE=4﹣8,∴OC+CE=8+4﹣8=4.(3)连接OB,交GF于点K,连接KD,AK,取AK的中点M,连接MD,MH,如图,∵F,G两点以相同的速度同时出发运动,∴OG=BF.∵OG∥AB,∴∠KGO=∠KFB.在△OGK和△BFK中,,∴△OGK≌△BFK(AAS),∴KO=KB,即点K为矩形OABC的中心,∴AK=OK=BK=BO===,∵点D为AO的中点,M为AK的中点,∴DM=OK=.∵AH⊥FG,M为AK的中点,∴MH=AK=.∵DH≤DM+NH,∴当点D,M,H三点在一条直线上时,DH取得最大值=DM+NH,∴DH的最大值为.。
人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。
山东省菏泽市定陶区2023-2024学年八年级下学期期中考试数学试卷(含解析)

八年级数学(2024年4月)注意事项:1.本试题满分120分,考试时间120分钟2.请将答案填写在答题卡上一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置)1. 在实数,,,,,,中,无理数有()个.A. 1B. 2C. 3D. 4答案:C解析:详解:解:,在实数,,,,,,中,无理数有,,,共3个,故选:C.2. 下列计算正确的是( )A. B. C. D.答案:D解析:详解:解:A、,故本选项不合题意;B、,故本选项不合题意;C、,故本选项不合题意;D、,故本选项符合题意;故选:D.3. 若直角三角形两直角边长分别为和,则其斜边长度的整数部分为()A. B. C. D.答案:B解析:详解:解:∵直角三角形两直角边长分别为和,∴斜边,∵∴斜边长度的整数部分为,故选:.4. 如图所示,是矩形的对角线的中点,为的中点.若,,则的周长为()A. 10B.C.D. 14答案:C解析:详解:解:∵点O是矩形ABCD对角线AC的中点,E点为AD中点,∴AB=CD=6,AD=BC=8,,,在Rt△ABE中,,在Rt△ABC中,,∴,则△BOE的周长为:,故选:C.5. 小聪用100元钱去购买笔记本和钢笔共30件.已知每本笔记本2元,每支钢笔5元,小聪最多可以购买钢笔多少支?设小聪最多能买x支钢笔.可列出不等式( )A. B.C. D.答案:B解析:详解:解:设小聪买了x支钢笔,则买了本笔记本,根据题意得:.故选B.6. 若不等式组无解,则实数a的取值范围是()A. B. C. D.答案:D解析:详解:解不等式,得:;解不等式,得:;∵不等式组无解,∴,即:,故选:D.7. 平行四边形中,对角线,,交点为点,则边的取值范围为( )A. B. C. D.答案:B解析:详解:解:如图所示:四边形是平行四边形,,,,,在中,由三角形三边关系定理得:,即,故选:B.8. 若方程组的解满足,则的取值中负整数的个数是()A. 1个B. 2个C. 3个D. 4个答案:B解析:详解:解:得:∵∴∴∴的取值中负整数有两个,分别为:-2、-1.故选:B.9. 如图,菱形的对角线相交于点,点为边上一动点(不与点重合),于点点,若,,则的最小值为()A. 3B. 2C.D.答案:C解析:详解:解:如图所示,连接,∵四边形菱形,∴,,,在中,,∵于点E,于点F,∴四边形是矩形,∴,当时,值最小,即的值最小,∵,∴,∴的最小值为.故选:C.10. 如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF 交边AB于点G,连接DG、BF,给出以下结论:①△DAG≌△DFG;②BG=2AG;③S△DGF=120;④S△BEF =;⑤BF∥DE.其中正确结论的个数是( )A. 5B. 4C. 3D. 2答案:B解析:详解:解:如图,由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,,∴Rt△ADG≌Rt△FDG(HL),故①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12-x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12-x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,故②正确;S△DGF=•FG•DF=×4×12=24,故③错误;S△GBE=×6×8=24,S△BEF=•S△GBE=×24=,故④正确.∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF∥DE,故⑤正确;所以①②④⑤正确,共4个,故选:B.二、填空题(每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)11. 若实数m,n满足,则的值是______;解析:详解:∵,又∵,,∴,,∴,,∴.故答案为:5.12. 如图,Rt△ABC的直角边AB在数轴上,点A表示的实数为0,以A为圆心,AC的长为半径作弧交数轴的负半轴于点D.若CB=1,AB=2,则点D表示的实数为____________.答案:解析:详解:∵Rt△ABC的直角边AB在数轴上∴∴∵以A为圆心,AC的长为半径作弧交数轴的负半轴于点D∴∴点D表示的实数为:故答案为:.13. 勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数a,b,c,其中,均小于,,,是大于1的奇数,则___________(用含的式子表示).答案:详解:解:由于现有勾股数a,b,c,其中,均小于,,为直角边,为斜边,,,得到,,,是大于1的奇数,.故答案为:.14. 已知关于x的不等式组的整数解共有2个,则m的取值范围是_____.答案:3<m≤4解析:详解:解得不等式组的解集为:2≤x<m,因为不等式组只有2个整数解,所以这四个整数解为:2,3,因此实数m的取值范围是3<m≤4.故答案为3<m≤4.15. 如图,在长方形中,,,将沿对角线翻折,点C落在点处,交于点E,则线段的长为_____.答案:3.75解析:详解:解:设,则,∵四边形为矩形,∴,∴,由题意得:,∴,∴,由勾股定理得:,即,解得:,∴.故答案为:3.75.16. 如图,已知等腰的直角边长为1,以的斜边为直角边,画第2个等腰,再以的斜边为直角边,画第3个等腰,…,依此类推直到第100个等腰,则由这100个等腰直角三角形所构成的图形的面积为______答案:解析:详解:解:∵等腰的直角边长为1,∴根据题意,,,,……,∴,,,,……,∴,故由这100个等腰直角三角形所构成的图形的面积为,∵,∴,故答案为:.三、解答题(本题共72分,把解答或证明过程写在答题卡的相应区域内)17. 计算:(1)(2)答案:(1);(2)-9解析:详解:解:(1)原式===.(2)原式==.18. 解下列不等式(组):(1),并把解集在数轴上表示出来;(2).答案:(1).在数轴上表示见解析(2)原不等式组无解解析:小问1详解:解:去分母得,,去括号得,,移项得,,合并同类项得,,系数化为1得,.在数轴上表示为:小问2详解:解:解不等式①得:解不等式②得:,∴原不等式组无解.19. 已知:的立方根是,的算术平方根是3,c是的整数部分.求的平方根.答案:解析:详解:∵的立方根是,的算术平方根是3,∴,,解得,,∵c是的整数部分,∴.∴,∴4的平方根是.20. 如图,在中,,以为边作,交与点F,(1)若,求的度数.(2)若,求.答案:(1);(2)解析:小问1详解:在中,,,∴,∵四边形是平行四边形,∴;小问2详解:∵,∴.∵四边形是平行四边形,∴,∴,∴,∴.∵,∴.∴.21. 如图,在四边形中,,.过点分别作于点,于点,且.求证:四边形是菱形.答案:见解析解析:详解:证明:∵,,∴四边形是平行四边形,∴,∵于点,于点,∴,∵,∴,∴,∴四边形是菱形.22. 如图,在中,、分别是、的中点,连接、、.(1);(2),求证四边形是矩形.答案:(1)见解析(2)见解析解析:小问1详解:证明:四边形是平行四边形,,,.、分别是、的中点,,,,在和中,,;小问2详解:证明:,.又,四边形是平行四边形.,是的中点,.即.四边形是矩形.23. 某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号微波炉每台进价为多少元?(2)该店预计用不多于1.8万元且不少于1.74万元的资金购进甲、乙两种型号的微波炉销售共20台,请问有几种进货方案?请写出进货方案;(3)该店计划购进甲、乙两种型号的微波炉销售共20台,其中甲型微波炉a台,甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为.为了促销,公司决定甲型微波炉九折出售,而每售出一台乙型微波炉,返还顾客现金m元,若全部售出购进的微波炉所获得的利润与a无关.则m的值应为多少?答案:(1)甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元(2)有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型号9台则乙型号11台;甲型号10台则乙型号10台(3)100解析:小问1详解:解:设甲型号微波炉每台进价为x元,乙型号微波炉每台进价为y元,根据题意得:,解得:,答:甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元.小问2详解:解:设购进甲型号微波炉为a台,则乙型号微波炉为台,由(1)及题意得:,解得:,∵为正整数,∴的值为7、8、9、10,∴有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型号9台则乙型号11台;甲型号10台则乙型号10台.小问3详解:解:设总利润为w,则由(2)可得:,∵所获得的利润与a无关,∴,解得:,答:要使所获得的利润与a无关,则m的值应为100.24. 如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:经探究发现,垂美四边形ABCD两组对边AB,CD与BC,AD之间有这样的数量关系:AB2+CD2=AD2+BC2,请写出证明过程;(先画出图形,写出已知,求证)(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG和GE.已知AC=4,AB=5,求GE长.答案:(1)四边形ABCD是垂美四边形.理由见解析(2)见解析(3)GE=解析:小问1详解:四边形ABCD是垂美四边形.理由如下:解:如图2,连接AC、BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴,即四边形ABCD是垂美四边形;小问2详解:已知,如图1,垂美四边形ABCD的对角线交于点O,求证:AB2+CD2=AD2+BC2证明:∵四边形ABCD是垂美四边形,∴,∴,由勾股定理得,,,∴;小问3详解:解:如图3,连接CG、BE,∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∵∠AME=∠BMN,∴∠ABG+∠BMN=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,,∵AC=4,AB=5,∴,∵,,∴,∴.。
山东省烟台市招远市(五四制)2023-2024学年八年级下学期期中考试数学试题(含解析)

绝密★启用前2023-2024学年度第二学期期中考试初三数学试题说明:1.考试时间120分钟,满分120分.2.考试过程允许学生进行剪、拼、折叠等实验.一.选择题(本大题共10个小题,每小题3分,满分30分)1. 下列关于x的方程是一元二次方程的是( )A. B.C. D.答案:B解析:解:、,含有两个未知数,故本选项不符合题意;、,可化为,满足一元二次方程的定义,故本选项符合题意;、不是整式方程,故本选项不符合题意;、最高次数3,故本选项不符合题意;故选:.2. 下列二次根式中,属于最简二次根式的是()A. B. C. D.答案:C解析:解:、,故本选项不符合题意;、,故本选项不符合题意;、是最简二次根式,故本选项符合题意;、,故本选项不符合题意;故选:.3. 如图,的对角线交于点O,下列条件不能判定是菱形的是()A. B.C. D.答案:D解析:解:A.由、,根据邻边相等的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;B.由可得,根据邻边相等的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;C.由,根据对角线垂直的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;C.是的对边,不能说明四边形是菱形,故该选项符合题意.故选:D.4. 若关于x的方程有两个不相等的实数根,则m的值可能是()A. B. C. D. 7答案:A解析:关于x的方程有两个不相等的实数根,,解得,,,故选:A.5. 若,,则的值为()A. 3B.C. 6D.答案:D解析:解:∵,,∴.故选:D.6. 如图,在正方形中,点,分别在和边上,,,则的面积为()A. 6B. 5C. 3D.答案:C解析:四边形是正方形,四边形平行四边形,的面积为,故选:C7. 在对边不相等的四边形中,若四边形的两条对角线互相垂直,那么顺次连结四边形各边中点得到的四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形答案:B解析:解:如图,四边形中,于点,、、、分别是边、、、的中点,连接、、、,得到四边形,设交于点.,,、、、分别是边、、、的中点,∴,,,,,∴,,四边形是平行四边形,,,∴,,∵,平行四边形是矩形.故选:B.8. 对于实数定义新运算:,若关于的方程没有实数根,则的取值范围()A. B.C. 且D. 且答案:A解析:解:由题意可得方程:,即,∵该方程没有实数根,∴,解得:;故选:A.9. 当时,代数式的值是( )A. 19B. 21C. 27D. 29答案:B解析:解:,,故选:B10. 已知,如图,点为x轴上一点,它的坐标为,过点作x轴的垂线与直线:交于点,以线段为边作正方形;延长交直线于点,再以线段为边作正方形;延长交直线于点,再以线段为边作正方形….依此类推,的坐标为()A. B. C. D.答案:C解析:解:过点作x轴的垂线与直线交于点,,线段为边作正方形,,同理可得,,,故答案为:C;二.填空题(本大题共6个小题,每小题3分,满分18分)11. 若在实数范围内有意义,则的取值范围是_________ .答案:且解析:解:由题意得,且,解得且,故答案为:且;12. 关于x的一元二次方程有两个相等的实数根,则的值为__________ .答案:解析:关于x的一元二次方程有两个相等的实数根,,,,故答案为:13. 在矩形中,对角线、相交于点O,过点A作,交于点M,若,则的度数为______ .答案:##60度解析:四边形是矩形,,,,,,,,,,,,,,故答案为:.14. 已知a是方程的一个根,则的值为______.答案:2030解析:a是方程的一个根,,,故答案为:2030.15. 已知,则___________.答案:25解析:解:由题意知:,解得:,,,故答案为:25;16. 如图,正方形的边长,对角线、相交于点,将直角三角板的直角顶点放在点处,三角板两边足够长,与、交于、两点,当三角板绕点旋转时,线段的最小值为________ .答案:解析:解:四边形是正方形,,,,,,,,,,,故要使有最小值,即求的最小值,当时,有最小值,,,,,线段的最小值为.故答案为:.三.解答题(本大题共9个小题,共72分.请在答题卡指定区域内作答.)17. 计算:(1);(2).答案:(1)(2)【小问1解析:】解:,【小问2解析:】解:原式.18. 用合适的方法解方程:(1);(2).答案:(1)(2)【小问1解析:】解:移项得,配方得,∴.【小问2解析:】,整理得:,∵,∴,∴,∴,.19. 如图,有一张矩形的纸片,将矩形纸片折叠,使点A与点C重合.(1)请用尺规在图中画出折痕,其中,点M在边上,点N在边上;(不写作法,保留痕迹),并说明折痕所在的直线与对角线有怎样的位置关系?(2)在(1)的条件下,直接写出折痕的长度.答案:(1)见解析,折痕所在的直线是对角线的垂直平分线(2)【小问1解析:】线段就是所要求作的折痕;折痕所在的直线是对角线的垂直平分线;【小问2解析:】连接,设,则,四边形是矩形,,,,在中,,是对角线的垂直平分线,在中,,,解得,,在中,,,,,,,折痕的长度为.20. 关于的一元二次方程有实数根.(1)求的取值范围;(2)若为正整数,请用配方法求出此时方程的解.答案:(1)且(2),【小问1解析:】解:∵关于的一元二次方程有实数根,∴且,解得:且,∴的取值范围为且;【小问2解析:】∵且,且m为正整数,∴,∴原方程为,∴,∴,∴,∴,∴此时方程的解为:,.21. 如图,在菱形中,,点E,F分别在上,且.(1)求证:;(2)若,试求出线段的长,并说明理由.答案:(1)证明见解析(2)10,理由见解析【小问1解析:】证明:∵四边形是菱形,∴,∵,∴是等边三角形,∴,,∴是等边三角形,∴,∴,∵,∴,∴,和中,,∴.【小问2解析:】解:∵,∴,∵,∴是等边三角形.∴,∵,∴.22. 已知,.(1)分别求,的值;(2)利用(1)的结果求下列代数式的值:①;②.答案:(1),(2)①;②【小问1解析:】解:,,,;【小问2解析:】由(1)知,,①;②.23. 如图,菱形的对角线,相交于点O,过点D作,且,连接.(1)求证:四边形为矩形.(2)若菱形的面积是10,请求出矩形的面积.答案:(1)证明见解析(2)5【小问1解析:】证明:∵四边形是菱形,∴,,∵,∴,又∵,∴四边形为平行四边形,∵,∴四边形为矩形;【小问2解析:】∵菱形的面积是10,∴,∴,∵四边形是菱形,∴,∴,∴矩形的面积为5.24. 阅读理解:我们解决某些数学题的时候,经常会遇到题目中的条件比较含糊,它们常常巧妙地隐蔽在题设的背后,不易被发现和运用,导致我们解题受阻,因此,挖掘题设中的隐含条件,应该成为我们必备的一种能力.请阅读下面的解题过程,体会如何发现隐含条件,并依次解决所给的问题.化简:解:由题意可知隐含条件解得:,∴,∴.启发应用:(1)按照上面的解法,化简:;类比迁移:(2)已知的三边长分别为,,,请求出的周长.(用含有的代数式表示,结果要求化简)拓展延伸:(3)若,请直接写出的取值范围.答案:(1)2;(2);(3)解析:解:(1)由题意可知隐含条件解得:,∴,∴,(2)由题意可知隐含条件解得:,∴,∴,∴,∴的周长为;(3)由题意可知隐含条件,解得:,当时,,则,符合题意,当时,,则,不符合题意,综上所述,的取值范围为.25. 在学习了“特殊的平行四边形”这一章后,同学小明对特殊四边形的探究产生了浓厚的兴趣,他发现除了已经学过的特殊四边形外,还有很多比较特殊的四边形,勇于创新的他大胆地作出这样的定义:有一个内角是直角,且对角线互相垂直的四边形称为“双直四边形”.请你根据以上定义,回答下列问题:(1)下列关于“双直四边形”的说法,正确的有_______(把所有正确的序号都填上);①“双直四边形”的对角线不可能相等:②“双直四边形”的面积等于对角线乘积的一半;③若一个“双直四边形”是中心对称图形,则其一定是正方形.(2)如图①,正方形中,点、分别在边、上,连接,,,,线段、于点O,若,证明:四边形为“双直四边形”;(3)如图②,在平面直角坐标系中,已知点,,点在线段上,且,在第一象限内,是否存在点,使得四边形为“双直四边形”,若存在;请直接写出所有点的坐标,若不存在,请说明理由.答案:(1)②③(2)证明见解析(3)存在,点的坐标或小问1解析:】解:∵正方形是“双直四边形”,正方形的对角线相等.故①不正确.∵“双直四边形”的对角线互相垂直,∴“双直四边形”面积等于对角线乘积的一半.故②正确.∵中心对称的四边形是平行四边形,对角线互相垂直且有一个角是直角的的平行四边形是正方形.∴若一个“双直四边形”是中心对称图形,则其一定是正方形.故③正确.故答案为:②③;【小问2解析:】证明:如图,设与的交点为,∵四边形是正方形,,又,,,,,,,,,∴四边形为“双直四边形”.【小问3解析:】解:假设存在点在第一象限,使得四边形为“双直四边形”.如图,设的交点为∵,,,即,,解得,,是的中点,,设直线的解析式为则解得∴直线的解析式为设,①当时,则,,则;②当时,,是的垂直平分线,,,,,此时点坐标还是;③当时,,是等腰直角三角形,,,,∵,,∴,∴,整理得,,当时,,此时在第四象限,不符合题意.当时,,此时在第一象限,符合题意.综上,或.。
广州外国语学校2023-2024学年八年级下学期期中考试数学试卷(含解析)

数学试题卷本试卷共4页,25小题,满分120分.考试用时120分钟.一、选择题(本大题共10小题,每小题3分,满分30分)1. 下列根式中是最简二次根式的是()A. B. C. D. 答案:B解析:详解:解:A、被开方数是分数,不是最简二次根式,故选项A不符合题意;B、满足最简二次根式的定义,是最简二次根式,故此选项符合题意;C、可以化简,不是最简二次根式,故此选项不符合题意;D、可以化简,不是最简二次根式,故此选项不符合题意;故选:B.2. 下列各式中计算正确的是()A. B. C. D. 答案:C解析:详解:解:A. 不能运算,故此选项计算错误,不符合题意;B. ,故此选项计算错误,不符合题意;C. ,计算正确,符合题意;D. 故此选项计算错误,不符合题意;故选:C3. 以下列各组线段为边作三角形,不能构成直角三角形的是()A B. C. D. 答案:B详解:A.,故可以构成直角三角形,不符合题意;B.,故无法构成直角三角形,符合题意;C.,故可以构成直角三角形,不符合题意;D.,故可以构成直角三角形,不符合题意.故选:B4. 下列命题是假命题的是()A. 有一个角是直角的平行四边形是矩形B. 一组邻边相等的平行四边形是菱形C. 一组对边平行,另一组对边相等的四边形是平行四边形D. 一组邻边相等的矩形是正方形答案:C解析:详解:解:A、有一个角是直角的平行四边形是矩形,是真命题,故选项不符合题意;B、一组邻边相等的平行四边形是菱形,是真命题,故选项不符合题意;C、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,是真命题,故选项符合题意;D、一组邻边相等的矩形是正方形,是真命题,故选项不符合题意;故选:C.5. 如图,若平行四边形的顶点的坐标分别是,则顶点的坐标是()A. B. C. D.答案:A详解:∵ABCO是平行四边形∴OA=CB,OA∥CB又的坐标分别是∴B(9,4)故答案选择A.6. 如图,在菱形中,点分别是的中点,连接,若,则菱形的周长为()A. 8B. 10C. 12D. 16答案:D解析:详解:解:∵点分别是的中点,,∴,∵四边形菱形,∴菱形的周长,故选:D.7. 如图,在矩形中,对角线交于点O,已知,则的长为()A. 3B.C.D. 6答案:D解析:详解:解:∵四边形为矩形,∴.∵,∴为等边三角形.∴.∴,故选:D.8. 如图,在矩形纸片ABCD中,AB=8,AD=6,折叠纸片使边AD落在对角线BD上,折痕为DG,则AG 的长是( )A. 2B. 3C. 4D. 5答案:B解析:详解:解:∵矩形ABCD折叠后AD边落在BD上,∴∠BA′G=∠DA′G=∠A=90°,∵AB=8,AD=6,∴A′D=6,BD==10,∴A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得:x2+42=(8-x)2,解得:x=3,∴AG=3,故选B.9. 的整数部分是、小数部分是,则的值为()A. B. C. -2 D. 2答案:D解析:详解:解:,,即,的整数部分是、小数部分是,,,故选:D.10. 如图,在矩形中,,,点P满足,则点P到A,B两点距离之和的最小值为()A. B. C. D.答案:D解析:详解:设边上的高是h,,,,动点P在与平行且与的距离是2的直线l上,如图,作点A关于直线l的对称点E,连结,,则的长就是所求的最短距离,在中,,,,即的最小值为.故选D.二、填空题(本大题共6小题,每小题3分,满分18分)11. 若二次根式有意义,则x的取值范围是___.答案:解析:详解:解:根据题意,使二次根式有意义,即x﹣2≥0,解得:x≥2.故答案为:x≥2.12. 如图,正方形ODB C中,OC=1,OA=OB,则数轴上点A表示的数是____.答案:解析:详解:∵正方形ODBC中,OC=1,∴BC=OC=1,∠BCO=90°.∵在Rt△BOC中,根据勾股定理得,OB=.∴OA=OB=.∵点A在数轴上原点的左边,∴点A表示的数是.13. 若菱形的两条对角线长分别为6和8,则该菱形的面积为________.答案:24解析:详解:解:∵菱形的两条对角线长分别为6和8,∴该菱形的面积为,故答案为:.14. 在数轴上表示实数a的点如图所示,化简+|a-2|的结果为____________.答案:3解析:详解:解:由数轴得,a>2且a<5,所以a-5<0,a-2>0,原式=5-a+a-2=3.故答案为:315. 已知在中,,高.则的长为___________.答案:或解析:详解:解:如图所示,共有两种情况,当在点左侧时,在中,由勾股定理得:,在中,由勾股定理得:,,当在点右侧时,在中,由勾股定理得:,在中,由勾股定理得:.故答案为:或.16. 如图,已知分别为正方形的边的中点,与交于点为的中点,则下列结论:①,②,③,④.其中正确结论的有___________.答案:解析:详解:解:在正方形中,,∵分别为边的中点,在和中,∴,∴,∵,∴,故①符合题意;∵是的中线,∴,∴,故②不符合题意;设正方形的边长为,则在中,即解得:故③符合题意;如图,过点作于,则即,解得:根据勾股定理,,故④符合题意,综上所述,正确的结论有,故答案为:.三、解答题(本大题共9小题,满分72分,解答应写出文字说明,证明过程或演算步骤)17. (1)计算:;(2)计算:.答案:(1)(2)2解析:详解:解:(1);(2)18. 已知:,,求代数式x2﹣xy+y2的值.答案:解析:详解:解:∵,,∴x+y=2,xy=1﹣3=﹣2,∴x2﹣xy+y2=(x+y)2﹣3xy=4﹣3×(﹣2)=10.19. 如图,已知四边形是平行四边形,E,F是对角线上两点,且.求证:.答案:证明见解析解析:详解:证明:四边形为平行四边形,,.在和中,,∴.∴.20. 如图在四边形中,,,,且,求的度数.答案:.解析:详解:解:如图所示,连接,,,又,,,是直角三角形,,.故的度数为.21. 在数学课外学习活动中,小明和他的同学遇到一道题:已知,求的值.他是这样解答的:,....请你解决如下问题:(1)化简;(2)若,求的值.答案:(1)(2)4解析:小问1详解:解:,小问2详解:解:,∴,∴,则,∴,∴d.22. 学校校内有一块如图所示的三角形空地,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为30元,学校修建这个花园需要投资多少元?答案:学校修建这个花园需要投资元.解析:详解:解:过点作于点,设则如图:在与中,,即解得:,(米),∴学校修建这个花园的费用(元),答:学校修建这个花园需要投资元.23. 如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,BC=10cm,AB=6cm,点Q从点A出发以1 cm/s的速度向点D运动,点P从点B出发以2 cm/s的速度向点C运动,P,Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s)(1)直接写出:QD=______cm,PC=_______cm;(用含t的式子表示)(2)当t为何值时,四边形PQDC为平行四边形?(3)若点P与点C不重合,且DQ≠DP,当t为何值时,△DPQ等腰三角形?答案:(1)=,=;(2);(3)当或时是等腰三角形.解析:详解:试题解析:解:(1)=,=;(2)若四边形是平行四边形,则需∴解得(3)①若,如图1,过作于则,∵∴解得②若,如图2,过作于则,即解得综上所述,当或时是等腰三角形考点:四边形、三角形综合题;几何动点问题.24. 如图,在正方形中,O是的中点,E是上一点,连接,交于点H,作于点于点G,连接.(1)求证:;(2)求证:.答案:(1)见解析(2)见解析解析:小问1详解:证明:∵四边形是正方形,∴,∴,∵,∴,即,∴,∴,∴;小问2详解:连接,∵四边形是正方形,∴,又∵,∴,又∵,∴,∴,∴,∴等腰直角三角形,∴,∴;由(1)知,∴∴∴25. 在菱形中,的顶点分别在边、边上.(1)如图①,若,判断的形状并给出证明;(2)如图②,若,(1)中的结论是否还成立?如果成立,请证明;如果不成立,请说明理由;(3)如图③,在(1)中条件的基础上,过点B作交折线于点G(点G与点不重合),且交于点,连接,若,求的周长最小值,并说明理由.答案:(1)为等边三角形.(2)成立,见解析;(3)解析:小问1详解:连接,如图1,四边形为菱形,,,为等边三角形,,,,,,即,,在和中,,,,,为等边三角形.小问2详解:成立,连接,作交于点,如图2所示:则,四边形是菱形,,,,是等边三角形,,,,是等边三角形,,,,,,在和中,,,,,为等边三角形.小问3详解:的周长最小值为,理由如下:如图3,连接,,,由(1)可知,,都为等边三角形,∴为等边三角形,是等边三角形,在和中.同理可证当点、在对角线上时,的周长最小等于线段的长.设与交于点,由已知四边形是菱形,的周长最小值为.。
八年级数学下学期期中测试卷(含答案)

八年级数学下学期期中测试卷考试时间:120分钟;总分:100分题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 使得式子有意义的x的取值范围是( )√4−xA. x≥4B. x>4C. x≤4D. x<42. 下列根式中属于最简二次根式的是( )C. √8D. √27x3A. √a2+2B. √1123. 如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,AD=1,则BD的长为( )A.√2B. 2B.C. √3 D. 34. 如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,若AB=3,AD=4,则EF的长是( )A. 1B. 2C. 2.5D. 35. 如下图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判定四边形ABCD 是平行四边形的是( )A. AB//DC,AD//BCB. AB=DC,AD=BCC. AB//DC,AD=BCD. OA=OC,OB=OD6. 下列各式计算正确的是( )A. √2+√3=√5B. 2+√2=2√2C. 3√2−√2=2√2D. √12−√10=√6−√527. 已知√a−13+√13−a=b+10,则√2a−b的值为( )A. 6B. ±6C. 4D. ±48. 如图,小巷左、右两侧是竖直的墙壁,一架梯子斜靠在左墙上时,梯子底端到左墙角的距离为1米,梯子顶端距离地面3米,若梯子底端位置保持不动,将梯子斜靠在右墙上,此时梯子顶端距离地面2米,则小巷的宽度为( )A. (√6+1)米B. 3米C. 5米 D. 2米2二、填空题(本大题共8小题,共24.0分)9. 在数轴上表示实数a的点如图所示,化简√(a−5)2+|a−2|的结果为.10. 计算√28的结果是.√711. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积之和为cm2.12. 如图,四边形ABCD是平行四边形,若S □ ABCD=12,则S阴影=.13. 如图,在四边形ABCD中,∠C=∠D=90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是__________.(写出一个条件即可).14. 如图,▱ABCD的对角线AC、BD相交于点O,P是AB边上的中点,且OP=2,则BC的长为.15. 如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为______.16. 观察下列等式:x 1=√1+112+122=32=1+11×2;x 2=√1+122+132=76=1+12×3;x 3=√1+132+142=1312=1 +13×4;⋯;根据以上规律,计算x 1+x 2+x 3+⋯+x 2022−2023= .三、解答题(本大题共7小题,共52.0分)17. 计算:√18−√32+√2(√2+1).(本小题6.0分)18. 计算:(12)−1+(π−3)0−√12×√33.(本小题6.0分)19. (本小题8.0分)如图,已知AD =4,CD =3,∠ADC =90°,AB =13,∠ACB =90°,求图形中阴影部分的面积.20. (本小题8.0分)如图,在▱ABCD 中,点E 是BC 边的中点,连接AE 并延长与DC 的延长线交于F . (1)求证:四边形ABFC 是平行四边形;(2)若AF 平分∠BAD ,∠D =60°,AD =8,求▱ABCD 的面积.21. (本小题8.0分)如图,四边形ABCD 是平行四边形,E ,F 是对角线AC 上的两点,∠1=∠2. (1)求证:AE =CF .(2)求证:四边形EBFD 是平行四边形.22. (本小题8.0分)在小学,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD 中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以acm/s向终点C运动,运动的时间为ts.(1)当t=3时,若EP平分∠AEC,求a的值;(2)若a=1,且△CEP是以CE为腰的等腰三角形,求t的值;(3)连接DP,直接写出点C与点E关于DP对称时的a与t的值.23. (本小题8.0分)我们将(√a+√b)、(√a−√b)称为一对“对偶式”,因为(√a+√b)(√a−√b)=(√a)2−(√b)2=a−b,所以构造“对偶式”再将其相乘可以有效的将(√a+√b)和(√a−√b)中的“√”去掉于是二次根式除法可以这样解:如√3=√3√3√3=√33,√22−√2=√2)2(2−√2)(2+√2)=3+2√2.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小√7−2√6−√3用“>”、“<”或“=”填空);(2)已知x=√5+2√5−2y=√5−2√5+2,求x−yx2y+xy2的值;(3)计算:3+√35√3+3√57√5+5√7⋯+99√97+97√99答案1.【答案】D2.【答案】A3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】A8.【答案】A9.【答案】310.【答案】011.【答案】4912.【答案】313.【答案】∠A=90°(答案不唯一)14.【答案】415.【答案】1016.【答案】−1202317.【答案】解:原式=3√2−4√2+2+√2=2.18.【答案】解:原式=2+1−√12×33=3−√363=3−63=3−2=1.19.【答案】解:在Rt△ABC中,AD=4,CD=3,∴AC=√AD2+CD2=5.在△ABC中,AB=13,AC=5,∠ACB=90°.∴BC=√AB2−AC2=12..20.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∴∠ABE=∠FCE,∵点E是BC边的中点,∴BE=CE,在△ABE和△FCE中,{∠ABE=∠FCE BE=CE∠AEB=∠FEC,∴△ABE≌△FCE(ASA),∴AB=CF,又∵AB//CF,∴四边形ABFC是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,BC=AD=8,AD//BC,∴∠BEA=∠DAE,∵AF平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BA=BE=12BC=CE=4,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,∵AE=CE,∴∠EAC=∠ECA=12∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC⊥AB,AC=√BC2−AB2=√82−42=4√3,∴▱ABCD的面积=AB⋅AC=4×4√3=16√3.21.【答案】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2,∴∠5=∠6,∵在△ADE与△CBF中,{∠3=∠4 AD=BC ∠5=∠6,∴△ADE≌△CBF(ASA),∴AE=CF;(2)证明:∵∠1=∠2,∴DE//BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.22.【答案】解:(1)当t=3时,DE=3,而CD=4,由勾股定理得,CE=5,∵四边形ABCD是长方形,∴AB=CD,AD=BC,AD//BC,∴∠AEP=∠CPE,∵EP平分∠AEC,∴∠AEP=∠CEP,∴∠CPE=∠CEP,∴CP=CE=5,CP=BC−BP,即9−3a=5,∴a=43;(2)当a=1时,由运动过程可知,DE=t,BP=t,∴CP=9−t,在Rt△CDE中,CE2=CD2+DE2=16+t2,△CEP是以CE为腰的等腰三角形,分情况讨论:∴①CE=CP,∴16+t2=(9−t)2,∴t=65,18②CE=PE,CP=DE,由等腰三角形的性质,得12于是,9−t=2t,∴t=3,;即:t的值为3或6518(3)如图,由运动过程知,BP=at,DE=t,∴CP=BC−BP=9−at,∵点C与点E关于DP对称,∴DE=CD,PE=PC,∴t=4,∴BP=4a,CP=9−4a,DE=4,过点P作PF⊥AD于F,∴四边形CDFP是长方形,∴PF=CD=4,DF=CP,在Rt△PEF中,PF=4,EF=DF−DE=9−4a−4=5−4a,根据勾股定理得,PE2=EF2+PF2=(5−4a)2+16,PE2=PC2∴(5−4a)2+16=(9−4a)2,∴a=54.23.【答案】解:(1)>;(2)∵x=√5+2√5−2=(√5+22(√5+2)(√5−2)=5+4√5+4=9+4√5,y=√5−2√5+2=(√5−22(√5+2)(√5−2)=5−4√5+4=9−4√5,∴x+y=9+4√5+9−4√5=18,x−y=9+4√5+−9+4√5=8√5,xy=(9+4√5)(9−4√5)=81−80=1,∴x−y x2y+xy2=x−yxy(x+y)=8√51×18=4√59;3+√35√3+3√57√5+5√7+⋯99√97+97√99=√3)(3+√3)(3−√3)+√3√5)(5√3+3√5)(5√3−3√5)√97√99(7√5+5√7)(7√5−5√7)+⋯+√97√99)(99√97+97√99)(99√97−97√99)=1−√33+√33−√55+√55−√77+⋯+√9797−√9999=1−√99 99=1−√1133.。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
17.(12分)计算: (1)解不等式组{5x -1<3(x +1)2x -13-5x+12≤1,并把它们的解集表示在数轴上.(2)解不等式组{2-x≤2(x+4)x<x-13+1,并写出该不等式组最大整数解.18.(8分)如图,在直角坐标系中,A(﹣2,2),B(﹣1,4),C(﹣4,5),请解答下列问题.(1)若△ABC经过平移后得到△A1B1C1,已知点C的坐标为(1,0),作出△A1B1C1并写出其余两个顶角的坐标。
(2)△ABC绕原点O顺时针旋转90°得到△A2B2C2,作出△A2B2C2.19.(24分)分解因式:(1)3xy-9y (2)4a2-9 (3)3x3-6x2+3x(4)﹣4x3y3+6x2y-2xy (5)p4-1(6)(a+1)(a-1)-(1-a)220.(前3小题,每小题4分,第4小题8分,共20分)计算. (1)2x -3x -2-x -1x -2(2)5x -5y 3x 2y•9xy 2x 2-y 2(3)4x 2-4xy+y 22x+y÷(4x 2-y 2)(4)先化简再求值:(1+1a 2-1)÷aa -1,请在﹣1,0,1,2当中选出一个合适的数a 代入求值.21.(10分)加强生活垃圾分类处理,维护公共环境和节约资源是全社会的共同责任,某小区购进A ,B 两种类型的垃圾桶,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花20元,购买A 型,B 型垃圾桶各花了1000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍. (1)购买一个A 型垃圾桶和一个B 型垃圾桶各需多少元?(2)若小区一次性购买A 型和B 型垃圾桶共60个,要使总费用不超过2000元,最少要购买多少个A 型垃圾桶?22.(12分)(1)问题发现:如图①,△ABC和△EDC都是等边三角形,点B,D,E在同一条直线上,连接AE.①∠AEC的度数为;②线段AE、BD之间的数量关系为.(2)拓展研究:如图,△ABC和△EDC都是等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一条直线上,CM为△EDC中DE边上的高,连接AE,试求∠AEB的度数以及判断线段CM,AE,BM之间的数量关系,并说明理由.(3)解决问题:如图③,△ABC和△EDC都是等腰三角形,∠ACB=∠DCE=36°,点B,D,E 在同一条直线上,请直接写出∠EAB+∠ECB的度数.参考答案一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( C )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( B )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( A )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( D ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( B ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( C ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( B ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( A )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( D ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( A )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= a 2(a -4) 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 x ≠5 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 10 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 14 .(第14题图)15.若a+1a =4,则a 2+1a 2= 14 . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 ﹣52.(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
17.(12分)计算:(1)解不等式组{5x -1<3(x +1)①2x -13-5x+12≤1②,并把它们的解集表示在数轴上.解不等式①得x <2解不等式②得x ≥﹣1不等式组解集为﹣1≤x <2(2)解不等式组{2-x ≤2(x +4)①x <x -13+1②,并写出该不等式组最大整数解. 解不等式①得x ≥﹣2 解不等式②得x <1不等式组解集为﹣2≤x<1最大整数解为018.(8分)如图,在直角坐标系中,A(﹣2,2),B(﹣1,4),C(﹣4,5),请解答下列问题.(1)若△ABC经过平移后得到△A1B1C1,已知点C的坐标为(1,0),作出△A1B1C1并写出其余两个顶角的坐标。
(2)△ABC绕原点O顺时针旋转90°得到△A2B2C2,作出△A2B2C2.(1)A1(3,﹣3)B1(4,﹣1)(2)19.(24分)分解因式:(1)3xy-9y (2)4a2-9 (3)3x3-6x2+3x=3y(x-3)=(2a+3)(2a-3)=3x(x2-2x+1)=3x(x-1)2(4)﹣4x3y3+6x2y-2xy (5)p4-1(6)(a+1)(a-1)-(1-a)2=﹣2xy(2x2y2-3x+1)=(p2+1)(p2-1)=(a-1)[(a+1)-(a-1)]=(p2+1)(p-1)(p+1)=2(a-1)20.(前3小题,每小题4分,第4小题8分,共20分)计算. (1)2x -3x -2-x -1x -2(2)5x -5y 3x 2y•9xy 2x 2-y 2(3)4x 2-4xy+y 22x+y÷(4x 2-y 2)=(2x -3)-(x -1)x -2=5(x -y )3x 2y •9xy 2(x+y )(x -y )=(2x -y )22x+y ×1(2x+y )(2x -y )=1 =15yx (x+y )=2x -y(2x+y )2(4)先化简再求值:(1+1a 2-1)÷aa -1,请在﹣1,0,1,2当中选出一个合适的数a 代入求值.解原式=a 2(a+1)(a -1)×a -1a=aa+1 将a=2代入得2321.(10分)加强生活垃圾分类处理,维护公共环境和节约资源是全社会的共同责任,某小区购进A ,B 两种类型的垃圾桶,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花20元,购买A 型,B 型垃圾桶各花了1000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍. (1)购买一个A 型垃圾桶和一个B 型垃圾桶各需多少元?(2)若小区一次性购买A 型和B 型垃圾桶共60个,要使总费用不超过2000元,最少要购买多少个A 型垃圾桶?(1)解设:购买一个A 型垃圾桶x 元,则购买一个B 型垃圾桶需要(x+20)元.1000x=1000x+20×2解得x=20经检验x=20是原方程的根 x+20=40元(2)解设购买a 个A 型垃圾桶,则B 型垃圾桶(60-a )个。