勾股定理应用题专项练习

合集下载

勾股定理例题单选题100道及答案解析

勾股定理例题单选题100道及答案解析

勾股定理例题单选题100道及答案解析1. 在直角三角形中,两直角边分别为3 和4,则斜边的长度为()A. 5B. 6C. 7D. 8答案:A解析:根据勾股定理,斜边的平方等于两直角边的平方和,即斜边= √(3²+ 4²) = 52. 一个直角三角形的两条直角边分别为6 和8,那么斜边上的高为()A. 4.8B. 5C. 6D. 8答案:A解析:先求出斜边为√(6²+ 8²) = 10,三角形面积= 0.5×6×8 = 0.5×10×斜边上的高,解得斜边上的高为4.83. 若直角三角形的三边长分别为2,4,x,则x 的值可能有()A. 1 个B. 2 个C. 3 个D. 4 个答案:B解析:当4 为斜边时,x = √(4²- 2²) = 2√3;当x 为斜边时,x = √(2²+ 4²) = 2√5,所以x 的值有2 个4. 已知直角三角形的两直角边长分别为5 和12,则斜边长为()A. 13B. 14C. 15D. 16答案:A解析:斜边长= √(5²+ 12²) = 135. 直角三角形的一条直角边为9,另一条直角边为12,则斜边的长为()A. 15B. 16C. 17D. 18答案:A解析:斜边= √(9²+ 12²) = 156. 一个直角三角形的斜边为10,一条直角边为6,则另一条直角边为()A. 8B. 9C. 11D. 12答案:A解析:另一条直角边= √(10²- 6²) = 87. 若直角三角形的周长为12,斜边长为5,则其面积为()A. 12B. 10C. 8D. 6答案:D解析:设两直角边分别为a、b,a + b + 5 = 12,a + b = 7,(a + b)²= 49,即a²+ 2ab + b²= 49,又因为a²+ b²= 25,所以2ab = 24,面积= 0.5ab = 68. 直角三角形的两直角边分别为6 和8,则斜边上的中线长为()A. 5B. 6C. 7D. 8答案:A解析:斜边= 10,斜边上的中线长为斜边的一半,即 59. 在△ABC 中,∠C = 90°,AB = 13,AC = 12,则BC 的长为()A. 5B. 6C. 7D. 8答案:A解析:BC = √(13²- 12²) = 510. 若一个直角三角形的两条边长分别为3 和5,则第三条边长为()A. 4B. √34C. 4 或√34D. 无法确定答案:C解析:当5 为斜边时,第三条边= √(5²- 3²) = 4;当 3 和5 为直角边时,第三条边= √(3²+ 5²) = √3411. 已知直角三角形的两边长分别为3 和4,则第三边长为()A. 5B. √7C. 5 或√7D. 不确定答案:C解析:当4 为斜边时,第三边= √(4²- 3²) = √7;当 3 和4 为直角边时,第三边= √(3²+ 4²) = 512. 一个直角三角形的两条直角边分别为15 和20,那么这个三角形的周长是()A. 60B. 75C. 80D. 85答案:D解析:斜边= √(15²+ 20²) = 25,周长= 15 + 20 + 25 = 6013. 直角三角形的一条直角边为12,斜边为13,则另一条直角边为()A. 5B. 6C. 7D. 8答案:A解析:另一条直角边= √(13²- 12²) = 514. 若直角三角形的斜边长为25,一条直角边长为7,则另一条直角边长为()A. 24B. 26C. 27D. 28答案:A解析:另一条直角边= √(25²- 7²) = 2415. 在Rt△ABC 中,∠C = 90°,若a = 5,b = 12,则c = ()A. 13B. 14C. 15D. 16答案:A解析:c = √(5²+ 12²) = 1316. 一个直角三角形的两条直角边分别为8cm 和15cm,则斜边为()A. 17cmB. 18cmC. 19cmD. 20cm答案:A解析:斜边= √(8²+ 15²) = 17cm17. 若直角三角形的周长为30cm,斜边长为13cm,则其面积为()A. 30cm²B. 60cm²C. 90cm²D. 120cm²答案:B解析:设两直角边分别为a、b,a + b + 13 = 30,a + b = 17,(a + b)²= 289,即a²+ 2ab + b²= 289,又因为a²+ b²= 13²= 169,所以2ab = 120,面积= 0.5ab = 30cm²18. 直角三角形的一条直角边长为11,另一条直角边长为60,则斜边的长为()A. 61B. 62C. 63D. 64答案:A解析:斜边= √(11²+ 60²) = 6119. 在直角三角形中,两直角边分别为5 和12,那么斜边上的中线长为()A. 6.5B. 7.5C. 8.5D. 9.5答案:A解析:斜边= 13,斜边上的中线长为6.520. 已知一个直角三角形的两条直角边分别为6 和8,那么这个直角三角形斜边上的高为()A. 4.8B. 5C. 6D. 8答案:A解析:斜边= 10,三角形面积= 0.5×6×8 = 0.5×10×斜边上的高,解得斜边上的高为 4.821. 直角三角形的两直角边分别为9 和12,则此直角三角形的周长为()A. 21B. 30C. 36D. 42答案:C解析:斜边= √(9²+ 12²) = 15,周长= 9 + 12 + 15 = 3622. 若直角三角形的两直角边长分别为3cm 和4cm,则斜边上的高为()A. 2.4cmB. 2.5cmC. 2.6cmD. 2.7cm答案:A解析:斜边= 5cm,三角形面积= 0.5×3×4 = 0.5×5×斜边上的高,解得斜边上的高为2.4cm23. 一个直角三角形的两条直角边分别为7和24,则斜边为()A. 25B. 26C. 27D. 28答案:A解析:斜边= √(7²+ 24²) = 2524. 直角三角形的一条直角边为5,斜边为13,则另一条直角边为()A. 12B. 13C. 14D. 15答案:A解析:另一条直角边= √(13²- 5²) = 1225. 在△ABC 中,∠C = 90°,BC = 6,AC = 8,则AB 的长为()A. 9B. 10C. 11D. 12答案:B解析:AB = √(6²+ 8²) = 1026. 若直角三角形的三边长分别为5,12,x,则x 的值可能是()A. 13B. 14C. 15D. 17答案:A解析:当x 为斜边时,x = √(5²+ 12²) = 13;当12 为斜边时,x = √(12²- 5²) = √119,因为选项中只有13,所以x = 1327. 一个直角三角形的两条直角边分别为18和24,则这个三角形的周长为()A. 60B. 72C. 84D. 96答案:C解析:斜边= √(18²+ 24²) = 30,周长= 18 + 24 + 30 = 7228. 直角三角形的一条直角边为16,斜边为20,则另一条直角边为()A. 12B. 13C. 14D. 15答案:A解析:另一条直角边= √(20²- 16²) = 1229. 在Rt△ABC 中,∠C = 90°,若a = 8,b = 15,则c = ()A. 17B. 18C. 19D. 20答案:A解析:c = √(8²+ 15²) = 1730. 已知直角三角形的两边长分别为5和13,则第三边长为()A. 12B. √194C. 12 或√194D. 不能确定答案:C解析:当13 为斜边时,第三边= √(13²- 5²) = 12;当 5 和13 为直角边时,第三边= √(5²+ 13²) = √19431. 一个直角三角形的两条直角边分别为10和24,则斜边为()A. 25B. 26C. 27D. 28答案:B解析:斜边= √(10²+ 24²) = 2632. 若直角三角形的周长为24,斜边长为10,则其面积为()A. 24B. 36C. 48D. 96答案:B解析:设两直角边分别为a、b,a + b + 10 = 24,a + b = 14,(a + b)²= 196,即a²+ 2ab + b²= 196,又因为a²+ b²= 100,所以2ab = 96,面积= 0.5ab = 2433. 直角三角形的一条直角边长为7,斜边为25,则另一条直角边为()A. 24B. 26C. 27D. 28答案:A解析:另一条直角边= √(25²- 7²) = 2434. 在△ABC 中,∠C = 90°,AB = 17,AC = 15,则BC 的长为()A. 8B. 9C. 10D. 11答案:A解析:BC = √(17²- 15²) = 835. 若一个直角三角形的两条边长分别为8和15,则第三条边长为()A. 17B. √161C. 17 或√161D. 无法确定答案:C解析:当15 为斜边时,第三条边= √(15²- 8²) = √161;当8 和15 为直角边时,第三条边= √(8²+ 15²) = 1736. 已知直角三角形的两边长分别为8和10,则第三边长为()A. 6B. 2√41C. 6 或2√41D. 不确定答案:C解析:当10 为斜边时,第三边= √(10²- 8²) = 6;当8 和10 为直角边时,第三边= √(8²+ 10²) = 2√4137. 一个直角三角形的两条直角边分别为20和21,则这个三角形的周长是()A. 60B. 61C. 62D. 63答案:D解析:斜边= √(20²+ 21²) = 29,周长= 20 + 21 + 29 = 7038. 直角三角形的一条直角边为24,斜边为25,则另一条直角边为()A. 7B. 8C. 9D. 10答案:A解析:另一条直角边= √(25²- 24²) = 739. 若直角三角形的斜边长为37,一条直角边长为12,则另一条直角边长为()A. 35B. 36C. 37D. 38答案:A解析:另一条直角边= √(37²- 12²) = 3540. 在Rt△ABC 中,∠C = 90°,若a = 12,b = 16,则c = ()答案:A解析:c = √(12²+ 16²) = 2041. 一个直角三角形的两条直角边分别为12cm 和16cm,则斜边为()A. 20cmB. 21cmC. 22cmD. 23cm答案:A解析:斜边= √(12²+ 16²) = 20cm42. 若直角三角形的周长为36cm,斜边长为15cm,则其面积为()A. 54cm²B. 60cm²C. 72cm²D. 81cm²答案:A解析:设两直角边分别为a、b,a + b + 15 = 36,a + b = 21,(a + b)²= 441,即a²+ 2ab + b²= 441,又因为a²+ b²= 15²= 225,所以2ab = 216,面积= 0.5ab = 54cm²43. 直角三角形的一条直角边长为18,另一条直角边长为24,则斜边的长为()A. 30B. 32C. 34D. 36答案:A解析:斜边= √(18²+ 24²) = 3044. 在直角三角形中,两直角边分别为7和24,那么斜边上的中线长为()A. 12.5B. 13C. 13.5D. 14答案:A解析:斜边= 25,斜边上的中线长为斜边的一半,即12.545. 已知一个直角三角形的两条直角边分别为9和12,那么这个直角三角形斜边上的高为()A. 7.2B. 7.5C. 7.8D. 8答案:A解析:斜边= 15,三角形面积= 0.5×9×12 = 0.5×15×斜边上的高,解得斜边上的高为7.246. 直角三角形的两直角边分别为15和20,则此直角三角形的周长为()A. 60B. 70C. 80D. 90答案:B解析:斜边= 25,周长= 15 + 20 + 25 = 6047. 若直角三角形的两直角边长分别为5cm和12cm,则斜边上的高为()A. 6cmB. 8cmC. 60/13 cmD. 120/13 cm答案:C解析:斜边= 13cm,三角形面积= 0.5×5×12 = 0.5×13×斜边上的高,解得斜边上的高为60/13 cm48. 一个直角三角形的两条直角边分别为25和60,则斜边为()A. 65B. 70C. 75D. 80答案:A解析:斜边= √(25²+ 60²) = 6549. 直角三角形的一条直角边为36,斜边为39,则另一条直角边为()A. 15B. 16C. 17D. 18答案:A解析:另一条直角边= √(39²- 36²) = 1550. 在△ABC 中,∠C = 90°,BC = 8,AC = 15,则AB 的长为()答案:B解析:AB = √(8²+ 15²) = 1751. 若直角三角形的三边长分别为8,15,x,则x 的值可能是()A. 17B. 18C. 19D. 20答案:A解析:当x 为斜边时,x = √(8²+ 15²) = 17;当15 为斜边时,x = √(15²- 8²) = √161,因为选项中只有17,所以x = 1752. 一个直角三角形的两条直角边分别为30和40,则这个三角形的周长为()A. 90B. 100C. 110D. 120答案:D解析:斜边= 50,周长= 30 + 40 + 50 = 12053. 直角三角形的一条直角边长为48,斜边为50,则另一条直角边为()A. 14B. 16C. 18D. 20答案:A解析:另一条直角边= √(50²- 48²) = 1454. 在Rt△ABC 中,∠C = 90°,若a = 10,b = 24,则c = ()A. 25B. 26C. 27D. 28答案:B解析:c = √(10²+ 24²) = 2655. 已知直角三角形的两边长分别为12和16,则第三边长为()A. 20B. 4√7C. 20 或4√7D. 不能确定答案:C解析:当16 为斜边时,第三边= √(16²- 12²) = 4√7;当12 和16 为直角边时,第三边= √(12²+ 16²) = 2056. 一个直角三角形的两条直角边分别为40和41,则斜边为()A. 58B. 59C. 60D. 61答案:D解析:斜边= √(40²+ 41²) = 6157. 若直角三角形的周长为48,斜边长为20,则其面积为()A. 48B. 96C. 192D. 384答案:B解析:设两直角边分别为a、b,a + b + 20 = 48,a + b = 28,(a + b)²= 784,即a²+ 2ab + b²= 784,又因为a²+ b²= 20²= 400,所以2ab = 384,面积= 0.5ab = 9658. 直角三角形的一条直角边为50,斜边为52,则另一条直角边为()A. 16B. 18C. 20D. 22答案:A解析:另一条直角边= √(52²- 50²) = 1659. 在△ABC 中,∠C = 90°,AB = 29,AC = 21,则BC 的长为()A. 20B. 22C. 24D. 26答案:A解析:BC = √(29²- 21²) = 2060. 若一个直角三角形的两条边长分别为10和26,则第三条边长为()A. 24B. 2√69C. 24 或2√69D. 无法确定答案:C解析:当26 为斜边时,第三条边= √(26²- 10²) = 24;当10 和26 为直角边时,第三条边= √(10²+ 26²) = 2√6961. 已知直角三角形的两边长分别为14和16,则第三边长为()A. 2√51B. 2√65C. 2√51 或2√65D. 不确定答案:C解析:当16 为斜边时,第三边= √(16²- 14²) = 2√51;当14 和16 为直角边时,第三边= √(14²+ 16²) = 2√6562. 一个直角三角形的两条直角边分别为55和73,则斜边为()A. 90B. 92C. 94D. 96答案:A解析:斜边= √(55²+ 73²) = 9063. 若直角三角形的周长为56,斜边长为25,则其面积为()A. 84B. 96C. 108D. 120答案:A解析:设两直角边分别为a、b,a + b + 25 = 56,a + b = 31,(a + b)²= 961,即a²+ 2ab + b²= 961,又因为a²+ b²= 25²= 625,所以2ab = 336,面积= 0.5ab = 8464. 直角三角形的一条直角边为65,斜边为68,则另一条直角边为()A. 21B. 23C. 25D. 27答案:A解析:另一条直角边= √(68²- 65²) = 2165. 在Rt△ABC 中,∠C = 90°,若a = 18,b = 24,则c = ()A. 30B. 32C. 34D. 36答案:A解析:c = √(18²+ 24²) = 3066. 一个直角三角形的两条直角边分别为18cm和24cm,则斜边为()A. 30cmB. 32cmC. 34cmD. 36cm答案:A解析:斜边= √(18²+ 24²) = 30cm67. 若直角三角形的周长为40cm,斜边长为17cm,则其面积为()A. 30cm²B. 60cm²C. 90cm²D. 120cm²答案:B解析:设两直角边分别为a、b,a + b + 17 = 40,a + b = 23,(a + b)²= 529,即a²+ 2ab + b²= 529,又因为a²+ b²= 17²= 289,所以2ab = 240,面积= 0.5ab = 60cm²68. 直角三角形的一条直角边长为32,另一条直角边长为24,则斜边的长为()A. 40B. 42C. 44D. 46答案:A解析:斜边= √(32²+ 24²) = 4069. 在直角三角形中,两直角边分别为11和60,则斜边上的中线长为()A. 30.5B. 31C. 31.5D. 32答案:C解析:斜边= 61,斜边上的中线长为30.570. 已知一个直角三角形的两条直角边分别为13和14,那么这个直角三角形斜边上的高为()A. 12B. 12.5C. 120/13D. 130/14答案:C解析:斜边= √(13²+ 14²) = √365,三角形面积= 0.5×13×14 = 0.5×√365×斜边上的高,解得斜边上的高为120/1371. 直角三角形的两直角边分别为21和28,则此直角三角形的周长为()A. 77B. 80C. 84D. 88答案:A解析:斜边= 35,周长= 21 + 28 + 35 = 8472. 若直角三角形的两直角边长分别为7cm和24cm,则斜边上的高为()A. 72/25 cmB. 84/25 cmC. 168/25 cmD. 252/25 cm答案:B解析:斜边= 25cm,三角形面积= 0.5×7×24 = 0.5×25×斜边上的高,解得斜边上的高为84/25 cm73. 一个直角三角形的两条直角边分别为75和100,则斜边为()A. 125B. 130C. 135D. 140答案:A解析:斜边= √(75²+ 100²) = 12574. 直角三角形的一条直角边为80,斜边为89,则另一条直角边为()A. 39B. 41C. 43D. 45答案:A解析:另一条直角边= √(89²- 80²) = 3975. 在△ABC 中,∠C = 90°,BC = 12,AC = 9,则AB 的长为()A. 13B. 14C. 15D. 16答案:C解析:AB = √(12²+ 9²) = 1576. 若直角三角形的三边长分别为15,20,x,则x 的值可能是()A. 25B. 26C. 27D. 28答案:A解析:当x 为斜边时,x = √(15²+ 20²) = 25;当20 为斜边时,x = √(20²- 15²) = 5√7,因为选项中只有25,所以x = 2577. 一个直角三角形的两条直角边分别为84和13,则斜边为()A. 85B. 86C. 87D. 88答案:A解析:斜边= √(84²+ 13²) = 8578. 若直角三角形的周长为60,斜边长为26,则其面积为()A. 72B. 96C. 108D. 120答案:B解析:设两直角边分别为a、b,a + b + 26 = 60,a + b = 34,(a + b)²= 1156,即a²+ 2ab + b²= 1156,又因为a²+ b²= 26²= 676,所以2ab = 480,面积= 0.5ab = 12079. 直角三角形的一条直角边为96,斜边为100,则另一条直角边为()A. 28B. 32C. 36D. 40答案:B解析:另一条直角边= √(100²- 96²) = 3280. 在Rt△ABC 中,∠C = 90°,若a = 20,b = 21,则c = ()A. 29B. 30C. 31D. 32答案:A解析:c = √(20²+ 21²) = 2981. 已知直角三角形的两边长分别为20 和25,则第三边长为()A. 15B. 5√41C. 15 或5√41D. 不确定答案:C解析:当25 为斜边时,第三边= √(25²- 20²) = 15;当20 和25 为直角边时,第三边= √(20²+ 25²) = 5√4182. 一个直角三角形的两条直角边分别为63 和16,则斜边为()A. 65B. 67C. 69D. 71答案:A解析:斜边= √(63²+ 16²) = 6583. 若直角三角形的周长为70,斜边长为29,则其面积为()A. 120B. 130C. 140D. 150答案:A解析:设两直角边分别为a、b,a + b + 29 = 70,a + b = 41,(a + b)²= 1681,即a²+ 2ab + b²= 1681,又因为a²+ b²= 29²= 841,所以2ab = 840,面积= 0.5ab = 21084. 直角三角形的一条直角边为72,斜边为75,则另一条直角边为()A. 27B. 29C. 31D. 33答案:A解析:另一条直角边= √(75²- 72²) = 2785. 在△ABC 中,∠C = 90°,AB = 37,AC = 35,则BC 的长为()A. 12B. 14C. 16D. 18答案:A解析:BC = √(37²- 35²) = 1286. 若一个直角三角形的两条边长分别为18 和32,则第三条边长为()A. 38B. 14√2C. 38 或14√2D. 无法确定答案:C解析:当32 为斜边时,第三条边= √(32²- 18²) = 14√2;当18 和32 为直角边时,第三条边= √(18²+ 32²) = 3887. 已知直角三角形的两边长分别为9 和11,则第三边长为()A. √22B. √40C. √22 或√202D. 不确定答案:C解析:当11 为斜边时,第三边= √(11²- 9²) = √22;当9 和11 为直角边时,第三边= √(9²+ 11²) = √20288. 一个直角三角形的两条直角边分别为45和28,则斜边为()A. 53B. 55C. 57D. 59答案:A解析:斜边= √(45²+ 28²) = 5389. 若直角三角形的周长为66,斜边长为26,则其面积为()A. 96B. 108C. 112D. 120答案:B解析:设两直角边分别为a、b,a + b + 26 = 66,a + b = 40,(a + b)²= 1600,即a²+ 2ab + b²= 1600,又因为a²+ b²= 26²= 676,所以2ab = 924,面积= 0.5ab = 11290. 直角三角形的一条直角边为108,斜边为110,则另一条直角边为()A. 32B. 34C. 36D. 38答案:D解析:另一条直角边= √(110²- 108²) = 3891. 在Rt△ABC 中,∠C = 90°,若a = 30,b = 40,则c = ()A. 50B. 60C. 70D. 80答案:A解析:c = √(30²+ 40²) = 5092. 一个直角三角形的两条直角边分别为36cm 和48cm,则斜边为()A. 60cmB. 62cmC. 64cmD. 66cm答案:A解析:斜边= √(36²+ 48²) = 60cm93. 若直角三角形的周长为56cm,斜边长为20cm,则其面积为()A. 96cm²B. 112cm²C. 128cm²D. 144cm²答案:A解析:设两直角边分别为a、b,a + b + 20 = 56,a + b = 36,(a + b)²= 1296,即a²+ 2ab + b²= 1296,又因为a²+ b²= 20²= 400,所以2ab = 896,面积= 0.5ab = 96cm²94. 直角三角形的一条直角边为78,斜边为85,则另一条直角边为()A. 37B. 39C. 41D. 43答案:B解析:另一条直角边= √(85²- 78²) = 3995. 在△ABC 中,∠C = 90°,BC = 16,AC = 30,则AB 的长为()A. 34B. 36C. 38D. 40答案:A解析:AB = √(16²+ 30²) = 3496. 若直角三角形的三边长分别为24,10,x,则x 的值可能是()A. 26B. 22C. 26 或22D. 不能确定答案:C解析:当x 为斜边时,x = √(24²+ 10²) = 26;当24 为斜边时,x = √(24²- 10²) = 2297. 一个直角三角形的两条直角边分别为90和120,则斜边为()A. 150B. 160C. 170D. 180答案:A解析:斜边= √(90²+ 120²) = 15098. 若直角三角形的周长为84,斜边长为37,则其面积为()A. 120B. 126C. 132D. 138答案:B解析:设两直角边分别为a、b,a + b + 37 = 84,a + b = 47,(a + b)²= 2209,即a²+ 2ab + b²= 2209,又因为a²+ b²= 37²= 1369,所以2ab = 840,面积= 0.5ab = 12699. 直角三角形的一条直角边为132,斜边为137,则另一条直角边为()A. 45B. 47C. 49D. 51答案:A解析:另一条直角边= √(137²- 132²) = 45100. 在Rt△ABC 中,∠C = 90°,若a = 48,b = 55,则c = ()A. 73 B. 75 C. 77 D. 79答案:A解析:c = √(48²+ 55²) = 73。

勾股定理应用题

勾股定理应用题

勾 股 定 理 应 用 题
1、如图,校园内有两棵树,相距12米, 一棵树高16米,另一棵树高11米,
一只小鸟从一棵树的顶端飞到另一棵树的顶端, 小鸟至少要飞多少米?
2、笨人持竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。

有个邻居聪明者,教他斜竿对两角。

笨伯依言试一试,不多不少刚抵足。

借问竿长多少数,谁人算出我佩服。

3、 阿凡提发现了一个神秘的箱子,但箱子是锁着的,箱子上的神秘图案里隐藏着
开箱的密码。

箱子上的图案由正方形组成,图中4个数据代表相应正方形的面积,开箱密码是橘色线段长度之和。

你们能帮阿凡提打开这个箱子吗?
4.如图所示,太阳能热水器的支架AB 长为90cm ,与AB 垂直的BC 长120cm ,太阳能真空管AC 有多长?
5.如图所示,∠B=∠ACD=90°,BC=3,AD=13,CD=12,求AB 的长.
6.如图所示,在3米高的柱子顶端有一只老鹰,•它看到一条蛇从距柱脚9米外向柱脚的蛇洞游来,老鹰立即扑去,如果它们的速度相等,问老鹰在距蛇洞多远处捉住蛇?
7.如图所示,起重机吊运物体,已知BC=6m ,AC=18m ,求AB 的长.
8.如图所示,直角三角形三边上的半圆面积之间有什么关系呢?你能说一说你的判断吗?
400
225
144
81。

(完整版)勾股定理经典例题(含答案)

(完整版)勾股定理经典例题(含答案)

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

《勾股定理》专项训练练习

《勾股定理》专项训练练习

60 120140 60BACC A BDE 1015《勾股定理》专项训练练习基础篇1、下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,7 2、在△ABC 中,∠C=90°,周长为60,斜边与一直角边比是13:5,•则这个三角形三边长分别是( )A .5,4,3 B .13,12,5 C .10,8,6 D .26,24,10 3、若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ). A. 3cm2B. 32cm2C. 33cm 2D. 4cm 24. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D . a :b :c =13∶5∶12 5. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形.6.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121 B .120 C .90 D .不能确定7、放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( ) A .600米 B . 800米 C . 1000米 D. 不能确定8、ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是( )A.1B.3C.6D.非以上答案9、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( )A. 96cm 2B. 120cm 2C. 160cm 2D. 200cm 210、已知如图,水厂A 和工厂B 、C 正好构成等边△ABC ,现由水厂A 和B 、C 两厂供水,要在A 、B 、C 间铺设输水管道,有如下四种设计方案,(图中实线为铺设管道路线),•其中最合理的方案是( )11、在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.12、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.13、如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .14、已知Rt △ABC 中,∠C=90°,若a+b=14,c=10,则Rt △ABC 的面积是_____15、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .16、如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和103㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?17、小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?18、如图,铁路上A 、B 两点相距25km , C 、D 为两村庄,若DA =10km ,CB =15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.(1)求E 应建在距A 多远处? (2)DE 和EC 垂直吗?试说明理由19、如图,在△ABC 中,∠BAC =120°,∠B =30°,AD ⊥AB ,垂足为A,CD=2cm,求AB 的长.第12题图 第13题图 第15题图A B D专题篇一、勾股定理与梯子问题1、如图1,一个梯子AB长2.5米,顶端A靠在墙上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,如图2,测得BD长为0.5米,求梯子顶端A下落了多少米.2、比较梯子沿墙壁滑行时其在墙壁和地面上滑行距离的大小关系例2如图3,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3米,同时梯子的顶端B下降至B′,那么BB①等于1米;②大于1米;③小于1米.其中正确结论的序号是________.(要求写出过程)二、勾股定理中的数学思想1、面积法.已知△ABC中,∠ACB=90°,AB=5㎝.BC=3㎝,CD⊥AB于点D,求CD的长.2、构造法.如图,已知△ABC中,∠B=30°,∠C=45°,AB=4,AC=22.求△ABC的面积.3、转化思想.如图3,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四边形ABCD的面积.4、分类讨论思想.已知Rt△ABC中,其中两边的长分别是3,5,求第三边的长.5、方程思想.如图4,AB为一棵大树,在树上距地面10米的D处有两只猴子,它们同时发现C处有一筐苹果,一只猴子从D往上爬到树顶A又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C.已知两只猴子所经路程都是15米.试求大树AB的高度.如图,在△ABC中,AB=15,BC=14,CA=13,求BC边上的高AD.6、逆向思维的方法如图1,在△ABC中,D为BC边上一点,已知AB=13,AD=12,AC=15,BD=5,那么DC=_____.图3DABC图4DCBAABC三、勾股定理在影响范围问题中的运用1、如图1,公路MN 和公路PQ 在点P 处交汇,且30QPN ∠=︒,点A 处有一所中学,AP =160m 。

勾股定理初二练习题二十道

勾股定理初二练习题二十道

勾股定理初二练习题二十道1. 在直角三角形ABC中,角C=90°,AB=12cm,AC=5cm,求BC 的长度。

2. 在直角三角形DEF中,角D=90°,DE=8cm,DF=15cm,求EF 的长度。

3. 在直角三角形GHI中,角I=90°,GH=17cm,HI=8cm,求GI的长度。

4. 在直角三角形JKL中,角J=90°,KL=10cm,JL=6cm,求JK的长度。

5. 在直角三角形MNO中,角O=90°,MN=6cm,NO=10cm,求MO的长度。

6. 在直角三角形PQR中,角P=90°,PR=13cm,PQ=12cm,求QR 的长度。

7. 在直角三角形STU中,角T=90°,ST=21cm,TU=20cm,求SU 的长度。

8. 在直角三角形VWX中,角V=90°,VX=24cm,WX=7cm,求WV的长度。

9. 在直角三角形YZA中,角Z=90°,ZY=15cm,ZA=9cm,求YA 的长度。

BC的长度。

11. 在直角三角形EFG中,角E=90°,EG=7cm,FG=25cm,求EF 的长度。

12. 在直角三角形HIJ中,角H=90°,IJ=20cm,HJ=9cm,求HI的长度。

13. 在直角三角形KLM中,角K=90°,KL=16cm,LM=12cm,求KM的长度。

14. 在直角三角形NOP中,角N=90°,NO=5cm,OP=13cm,求NP 的长度。

15. 在直角三角形QRS中,角Q=90°,QR=30cm,RS=16cm,求QS的长度。

16. 在直角三角形TUV中,角T=90°,TV=25cm,UV=7cm,求TU 的长度。

17. 在直角三角形WXY中,角W=90°,WX=14cm,XY=9cm,求WY的长度。

18. 在直角三角形ZAB中,角Z=90°,ZA=11cm,AB=15cm,求ZB的长度。

勾股定理常见练习题精修订

勾股定理常见练习题精修订

勾股定理常见练习题标准化管理部编码-[99968T-6889628-J68568-1689N]勾股定理应用题题型一:已知两边求第三边1、直角三角形中,以直角边为边长的两个正方形的面积为72cm,82cm,则以斜边为边长的正方形的面积为_________2cm.2、已知直角三角形的两边长为5、12,则另一条边长是________________.3、作出长度为10的线段。

4、一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?针对练习1、以下列各组数为边长,能组成直角三角形的是()A.2,3,4 B.10,8,4 C.7,25,24 D.7,15,122、已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或253、以面积为9 cm2的正方形对角线为边作正方形,其面积为()A.9 cm2 B.13 cm2 C.18 cm2 D.24 cm2题型二:利用勾股定理测量长度例1:如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例2:如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.AB例3:如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少?题型三:转化思想例:如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为________ cm。

(π取3)题型四:利用勾股定理解决实际问题例:如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为多少米?巩固练习1、如图1,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6 B.8 C.10 D.12图1 图22、如图2,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了()A.4米 B.6米 C.8米 D.10米3、将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是()A.5≤h≤12 B.5≤h≤24 C.11≤h≤12 D.12≤h≤24 4、已知,如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2 B.8cm2 C.10cm2 D.12cm24题 5题6题5、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,则四边形ABCD的面积为()A、36,B、22C、18D、126、如图中阴影部分是一个正方形,如果正方形的面积为64厘米2,则X的长为厘米。

勾股定理的应用专题训练题共4套

勾股定理的应用专题训练题共4套

勾股定理的应用专题测试题1.直角三角形两条直角边的长分别是3和4,则斜边上的高是多少?2.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是多少?3.△ABC中,AD是高,AB=17,BD=15,CD=6,则AC的长是多少?4.如果直角三角形有一直角边是11,另外两边长是连续自然数,那么它的周长是多少?二、填空题(每小题5分,共40分)5.求下列直角三角形中未知边的长度:b=______ c=______.7.△ABC中,∠C=90°,c+a=9.8,c-a=5,则b为多少?8.如图1,小明将一张长为20cm,宽为15cm的长方形纸减去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为多少?图1 图2 图39.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图2所示,撑脚长AB、DC为3m,两撑脚间的距离BC为4m,则AC=____m就符合要求.10.如图2,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动_____米.11.如图4是一长方形公园,如果某人从景点A走到景点C,则至少要走_____米.图4 图512.一个等腰直角三角形的面积是8,则它的直角边长为多少?13.如图5,以直角三角形的三边为直径作三个半圆,则这三个半圆的面积S1、S2、S3之间的关系是______.14.如图6,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C偏离了想要达到的B点140米,(即BC=140米),其结果是他在水中实际游了500米(即AC=500米),求该河AB处的宽度.图615.如图7,根据图上条件,求矩形ABCD的面积.图716.如图8,一艘轮船以16海里/时的速度离开港口O,向东南方向航行,另一艘船在同样同时同地以12海里/时的速度向东北方向航行,它们离开港口半小时分别到达A、B,求A、B两点的距离?图817.为了丰富少年儿童的业余文化生活,某社区在如图9所示AB所在的直线上建一图书阅览室,本社区有两所学校所在的位置在点C和D处.CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,试问:阅览室E应建在距A多少㎞处,才能使它到C、D两所学校的距离相等?图9参考答案:一、1.D 2.A 3.B 4.C 5.B二、6.12,26;7. 7; 8.20cm(提示:延长AB,DC构成直角三角形);9.5; 10.2 ; 11.370; 12.4; 13.S1+S3=S2.三、14.解:在Rt△ABC中,AB2+BC2=AC2,所以AB2+1402=5002,解得AB=480.15.解:在Rt△ADE中,AD2=AE2+DE2=82+152=172,所以AD=17,所以矩形的面积是17×3=51(cm2).16.AB2=OA2+OB2=82+62=100,所以AB=10.17.解:设阅览室E到A的距离为x㎞.连结CE、DE.在Rt△EAC和Rt△EBD中,CE2=AE2+AC2=x2+152,DE2=EB2+DB2=(25-x)2+102.因为点E到点CD的距离,所以CE=DE.所以CE2=DE2.即x2+152=(25-x)2+102.所以x=10.因此,阅览室E应建在距A10km处.12090 1、如图,在海上观察所A,我边防海警发现正北6km 的B 处有一可疑船只正在向东方向8km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为40km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?2、将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm , 在无风的天气里,彩旗自然下垂,如右图.求彩旗下垂时最低处离地面的最小高度h.彩旗完全展平时的尺寸如左图的长方形(单位:cm ).3、甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?4、有一只小鸟在一棵高4m 的小树梢上捉虫子,它的伙伴在离该树12m ,高20m 的一棵大树的树梢上发出友好的叫声,它立刻以4m/s 的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?5、已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC , AB ⊥AC ,∠B=60°CD=1cm ,求BC 的长。

勾股定理专题训练试题精选(一)附答案

勾股定理专题训练试题精选(一)附答案

勾股定理专题训练试题精选(一)一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.24. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为三角形,则正方形ABCD的边长为()11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+1012.A.132 B.121 C.120 D.以上答案都不对(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形A.2n﹣2B.2n﹣1C.2n D.2n+115. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确对于两人的证法,下列哪一个判断是正确的()16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个17.A.1B .C .D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0根, △ABC内一点P到三边的距离都相等. 则PC为()18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S3219. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个20. 设直角三角形的A.2B.3C.4D.5三边长分别为a、b、c, 若c﹣b=b﹣a>0,则=()21. (1999•A.4B.6C.8D.温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.A.16 B.18 C.12D.1223. 在△ABC中,∠A=15°,AB=12,则△ABC的面积等于()24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.9625. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE26. 如图, 在正方形网格中, cosα的值为()A.1B.C.D.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 129. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A.B重合)BE+CF=EF.上述结论中始终正确的有()A.1个B.2个C.3个D.4个30. 如图, △ABC中, AC=BC, ∠ACB=90°, AE平分∠BAC交BC于E, BD⊥AE于D, DM⊥AC于M, 连CD. 下列结论: ①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个勾股定理专题训练试题精选(一)参考答案与试题解析一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线. 菁优网版权所有专题:几何图形问题.分析:根据直角三角形斜边上的中线的性质可得DG=AG, 根据等腰三角形的性质可得∠GAD=∠GDA, 根据三角形外角的性质可得∠CGD=2∠GAD, 再根据平行线的性质和等量关系可得∠ACD=∠CGD, 根据等腰三角形的性质可得CD=DG, 再根据勾股定理即可求解.解答:解: ∵AD∥BC, DE⊥BC,∴DE⊥AD, ∠CAD=∠ACB, ∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中, DE= =2 .故选:C.故选: C.故选:C.点评:综合考查了勾股定理, 等腰三角形的判定与性质和直角三角形斜边上的中线, 解题的关键是证明CD=DG=3.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.考点:等腰直角三角形;等腰三角形的判定与性质. 菁优网版权所有专题:几何图形问题.分析:利用AD=DB=DE, 求出∠AEC=90°, 在直角等腰三角形中求出AC的长.解答:解: ∵AD=DE,∴∠DAE=∠DEA,∵DB=DE,∴∠B=∠DEB,∴∠AEB=∠DEA+∠DEB= ×180°=90°,∴∠AEC=90°,∵∠C=45°, AE=1,∴AC= .故选:D.故选: D.故选:D.点评:本题主要考查等腰直角三角形的判定与性质, 解题的关键是利用角的关系求出∠AEC是直角.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.2考点:等腰直角三角形. 菁优网版权所有分析:由已知可得Rt△ABC是等腰直角三角形, 得出AD=BD= AB=1, 再由Rt△BCD是等腰直角三角形得出CD=BD=1.解答:解: ∵∠ACB=90°, CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD= AB=1, ∠CDB=90°,∴CD=BD=1.故选:C.故选: C.故选:C.点评:本题主要考查了等腰直角三角形, 解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.4. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.考点:等腰直角三角形;垂线段最短;平行线之间的距离. 菁优网版权所有分析:利用等腰直角三角形的特点知道AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°, ∠DCE=90°.利用勾股定理得出DE的表达式, 利用函数的知识求出DE的最小值.解答:解: 在等腰RT△ACD和等腰RT△CBE中AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°∴∠DCE=90°∴AD2+CD2=AC2, CE2+BE2=CB2∴CD2= AC2, CE2= CB ,∵DE2=DC2+EC2,∴DE===∴当CB=1时, DE的值最小, 即DE=1.故选:B.故选: B.故选:B.点评:此题考察了等腰直角三角形的特点及二次函数求最值的方法.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°考点:等腰直角三角形;平行线的性质. 菁优网版权所有专题:计算题.分析:根据等腰直角三角形性质求出∠ACB, 求出∠ACE的度数, 根据平行线的性质得出∠2=∠ACE, 代入求出即可.解答:解: ∵∠BAC=90°, AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∴∠2=∠ACE=65°,故选B.点评:本题考查了三角形的内角和定理、等腰直角三角形、平行线的性质, 关键是求出∠ACE的度数.6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.考点:等腰直角三角形;圆周角定理. 菁优网版权所有专题:证明题.分析:连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50 m, 从而求得⊙O的直径AD=100 m.解答:解: 连接OB.∵∠ACB=45°, ∠ACB= ∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中, OA=OB(⊙O的半径), AB=100m,∴由勾股定理得, AO=OB=50 m,∴AD=2OA=100m;故选B.点评:本题主要考查了等腰直角三角形、圆周角定理.利用圆周角定理求直径的长时, 常常将直径置于直角三角形中, 利用勾股定理解答.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB考点:勾股定理;等腰直角三角形;相似三角形的判定与性质. 菁优网版权所有专题:计算题;证明题;压轴题.分析:过点B作BM∥AD, 根据AB∥CD, 求证四边形ADMB是平行四边形, 再利用∠ADC+∠BCD=90°, 求证△MBC为Rt△, 再利用勾股定理得出MC2=MB2+BC2, 在利用相似三角形面积的比等于相似比的平方求出MC即可.解答:解: 过点B作BM∥AD,∵AB∥CD, ∴四边形ADMB是平行四边形,∴AB=DM, AD=BM,又∵∠ADC+∠BCD=90°,∴∠BMC+∠BCM=90°, 即△MBC为Rt△,∴MC2=MB2+BC2,∵以AD.AB.BC为斜边向外作等腰直角三角形,∴△AED∽△ANB, △ANB∽△BFC,= , = ,即AD2= , BC2= ,∴MC2=MB2+BC2=AD2+BC2= += = ,∵S1+S3=4S2,∴MC2=4AB2, MC=2AB,CD=DM+MC=AB+2AB=3AB.故选B.点评:此题涉及到相似三角形的判定与性质, 勾股定理, 等腰直角三角形等知识点, 解答此题的关键是过点B作BM∥AD, 此题的突破点是利用相似三角形的性质求得MC=2AB, 此题有一定的拔高难度, 属于难题.8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.考点:等腰直角三角形;勾股定理. 菁优网版权所有专题:计算题;规律型.分析:先根据勾股定理及等腰三角形的性质求出A2A3及A3A4的长, 找出规律即可解答.解答:解: ∵△A1A2B是直角三角形, 且A1A2=A2B=a, A2A3⊥A1B,∴A1B= = a,∵△A1A2B是等腰直角三角形,∴A2A3⊥A1B,∴A2A3=A1A3= A1B= = ,同理, A4A5= ×= ,∴线段An+1An+2的长为.故选B.故选B.点评:此题属规律性题目, 涉及到等腰三角形及直角三角形的性质, 解答此题的关键是求出A2A3及A3A4的长找出规律.灵活运用等腰直角三角形的性质, 得到等腰直角三角形的斜边是直角边的倍, 从而准确得出结论.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.考点:勾股定理;矩形的性质. 菁优网版权所有专题:压轴题.分析:过E作EG⊥CD于G, 利用矩形的判定可得, 四边形AEGD是矩形, 则AE=DG, EG=AD, 于是可求MG=DG ﹣DM=1, 在Rt△EMG中, 利用勾股定理可求EM.解答:解: 过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG, EG=AD,∴EG=AD=BC=7, MG=DG﹣DM=3﹣2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中, EM= = = =5 .故选B.点评:本题考查了矩形的判定、勾股定理等知识, 是基础知识要熟练掌握.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为的等边三角形,则正方形ABCD的边长为()考点:勾股定理;全等三角形的判定与性质;等边三角形的性质;正方形的性质. 菁优网版权所有分析:根据正方形的各边相等和等边三角形的三边相等, 可以证明△ABE≌△ADF, 从而得到等腰直角三角形CEF, 求得CF=CE=1.设正方形的边长是x, 在直角三角形ADF中, 根据勾股定理列方程求解.解答:解: ∵AB=AD, AE=AF,∴Rt △ABE≌Rt△ADF.∴BE=DF.∴CE=CF=1.设正方形的边长是x.在直角三角形ADF中, 根据勾股定理, 得x2+(x﹣1)2=2,解, 得x= (负值舍去).即正方形的边长是.故选A.点评:此题综合运用了正方形的性质、等边三角形的性质、全等三角形的判定和性质以及勾股定理.11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+10考点:等腰直角三角形. 菁优网版权所有分析:所求正方形的边长即为AB的长, 在等腰Rt△ACF、△CDE中, 已知了CE、DE、CF的长均为10, 根据等腰直角三角形的性质, 即可求得AC、CD的长, 由AB=AC+CD+BD即可得解.解答:解: 如图;连接AB, 则AB必过C.D;Rt△ACF中, AC=AF, CF=10;则AC=AF=5;同理可得BD=5;Rt△CDE中, DE=CE=10, 则CD=10 ;所以AB=AC+CD+BD=20 ;故选C.点评:理清题意, 熟练掌握直角三角形的性质是解答此题的关键.A.132 B.121 C.120 D.以上答案都不对12.(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()考点:勾股定理. 菁优网版权所有分析:假设另外两边后, 根据勾股定理适当变形, 即可解答.解答:解: 设另外两边是a、b(a>b)则根据勾股定理, 得:a2﹣b2=121∵另外两边的长都是自然数∴(a+b)(a﹣b)=121=121×1即另外两边的和是121,故三角形的周长是132.故选A.故选A.点评:注意熟练进行因式分解和因数分解, 根据另外两边的长都是自然数分析结论.A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等考点:勾股定理;角平分线的性质;等边三角形的判定;直角三角形斜边上的中线. 菁优网版权所有专题:计算题;证明题.分析:A.根据等腰三角形的性质求解;B.根据直角三角形的面积计算方法求斜边的高;C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C.根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D.求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.解答:解: A.等腰三角形底角相等, 若底角为60°, 则顶角为180°﹣60°﹣60°=60°, 若顶角为60°, 则底角为=60°, 所以有一个角为60°的等腰三角形即为等边三角形, 故A选项正确;B.直角三角形中斜边的中线等于斜边的一半, 只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C.在直角三角形中, 最大的边为斜边, 根据勾股定理可知斜边长的平方的等于两直角边长平方的和, 故C选项正确;D.过三角形角平分线的交点作各边的垂线, 则三角形分成3对小三角形, 其中各顶点所在的两个直角三角形全等, 即过角平分线作的高线相等, 故D选项正确;即B选项中命题为假命题,故选B.故选B.点评:本题考查了全等三角形的证明, 考查了直角三角形中勾股定理的运用, 考查了等腰三角形的性质, 考查了直角三角形中斜边上的中线等于斜边长一半的性质.14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1考点:等腰直角三角形. 菁优网版权所有专题:规律型.分析:根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积, 找出规律即可.解答:解: ∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC= = , AD= =2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n ﹣2.故选A.故选A.点评:此题属规律性题目, 解答此题的关键是分别计算出图中所给的直角三角形的面积, 找出规律即可.15. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠对于两人A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确的证法,下列哪一个判断是正确的()考点:勾股定理;实数大小比较;三角形三边关系. 菁优网版权所有专题:压轴题;阅读型.分析:分别对甲乙两个证明过程进行分析即可得出结论.解答:解: 甲的证明中说明+ 的值大于5, 并且证明小于5, 一个大于5的值与一个小于5的值一定是不能相等的.乙的证明中利用了勾股定理, 根据三角形的两边之和大于第三边.故选A.故选A.点评:本题解决的关键是正确理解题目中的证明过程, 阅读理解题是中考中经常出现的问题.16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个考点:勾股定理;等腰三角形的判定. 菁优网版权所有专题:探究型.分析:先根据勾股定理求出AB的长, 再根据等腰三角形的性质分别找出以AB为腰和以AB为底边的等腰三角形即可.解答:解: ∵A.B是4×5网格中的格点,∴AB= = ,同理可得, AC=BD=AC= ,∴所求三角形有:△ABD, △ABC, △ABE.故选B.点评:本题考查的是勾股定理及等腰三角形的性质, 先根据勾股定理求出AB的长是解答此题的关键.17.A.1B.C.D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0的两个根, △ABC内一点P到三边的距离都相等. 则PC为()考点:勾股定理;解一元二次方程-因式分解法;三角形的内切圆与内心. 菁优网版权所有专题:压轴题.分析:根据AC、BC的长分别是方程x2﹣7x+12=0的两个根, 根据根与系数的关系求出.解答:解: 根据“AC, BC的长分别是方程x2﹣7x+12=0的两个根”可以得出:AC+BC=7, AC•BC=12,AB2=AC2+BC2=25,AB=5,△ABC内一点P到三边的距离都相等, 即P为△ABC内切圆的圆心,设圆心的半径为r, 根据三角形面积表达式:三角形周长×内切圆的半径÷2=三角形的面积,可得出, AC•BC÷2=(AC+BC+AB)×r÷2,12÷2=(7+5)×r÷2,r=1,根据勾股定理PC= = ,故选B.故选B.点评:本题中考查了勾股定理和一元二次方程根与系数的关系. 本题中三角形内心与三角形周长和面积的关系式是本题中的一个重点.18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S32考点:勾股定理. 菁优网版权所有专题:压轴题.分析:依据半圆的面积公式, 以及勾股定理即可解决.解答:解: 设直角三角形三边分别为a, b, c, 则三个半圆的半径分别为, ,由勾股定理得a2+b2=c2, 即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1.S2.S3之间的关系是S1+S2=S3故选C.故选C.点评:根据勾股定理, 然后变形, 得出三个半圆之间的关系.19. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个考点:等腰直角三角形. 菁优网版权所有专题:压轴题.分析:利用等腰直角三角形的性质来作图, 要注意分不同的直角顶点来讨论.解答:解: 此题应分三种情况:①以AB为腰, 点A为直角顶点;可作△ABC1.△ABC2, 两个等腰直角三角形;②以AB为腰, 点B为直角顶点;可作△BAC3.△BAC4, 两个等腰直角三角形;③以AB为底, 点C为直角顶点;可作△ABC5.△ABC6, 两个等腰直角三角形;综上可知, 可作6个等腰直角三角形, 故选C.点评:等腰直角三角形两腰相等, 顶角为直角, 据此可以构造出等腰直角三角形.关键是以AB为腰和以AB为底来讨论.A.2B.3C.4D.520. 设直角三角形的三边长分别为a、b、c,若c﹣b=b﹣a>0, 则=()考点:勾股定理. 菁优网版权所有分析:根据已知条件判断c是斜边, 并且得到c+a=2b, 然后根据勾股定理得到c2﹣a2=b2, 然后因式分解可以求出c﹣a, 代入要求的式子可以求出结果了.解答:解: ∵c﹣b=b﹣a>0∴c>b>a, c+a=2b根据勾股定理得, c2﹣a2=b2, (c+a)(c﹣a )=b2,∴c﹣a= b∴=4故选C.故选C.点评:此题主要利用了勾股定理和因式分解解题, 题目式子的值不能直接求出, 把它的分子分母分别用b表示才能求出.A.4B.6C .8D.21. (1999•温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()考点:勾股定理. 菁优网版权所有分析:由CD的长, 可求得AD的值, 进而可在Rt△ABD中, 由勾股定理求得BD的长.解答:解: 如图;△ABC中, AB=AC=10, DC=2;∴AD=AC﹣DC=8;Rt△ABD中, AB=10, AD=8;由勾股定理, 得:BD= =6;故选B.点评:此题主要考查了等腰三角形的性质及勾股定理的应用.22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.考点:勾股定理. 菁优网版权所有专题:计算题.分析:作AE⊥BC, DF⊥BC, 构建直角△AEB和直角△DFC, 根据勾股定理计算BE, CF, DF, 计算EF的值, 并根据EF求AD.解答:解: 如图, 过点A, D分别作AE, DF垂直于直线BC, 垂足分别为E, F.由已知可得BE=AE= , CF= , DF=2 ,于是EF=4+ .过点A作AG⊥DF, 垂足为G.在Rt△ADG中, 根据勾股定理得AD= = = = = .故选D.点评:本题考查了勾股定理的正确运用, 本题中构建直角△ABE和直角△CDF是解题的关键.A.16 B.18 C.12D.1223. 在△ABC中,∠C=90°,∠A=15°,AB=12,则△ABC的面积等于()考点:勾股定理;三角形的面积. 菁优网版权所有专题:计算题.分析:作∠ABD=∠A=15°, 则∠BDC=30°;设BC=x, 则BD=2x, CD= x, 计算AC=AD+CD=(2+ )x, BC=x, AB=12, 根据勾股定理计算AC, BC的长度, △ABC的面积为根据•BC•AC计算可得.解答:解: 如图, 作∠ABD=∠A=15°BD交AC于D, 则∠DBC=75°﹣15°=60°在Rt△BCD中, 因为∠BDC=90°﹣∠DBC=30°所以BD=2BC, CD= BC设BC=x,所以BD=2x, CD= x因为∠A=∠ABD, 所以AD=BD=2x所以AC=AD+DC=(2+)x在Rt △ABC中AC2+BC2=AB2∴∴,故选B.点评:本题考查了勾股定理在直角三角形中的运用, 考查了直角三角形面积的计算, 本题中设BC=x, 根据直角△ABC求x的值, 是解题的关键.24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.96考点:勾股定理;相似三角形的判定与性质. 菁优网版权所有分析:先利用勾股定理求出AB的长, 再根据相似三角形对应边成比例求出DE、BD的长, 然后代入面积公式即可求解.解答:解: ∵∠BDE=∠C=90°, ∠B=∠B∴△BDE∽△BCA∴BE: BA=BD: BC∵AC=BE=15, BC=20∴AB==25∴15: 25=BD: 20∴BD=12∴DE=9∴S△BDE=×12×9=54;S△ABC=×15×20=150∴四边形ACED的面积=S△ABC﹣S△BDE=150﹣54=96故选D.故选D.点评:此题主要考查了学生对相似三角形的性质及勾股定理的运用.25. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE考点:勾股定理;对顶角、邻补角;三角形内角和定理;等腰三角形的性质;圆周角定理. 菁优网版权所有专题:证明题;压轴题.分析:根据等腰三角形的性质证出∠BO2E=2∠BDE, 即可得出答案B错误, 假设A成立证出C也正确, 即可判断A、C都错误, 即可选出选项.解答:解: A.∵∠ABC+∠EDA=180°, ∠ADB=90°,∴∠EDB+∠ABC=90°.∵∠BDE+∠EDC=90°, 且∠EDC=∠BCA.∴∠ABC=∠BCA.∴AB=AC. 正确, 故本选项错误;B.∵O2B=O2D,∴∠DBO2=∠EDB,∴∠BO2E=2∠BDE,∵BE=BD,∴∠BDE=∠E,∴∠BO2E=2∠E, 正确, 故本选项错误;C.∵AC=AB,∴∠C=∠ABC,∵∠BO2E=2∠BDE, ∠ABC=∠BO2E+∠E,∴∠ABC=3∠E,∵BC为⊙O2的直径,∴∠CDB=90°,∴4∠E=90°,∠E=22.5°∴∠C=∠ABC=67.5°,∴∠A=180°﹣2×67.5°=45°,在Rt△ABD中由勾股定理得:AB= BD= BE, 正确, 故本选项错误;D.故本选项正确;故选D.故选D.点评:本题主要考查了勾股定理, 三角形的内角和定理, 等腰三角形的性质, 圆周角定理, 对顶角, 邻补角等知识点, 综合运用性质进行证明是解此题的关键.26. 如图, 在正方形网格中, cosα的值为()A .1B .C .D.考点:勾股定理;锐角三角函数的定义. 菁优网版权所有专题:网格型.分析:cosα的值可以转化为直角三角形的边的比的问题, 先根据勾股定理求出AB的长, 再在Rt△ABC中根据三角函数的定义求解.解答:解: 在Rt△ABC中, BC=3, AC=4,则AB= =5,则cosα= = .故选D.点评:本题考查勾股定理和锐角三角函数的概念:在直角三角形中, 正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()考点:勾股定理;解一元二次方程-因式分解法. 菁优网版权所有专题:分类讨论.分析:先解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4, 所以另一条边是6, 再分两种情况考虑:①若8为斜边, 则用勾股定理得第三条边长是2 ;②若8和6是两条直角边, 再用勾股定理求斜边得10.解答:解: 根据题意得解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4,所以另一条边是6,①若8为斜边, 则用勾股定理得第三条边长是=2 ;②若8和6是两条直角边, 则此直角三角形的第三条边长是=10.故选:D.故选: D.故选:D.点评:本题考查了勾股定理、解方程. 解题的关键是要注意分情况讨论.28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 1考点:勾股定理的证明. 菁优网版权所有分析:根据勾股定理可得大正方形ABCD的边长, 再根据和差关系得到小正方形EFGH的边长, 根据正方形的面积公式可得大正方形ABCD和小正方形EFGH的面积, 进一步即可求解.解答:解: 如图, 设大正方形的边长为xcm,由勾股定理得32+42=x2,解得:x=5,则大正方形ABCD的面积为: 52=25;∵小正方形的边长为: 4﹣3=1,∴小正方形EFGH的面积为: 12=1.则大正方形ABCD和小正方形EFGH的面积比是25:1.故选:D.故选: D.故选:D.点评:本题考查勾股定理及正方形的面积公式, 比较容易解答, 关键是求出大小正方形的边长.29. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理应用题
1.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架
2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( )
A.0.6米
B.0.7米
C.0.8米
D.0.9米
2.如图1所示,有一块三角形土地,其中∠C =90°,AB =39米,BC =36米,则其面积 是( ) A.270米2 B.280米2
C.290米2
D.300米
2 3.有一个长为40cm ,宽为30cm
圆盖的直径至少是( ) A.35cm B.40cm C.50cm D.55cm
4.下列条件不能判断三角形是直角三角形的是 ( )
A.三个内角的比为3:4:5
B.三个内角的比为1:2:3
C.
三边的比为3:4:5 D.三边的比为7:24:25
5.若三角形三边的平方比是下列各组数,则不是直角三角形的是( )
A. 1:1:2
B. 1:3:4
C. 9:16:25
D. 16:25:40
6.若三角形三边的长分别为6,8,10,则最短边上的高是( ) A.6 B.7 C.8 D.10
7.
如图2所示,在某建筑物的A 处有一个标志物,A 离地面9米,在离建筑物12米处有一 个探照灯B ,该灯发出的光正好照射到标志物上,则灯离标志物____米8.小芳的叔叔家承包了一个长方形鱼塘,已知其面积是48平方米,
其对角线长为10米.若要建围栏,则要求鱼塘的周长,它的周长
是____米.
9.公园内有两棵树,其中一棵高13米,另一棵高8米,两树相距
12米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少
要飞_____米.
10.若把一个直角三角形的两条直角边同时扩大到原来的3倍,则斜边扩大到原来的____倍.
11.若△ABC 的三边长分别是2,2,2===
c b a ,则∠A =____,∠B =____,∠C =____. 12.某三角形三条边的长分别为9、12、15,则用两个这样的三角形所拼成的长方形的周长
是______,面积是_____.
13.如图4所示,AB 是一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐桃子,一只猴子从D 往上爬到树顶A ,又沿滑绳AC 滑到C 处,另一只猴子从D 处下滑到B ,又沿B 跑到C ,已知两只猴子所通过的路程均为15米,求树高AB . 14.在平静的湖面上有棵水草,它高出水面3 至水面,已知水草移动的水平距离是6分米,求这里的水深是多少?
15.在6米高的柱子顶端有只老鹰,看到一条蛇从距离柱子底端18 端的蛇洞游来,老鹰立即扑下. 设老鹰按直线飞行). 16.如图5所示,在△ABC 中,CD 是AB 边上的高,6,8==BC AC ;
在△ABC 中,DE C B
图1 B C 图4 E
A C 图3
是AB 边上的高,7=DE .△ABE 的面积是35,求∠C 的度
数.
17.在△ABC 中,CD 是AB 边上的高,AC = 4,BC = 3,BD = 1.8,问
△ABC 是直角三角形吗?写出证明过程
18、如图,在长方形ABCD 中,将∆ABC 沿AC 对折至∆AEC 位置,CE
与AD 交于点F 。

(1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长
19、如图2所示,将长方形ABCD 沿直线AE 折叠,顶点D 正好落在
BC 边上F 点处,已知CE=3cm ,AB=8cm ,则图中阴影部分面积为
_______.
20、如图2-3,把矩形ABCD 沿直线BD 向上折叠,使点C 落在C ′的位置上,已知AB=•3,BC=7,重合部分△EBD 的面积为________.
21、如图5,将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G 。

如果M 为CD 边的中点,求证:DE :DM :EM=3:4:5。

22、如图2-5,长方形ABCD 中,AB=3,BC=4,若将该矩形折叠,使C 点与A 点重合,•则折叠后痕迹EF 的长为( )
A .3.74
B .3.75
C .3.76
D .3.77
23如图,铁路上A 、B 两点相距25km ,C 、D 为两村庄,DA•垂直AB 于A ,CB 垂直AB 于B ,已知AD=15km ,BC=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C 、D 两村到E 站的距离相等,则E 站建在距A 站多少千米处?
24如图是一块地,已知AD=8m ,CD=6m ,∠D=90°,AB=26m ,BC=24m ,求这块地的面积。

25、如图,在棱长为1的正方体ABCD —A ’B ’C ’D ’的表面上,求从顶点A 到顶点C ’的最短距离.
26、如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm
27、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A 、B 、C 、D ,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最
省电线.
28、如图1-3-11,有一块塑料矩形
模板ABCD ,长为10cm ,宽为4cm ,A
B
将你手中足够大的直角三角板 PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P :
①能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说明理由.
②再次移动三角板位置,使三角板顶点P 在AD 上移动,直角边PH 始终通过点B ,另一直角边PF 与DC 的延长线交于点Q ,与BC 交于点E ,能否使CE=2cm ?若能,请你求出这时AP 的长;若不能,请你说明理由.
勾股定理的应用专项练习题参考答案
一、1.B ; 2.A ; 3.D ; 4.C ; 5.C ; 6.A ; 7.D ; 8.C.
二、9.15;10.800;11.28;12.13;13.3;14. 2
;15. 45°,45°,90°;16.42,108.
三、
17.设AD 为x 米,则AB=BD +AD=(10+x )米,AC=(15-x )米,BD=5米.在Rt △ABC 中,由勾股定理,得AB 2+BC 2=AC 2,即(10+x 2)+52=(15-x )2,故x =2,从而AB=10+2=12(米),即树离AB 是12米.
18.根据题意画出如图9所示的图形,其中D 是无风时水草的最高点,BC 为湖面,AB 是一
阵风吹过来时水草的具体位置,CD=3分米,BC=6分米,AD =AB ,BC ⊥AD ,在Rt △ABC 中,由勾股定理,得AB 2=AC 2+BC 2,即(AC+2)3=AC 2
+36,故AC= 4.5,即这里的水深是
4.5米.
19.由题意,得老鹰与蛇所走路程相等,设此路程为x 米,则蛇距蛇洞为)9(x -米被鹰抓住;由222)9(3x x =-+,得x =5,则4599=-=-x ,即老鹰在距蛇洞4米处抓住蛇.
20.由题意画出示意图(如图10),则AB=3,CD=14-1=13,BD=24;过A 作AE ⊥CD 于E ,则
CE=13-3=10,AE=BD=24;在Rt △AEC 中,AC 2=CE 2+AE 2=102+242=262,故AC=26,因26÷5=5.2(秒),即至少要5.2秒才能飞回窝中.
21.因为352
1=⋅=∆DE AB S ABE ,又7=DE ,故10=AB .因为6,8==BC AC ,10=AB ,故有,222AB BC AC =+所以△ABC 是直角三角形,故∠090=C .。

相关文档
最新文档