侦察卫星在通过地球两极上空的圆轨道上运行(1)
高考物理万有引力定律的应用解题技巧分析及练习题(含答案)(1)

高考物理万有引力定律的应用解题技巧分析及练习题(含答案)(1)一、高中物理精讲专题测试万有引力定律的应用1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R t月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .2.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=-或者202t gR r ω=-【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22Mm Gmr r ω= 航天飞机在地面上,有2mMG R mg =联立解得ω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π所以t =若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π所以t =. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.3.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t =则由2v mg m R=求得:星球的第一宇宙速度22hv gR R t ==, ()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.4.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。
万有引力定律公式、例题及其应用[1][1]
![万有引力定律公式、例题及其应用[1][1]](https://img.taocdn.com/s3/m/27955220f78a6529647d539c.png)
【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。
现有一中子星,观测到它的自转周期为T =301s 。
问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。
计算时星体可视为均匀球体。
(引力常数G =6.67⨯1011-m 3/kg.s 2) 解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。
设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小物块质量为m ,则有 R m R GMm 22ω= T πω2= ρπ334R M = 由以上各式得23GT πρ=,代入数据解得:314/1027.1m kg ⨯=ρ。
点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分析求解是应用万有引力定律解题惯用的一种方法。
(2)行星表面重力加速度、轨道重力加速度问题:(重力近似等于万有引力) 表面重力加速度:2002RGM g mg R Mm G =∴= 轨道重力加速度:()()22h R GMg mg h R GMmh h +=∴=+【例2】一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速度为g 0,行星的质量M 与卫星的质量m 之比M /m=81,行星的半径R 0与卫星的半径R 之比R 0/R =3.6,行星与卫星之间的距离r 与行星的半径R 0之比r /R 0=60。
设卫星表面的重力加速度为g ,则在卫星表面有m g r GMm=2 ……经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的1/3600。
上述结果是否正确?若正确,列式证明;若有错误,求出正确结果。
解析:题中所列关于g 的表达式并不是卫星表面的重力加速度,而是卫星绕行星做匀速圆周运动的向心加速度。
正确的解法是 卫星表面2R Gm=g 行星表面20R GM=g 0 即20)(R R M m =0g g 即g =0.16g 0。
2022北京重点校高一(下)期中物理汇编:万有引力与宇宙航行章节综合1

2022北京重点校高一(下)期中物理汇编万有引力与宇宙航行章节综合1一、单选题1.(2022·北京师大附中高一期中)如图所示,图中A 点是地球赤道上一点,人造卫星B 轨道在赤道平面内,C 点为同步卫星。
已知人造卫星B 的轨道半径是地球半径的m 倍,同步卫星C 的轨道半径是地球半径的n 倍,,由此可知( )A .人造卫星B 与同步卫星C 的运行周期之比为33m nB .同步卫星C 与A 1nC .人造卫星B 与A 点的速率之比为3n mD .人造卫星B 与同步卫星C 的速率之比为n m2.(2022·北京师大附中高一期中)关于万有引力定律,下列说法正确的是( )A .两个物体间的万有引力总是大小相等、方向相反,是一对平衡力B .公式122m m F G r中的G 为比例系数,它的单位是N·m 2·kg 2 C .万有引力定律是牛顿在总结前人研究的基础上发现的D .测出引力常量的科学家是伽利略3.(2022·北京市第九中学高一期中)a 、b 、c 、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星。
其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上。
某时刻b 卫星恰好处于c 卫星的正上方。
则( )A.a、c的线速度大小相等,且小于d的线速度B.b、c的角速度大小相等,且小于a的角速度C.a、c的向心加速度大小相等,且大于b的向心加速度D.b、d存在相撞危险4.(2022·北京八十中高一期中)已知引力常量G、月球中心到地球中心的距离r和月球绕地球运行的周期T,仅利用这三个数据,可以估算出的物理量有()A.月球的质量B.地球的质量C.地球的半径D.月球对地球的万有引力5.(2022·北京十五中高一期中)木星是太阳的一颗行里,木星又有自己的卫星,假设木星的卫星绕木星的运动和木星绕太阳的运动都可视为匀速圆周运动,要想计算木星的质量,需要测量的物理量有()A.木星绕太阳运动的周期和轨道半径B.木星绕太阳运动的周期和木星的半径C.木星的卫星绕木星运动的周期和轨道半径D.木星的卫星绕木星运动的周期和木星的半径二、多选题6.(2022·北京师大附中高一期中)如图,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道I,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道II。
高考物理万有引力与航天试题(有答案和解析)

高考物理万有引力与航天试题(有答案和解析)一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
着陆器到达距火星表面高度800m 时速度为60m/s ,在着陆器底部的火箭助推器作用下开始做匀减速直线运动;当高度下降到距火星表面100m 时速度减为10m/s 。
该过程探测器沿竖直方向运动,不计探测器质量的变化及火星表面的大气阻力,已知火星的质量和半径分别为地球的十分之一和二分之一,地球表面的重力加速度为g = 10m/s 2。
求:(1)火星表面重力加速度的大小; (2)火箭助推器对洞察号作用力的大小.【答案】(1)2=4m/s g 火 (2)F =260N 【解析】 【分析】火星表面或地球表面的万有引力等于重力,列式可求解火星表面的重力加速度;根据运动公式求解下落的加速度,然后根据牛顿第二定律求解火箭助推器对洞察号作用力. 【详解】(1)设火星表面的重力加速度为g 火,则2=M m Gmg r火火火2=M mGmg r 地地解得g 火=0.4g=4m/s 2(2)着陆下降的高度:h=h 1-h 2=700m ,设该过程的加速度为a ,则v 22-v 12=2ah 由牛顿第二定律:mg 火-F=ma 解得F=260N3.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)1v =【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为1v =4.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度0v 竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求: (1)行星的半径R ;(2)小石子能上升的最大高度. 【答案】(1)R = (2)202v h g =【解析】(1)对行星表面的某物体,有:2GMmmg R=-得:R =(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:2002v gh =-+得:202v h g=5.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全部都拍摄下来,卫星在通过赤道上空时,卫星上的摄影像机至少应拍地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T .【答案】l =【解析】 【分析】 【详解】设卫星周期为1T ,那么:22214()()Mm m R h G R h T π+=+, ① 又2MmGmg R=, ② 由①②得1T =设卫星上的摄像机至少能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的情况全都拍摄下来,则12TlR T π⋅=. 所以23124()RT h R l T Tgππ+==. 【点睛】摄像机只要将地球的赤道拍摄全,便能将地面各处全部拍摄下来;根据万有引力提供向心力和万有引力等于重力求出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再根据弧长与圆心角的关系求解.6.利用万有引力定律可以测量天体的质量. (1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转的影响,求地球的质量. (2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球A 和B ,如图所示.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T 1,月球、地球球心间的距离为L 1.你还可以利用(1)、(2)中提供的信息,求月球的质量.【答案】(1)2gR G ;(2)2324L GT π;(3)2321214L gR GT G π-. 【解析】 【详解】(1)设地球的质量为M ,地球表面某物体质量为m ,忽略地球自转的影响,则有2Mm G mg R =解得:M =2gR G; (2)设A 的质量为M 1,A 到O 的距离为r 1,设B 的质量为M 2,B 到O 的距离为r 2, 根据万有引力提供向心力公式得:2121122()M M G M r L Tπ=, 2122222()M M GM r L T π=, 又因为L =r 1+r 2解得:231224L M M GTπ+=; (3)设月球质量为M 3,由(2)可知,2313214L M M GT π+=由(1)可知,M =2gR G解得:23213214L gR M GT Gπ=-7.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
高一物理竞赛试题含答案

考生注意:本卷共三大题,20小题,满分100分,时量90分钟。
一.选择题(本题共10小题,每题4分,满分40分。
第1~6题为单项选择题,每题所给的选项中有的只有一个是符合题意的。
第7~10题为不定项选择题,所给的选项中有的只有一个、有的有几个符合题意。
将所有符合题意选项的序号选出,填入题后的括号中。
全部选对的得4分,部分选对的得2分,有错选或不选的得0分)1、下列四种吸引力中,哪一种是万有引力()A.宇宙中的所有异种电荷之间存在的吸引作用B.宇宙中的所有异名磁极之间存在的吸引作用C.宇宙中的所有有质量的物体之间存在的吸引作用D.宇宙中的所有的原子核内核子之间存在的强大吸引作用2、某同学这样来计算第一宇宙速度:v =2RTπ=62 3.14 6.410243600⨯⨯⨯⨯= 645m/s = 0.645km/s 。
这一结果与正确的值相差很大。
这是由于他在近似处理中错误地假设了()A.卫星的轨道是圆B.卫星的周期等于地球自转的周期C.卫星的轨道半径等于地球的半径D.卫星的向心力等于它在地面上时所受的地球引力3、假设地球的自转逐渐加快,而对仍静止在赤道附近的物体,会变大的物理量是()A.地球的万有引力B.自转向心力C.地面的支持力D.重力4、如果只有重力对物体做功,下列说法正确的是()A.重力做正功,机械能增加B.重力做负功,机械能减小C.重力做负功,重力势能减少D.无论重力做正功还是做负功,机械能都不改变5、关于机械能下列说法,哪一项是正确的()A.作变速运动的物体,只要有摩擦力存在,机械能一定减少B.如果物体所受的合外力不为零,则机械能一定发生变化C.斜向上抛出的物体,不计空气阻力时,机械能是守恒的。
因而物体在同一高度,具有相同的速度D.在水平面上作变速运动的物体,它的机械能不一定变化6、质量为5kg的物体,以5m/s2的加速度竖直下落4m的过程中(g取10m/s2),它的机械能将()A.减少100J B.增加100J C.减少200J D.增加200J7、牛顿发现万有引力定律,在人类认识自然的历史上树立了一个里程碑,这一发现的深远意义在于()A.第一次揭示出自然界中一种基本的相互作用力规律B.把地面上物体的运动规律和天体运动的规律统一起来C.发现了天体运动的推动力,找到了太阳系演化的原因D.在所有的物体相互作用中,万有引力均起主导作用8、关于地球同步卫星,下列说法正确的是()A.它处于平衡状态,且具有一定的高度B.它的加速度小于9.8m/s2C.它的周期等于24h ,且轨道平面与赤道平面重合D.它的速度小于7.9km/s9、下列说法正确的是()A.海王星与冥王星是人们依据万有引力定律计算的轨道而发现的B.天王星是人们依据万有引力定律计算的轨道而发现的C.天王星的运行轨道偏离根据万有引力定律计算而得的轨道,其原因是由于天王星受到轨道外面其他行星的万有引力作用D.以上均不正确10、以地面为参考平面,从地面竖直上抛两个质量不等的物体(不计空气阻力),它们的初动能相等。
天体运动中周期与频率的应用

天体运动中周期与频率的应用作者:刘成刚来源:《中学教学参考·理科版》2015年第08期[摘要]天体运动是高中物理教学的难点,随着我国航天技术的飞速发展,天体运动问题逐渐成为高考命题的热点,为了有效帮助学生提高解答此类问题的能力,本文从以下两方面结合例题作些分析说明。
[关键词]天体运动周期频率[中图分类号] G633.7 [文献标识码] A [文章编号] 16746058(2015)230042高中物理中,天体运动一般视为匀速圆周运动,天体运动所需的向心力都是由它们所围绕的星球对它们的万有引力所提供的。
处理天体运动问题的依据是万有引力定律和圆周运动规律,下面结合例题作些分析。
一、周期和频率的含义及应用1.周期T:物体做匀速圆周运动一周所需时间。
2.频率f:物体做匀速圆周运动1秒内旋转的圈数。
周期和频率互为倒数。
T=1f。
【例1】地球自转周期为T0,在圆轨道上运动的质量为m的人造地球卫星旋转周期为T,求卫星每天绕地球运转的圈数?解析:①先求卫星运转一周所需的时间。
由地球对卫星的万有引力等于卫星所需的向心力,得:GMmr2=m(2πT)2rT=2πr3GM由恒等变换:GM=R2g得T=2πr3R2g②再求卫星运转一周相当多少天。
TT0=2πT0r3R2g③最后求卫星每天绕地球运转的圈数。
TT0的倒数为卫星每天绕地球运转的圈数。
T0T=T2πR2g(R+h)3【例2】有一种卫星叫做极地卫星,其轨道平面与地球的赤道平面成90°角,它常应用于遥感、探测。
假设有一个极地卫星绕地球做匀速周运动。
已知:该卫星的运动周期为T0/4(T0为地球的自转周期),地球表面的重力加速度为g,地球半径为R。
则该卫星一昼夜能有几次经过赤道上空?解析:①先求卫星运转一周需要多少秒。
该卫星的运动周期为T0/4(T0为地球的自转周期)。
②再求卫星运转一周相当多少天。
TT0=14天③最后卫星每天绕地球运转的圈数。
TT0的倒数为卫星每天绕地球运转的圈数。
万有引力经典题型总汇 超全

万有引力练习一、单项选择题1.人造卫星绕地球做匀速圆周运动,其轨道半径为R ,线速度为V ,周期为T 。
若要使卫星的周期变为2T ,可以采取的办法是:( )A 、R 不变,使线速度变为V/2;B 、V 不变,使轨道半径变为2R ;C 、使轨道半径变为R 34;D 、使卫星的高度增加R 。
2.关于“亚洲一号”地球同步卫星,下说法正确的是( )A .已知该卫星的质量为1.24t ,若它的质量增加到2.48t ,则其同步轨道半径将变为原来的21。
B .它的运行速度一定小于7.9km/s 。
C .它可以经过北京的正上空,所以我国可以利用他进行电视转播。
D .它距离地面的高度约为地球半径的5.6倍,所以它的向心加速度约为其下方地面上的物体重力加速度的26.51。
3.下列说法正确的有( )A .人造地球卫星运行的速率可能等于8km/s 。
B .一航天飞机绕地球做匀速圆周运动,在飞机内一机械手将物体相对航天飞机无初速地释放于机外,则此物体将做自由落体运动。
C .由于人造地球卫星长期受微小阻力的作用,因此其运行的速度会逐渐变大。
D .我国2003年10月“神州”5号飞船在落向内蒙古地面的过程中,一直处于失重状态。
4.2003年10月15日,我国成功地发射了“神舟五号”载人飞船,经过21小时的太 空飞行,返回舱于次日安全着陆。
已知飞船在太空中运行的轨道是一个椭圆,椭圆的一个焦点是地球的球心,如图4所示,飞船在飞行中是无动力飞行,只受到地球的万有引力作用,在飞船从轨道的A 点沿箭头方向运行到B 点的过程中,有以下说法:①飞船的速度逐渐增大 ②飞船的速度逐渐减小 ③飞船的机械能守恒④飞船的机械能逐渐增大。
上述说法中正确的是( )A .①③B .①④C .②③D .②④ 5、发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图20所示。
高一物理天体运动测试题

高一物理天体运动测试题一.选择题1. 人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小,在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动;当它在较大的轨道半径r 1上时运行线速度为v 1,周期为T 1,后来在较小的轨道半径r 2上时运行线速度为v 2,周期为T 2,则它们的关系是A .v 1﹤v 2,T 1﹤T 2B .v 1﹥v 2,T 1﹥T 2C .v 1﹤v 2,T 1﹥T 2D .v 1﹥v 2,T 1﹤T 22. 两个质量均为M 的星体,其连线的垂直平分线为AB;O 为两星体连线的中点,如图,一个质量为M 的物体从O 沿OA 方向运动,则它受到的万有引力大小变化情况是A.一直增大B.一直减小C.先减小,后增大D.先增大,后减小3. 土星外层上有一个土星环,为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v 与该层到土星中心的距离R 之间的关系来判断 ① 若v R ∝,则该层是土星的一部分 ②2v R ∝,则该层是土星的卫星群.②③若1v R ∝,则该层是土星的一部分 ④若21v R∝,则该层是土星的卫星群.以上说法正确的是A. ①②B. ①④C. ②③D. ②④4. 假如地球自转速度增大,关于物体重力的下列说法中不正确的是 A 放在赤道地面上的物体的万有引力不变 B.放在两极地面上的物体的重力不变 C 赤道上的物体重力减小 D 放在两极地面上的物体的重力增大5.在太阳黑子的活动期,地球大气受太阳风的影响而扩张,这样使一些在大气层外绕地球飞行的太空垃圾被大气包围,而开始下落;大部分垃圾在落地前烧成灰烬,但体积较大的则会落到地面上给我们造成威胁和危害.那么太空垃圾下落的原因是A .大气的扩张使垃圾受到的万有引力增大而导致的B .太空垃圾在燃烧过程中质量不断减小,根据牛顿第二定律,向心加速度就会不断增大,所以垃圾落向地面C .太空垃圾在大气阻力的作用下速度减小,那么它做圆运动所需的向心力就小于实际受到的万有引力,因此过大的万有引力将垃圾拉向了地面D .太空垃圾上表面受到的大气压力大于下表面受到的大气压力,所以是大气的力量将它推向地面的6.用 m 表示地球通讯卫星同步卫星的质量,h 表示它离地面的高度,R 表示地球的半径,g 表示地球表面处的重力加速度,ω表示地球自转的角速度,则通讯卫星所受万有引力的大小为A.等于零B.等于22()R g mR h + C.等于342ωg R m D.以上结果都不正确7. 关于第一宇宙速度,下列说法不正确的是A 第一宇宙速度是发射人造地球卫星的最小速度B .第一宇宙速度是人造地球卫星环绕运行的最大速度C .第一宇宙速度是地球同步卫星环绕运行的速度D .地球的第一宇宙速度由地球的质量和半径决定的8.如图5-1所示,以s 的水平速度v 0抛出的物体,飞行一段时间后垂直地撞在倾角为θ=30°的斜面上,可知物体完成这段飞行的时间是 A .s 33 B .s 332 C .3 s D .2s9、某人造地球卫星绕地球做匀速圆周运动,假如它的轨道半径增加到原来的n 倍后,仍能够绕地球做匀速圆周运动,则A .根据r vω=,可知卫星运动的线速度将增大到原来的n 倍;B .根据rmv F 2=,可知卫星受到的向心力将减小到原来的n1倍;C .根据2r GMm F =,可知地球给卫星提供的向心力将减小到原来的21n 倍;D .根据rmv rGMm 22,可知卫星运动的线速度将减小到原来的n1倍;10、设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度之比为k 均不计空气阻力,且已知地球和该天体的半径之比也为k,则地球质量与天体的质量之比为 A. 1 B. K C. K 2D. 1/K11.假设在质量与地球质量相同,半径为地球半径两倍的天体上进行运动比赛,那么与在地球上的比赛成绩相比,下列说法正确的是A .跳高运动员的成绩会更好B .用弹簧秤称体重时,体重数值变得更大C .从相同高度由静止降落的棒球落地的时间会更短些D .用手投出的篮球,水平方向的分速度变化更慢 12.在地球大气层外有很多太空垃圾绕地球做匀速圆周运动,每到太阳活动期,由于受太阳的影响,地球大气层的厚度开始增加,使得部分垃圾进入大气层.开始做靠近地球的近心运动,产生这一结果的初始原因是 A .由于太空垃圾受到地球引力减小而导致做近心运动 B .由于太空垃圾受到地球引力增大而导致做近心运动 C .由于太空垃圾受到空气阻力而导致做近心运动D .地球引力提供了太空垃圾做匀速圆周运动所需的向心力,故产生向心运动的结果与空气阻力无关13.西昌卫星发射中心的火箭发射架上,有一待发射的卫星,它随地球自转的线速度为v 1、加速度为a 1;发射升空后在近地轨道上做匀速圆周运动,线速度为v 2、加速度为a 2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v 3、加速度为a 3;则v 1、v 2、v 3的大小关系和a 1、a 2、a 3的大小关系是A .v 2>v 3>v 1;a 2<a 3<a 1B .v 2>v 3< v 1;a 2>a 3>a 1C .v 2>v 3>v 1;a 2>a 3>a 1D .v 3> v 2>v 1;a 2>a 3>a 1年1月发射的“月球勘探者”空间探测器,运用最新科技手段对月球进行近距离勘探,在月球重力分布,磁场分布及元素测定等方面取得了新成果,探测器在一些环形山中发现了质量密集区,当飞到这些质量密集区时,通过地面的大口径射电望远镜观察,“月球勘探者”的轨道参数发生了微小变化,这些变化是 A .半径变小 B.半径变大 C.速率变小 D.速率变大15.一质量为m 的物体,沿半径为R 的向下凹的圆形轨道滑行,如图所示,经过最低点的速度为v,物体与轨道之间的动摩檫因数为μ,则它在最低点时受到的摩檫力为 A .μmg B .μmv 2/R C .μmg+v 2/R D .μmg-v 2/R二.填空题16题6分,17题4分,18题4分16. 1957年10月4日,前苏联发射了世界上第一颗人造地球卫星以来,人类活动范围从陆地、海洋、大气层扩展到宇宙空间,宇宙空间成为人类的第四疆域,人类发展空间技术的最终目的是开发太空资源.1宇航员在围绕地球做匀速圆周运动的航天飞机中,会处于完全失重的状态,下列说法正确的是 A. 宇航员仍受重力作用 B. 宇航员受力平衡C.重力正好为向心力D. 宇航员不受任何力的作用2宇宙飞船要与空间站对接,飞创为了追上空间站 A.只能从较低轨道上加速 B.只能从较高轨道上加速 C. 只能从空间站同一高度上加速 D.无论在什么轨道上,只要加速都行3.已知空间站周期为T ,地面重力加速度约为g ,地球半径为R.由此可计算出国际空间站离地面的高度为________ 17.了充分利用地球自转的速度,人造卫星发射时,火箭都是从 向_______ 填东、南、西、北发射;考虑这个因素,火箭发射场应建在纬度较 填高或低的地方较好; .18.侦察卫星在通过地球两极上空的圆轨道上运动,它的运动轨道距地面高度为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是________.设地球的半径为R ,地面处的重力加速度为g ,地球自转的周期为T . 三.计算题20、9分已知地球半径为R,地球表面的重力加速度为g,地球自转的周期为T,试求地球同步卫星的向心加速度大小; 21、10分晴天晚上,人能看见卫星的条件是卫星被太阳照着且在人的视野之内;一个可看成漫反射体的人造地球卫星的圆形轨道与赤道共面,卫星自西向东运动;春分期间太阳垂直射向赤道,赤道上某处的人在日落后8小时时在西边的地平线附近恰能看到它,之后极快地变暗而看不到了;已知地球的半径m104.6R 6⨯=地,地面上的重力加速度为2s /m 10,估算:答案要求精确到两位有效数字1卫星轨道离地面的高度; 2卫星的速度22. 10分发射地球同步卫星时,可认为先将卫星发射至距地面高度为h 1的圆形轨道上,在卫星经过A 点时点火喷气发动机工作实施变轨进入椭圆轨道,椭圆轨道的近地点为A ,远地点为B .在卫星沿椭圆轨道运动经过B 点再次点火实施变轨,将卫星送入同步轨道远地点B 在同步轨道上,如图所示.两次点火过程都使卫星沿切线方向加速,并且点火时间很短.已知同步卫星的运动周期为T ,地球的半径为R ,地球表面重力加速度为g ,求: ⑴卫星在近地圆形轨道运行接近A 点时的加速度大小; ⑵卫星同步轨道距地面的高度.23. 12分现代观测表明,由于引力的作用,恒星有“聚焦”的特点,众多的恒星组成不同层次的恒星系统,最简单的恒星系统是两颗互相绕转的双星.它们以两者连线上的某点为圆心做匀速圆周运动,这样就不至于由于万有引力的作用而吸引在一起.设某双星中A 、B 两星的质量分别为 m 和 3m,两星间距为L,在相互间万有引力的作用下,绕它们连线上的某点O 转动,则O 点距B 星的距离是多大它们运动的周期为多少24 10分.宇宙中某星体每隔×10-4s 就向地球发出一次电磁波脉冲.有人曾经乐观地认为,这是外星人向我们地球人发出的联络信号,而天文学家否定了这种观点,认为该星体上有一个能连续发出电磁波的发射源,由于星体围绕自转轴高速旋转,才使得地球上接收到的电磁波是不连续的.试估算该星体的最小密度.结果保留两位有效数字 注:星体的最小密度是保持星体表面物体不脱离星体2510分.已知物体从地球上的逃逸速度第二宇宙速度v 2=R Gm 2,其中G 、m 、R 分别是引力常量、地球的质量和半径;已知G =×10-11N ·m 2/kg 2,c =×108m/s;求下列问题:1逃逸速度大于真空中光速的天体叫作黑洞,设某黑洞的质量等于太阳的质量m =×1030kg,求它的可能最大半径;2在目前天文观测范围内,物质的平均密度为10-27kg/m 3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c ,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大 参考答案C DBAC CBC C B CD CACCAD AD161A 、C ;宇航员仍受重力作用,此力提供宇航员做圆周运动的向心力;2A,当卫星在其轨道上加速时,F 引小于向心力,故要做离心运动,从而使半径增大;3万有引力提供向心力有:2222Mm G m r r T π⎛⎫= ⎪⎝⎭2g Mm G m R =其中r =R+h 由上述三式可求得2232gT h=4Rπ17. 西、 东、低;在纬度较低的地方地球自转的线速度较大18.侦察卫星绕地球做匀速圆周运动的周期设为T 1,则 21224T rm r GMm π= ①地面处的重力加速度为g ,则B 同步轨道地球 A20R GMm =m 0g ②由上述两式得到卫星的周期T 1=gr R32π其中r =h+R,地球自转的周期为T ,在卫星绕行一周时,地球自转转过的角度为θ=2πTT 1,摄像机应拍摄赤道圆周的弧长为s =Rθ 得s =gR h T 32)(4+π20.21解:从北极沿地轴往下看的地球俯视图如图所示,设卫星离地高h,Q 点日落后8小时时能看到它反射的阳光;日落8小时Q 点转过的角度设为θ1︒=︒⨯=θ120360248轨道高地地R 2cos Rh -θ=m104.6160cos 1104.666⨯=-︒⨯⨯=)(2因为卫星轨道半径地R 2h r r =+=根据万有引力定律,引力与距离的平方成反比卫星轨道处的重力加速度2r s /m 5.2g 41g ==地r 'g v =s /m 107.5104.625.236⨯=⨯⨯⨯=s/m 106.53⨯同样给分22.⑴()g h R R a A212+=⑵R T gR h -=322224π23.解:设O 点距B 星的距离为x ,双星运动的周期为T,由万有引力提供向心力.对于B 星:G 错误!= 3mx 错误!2对于A 星:G 错误!= mL-x 错误!2∴ 错误!= 3 即 x = 错误!L∴ T =πL 错误! 3分24.解:接收电磁波脉冲的间隔时间即是该星体自转的最大周期 星体表面物体不脱离星体时满足:G 错误! = mR 错误!2 而M =错误!πR 3ρ ∴ρ= 错误! 代入已知数据得:ρ=×1017kg/m 325.1任何天体均存在其所对应的逃逸速度v 2=RGm2,其中m 、R 为天体的质量和半径;黑洞,其逃逸速度大于真空中的光速 ,即v 2>c ,R <22c Gm =283011)109979.2(1098.11067.62⨯⨯⨯⨯⨯-m =×103m,即质量为×1030kg 的黑洞的最大半径为×103m.2把宇宙视为普通天体,则其质量m =ρ·V =ρ·34πR 3------①其中R 为宇宙的半径,ρ为宇宙的密度,则宇宙的逃逸速度为v 2=RGm2------②由于宇宙密度使得其逃逸速度大于光速c ,即v 2>c-------③则由以上三式可得R =×1026m,合×1010光年;即宇宙的最小半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高度为h,要使卫星在一天的时间内将地面上赤道各处在日照条件下的全部情况全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球半径为R,地面重力加速度为g,地球自转的周期为T.
2、电视转播用的“地球同步卫星”的轨道高度为h,转动周期为T0;卫星定位系统用的某“移动卫星”沿通过地球的南北两极的圆形轨道运行,离地面高度为H,地球半径为R0 .⑴该移动卫星连续两次通过地球北极点上空的时间间隔是多少?⑵该移动卫星某时刻恰位于经度为0度的赤道上空,那么它下一次通过赤道上空时,下方地面的经度是多少?
3、要使一颗人造地球通讯卫星(同步卫星)能覆盖赤道上东经75.0°到东经135.0°之间的区域,则卫星应定位在哪个经度范围内的上空?地球半径R= 6.37×106m.地球表面处的重力加速度g = 9. 80m/s2.
4、地球质量为M,半径为R,自转角速度为ω,万有引力恒量为G,如果规定物体在离地球无穷远处势能为0,则质量为m的物体离地心距离为r时,具有的万有引力势能可表示为.可供航天员居住与进行科学实验的空间航天站离地面高度为h,若在该空间站上直接发射一颗质量为m的小卫星,使其能到达地球同步轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能?。