医学统计学t检验和方差分析

合集下载

医学统计学 -第08章 方差分析

医学统计学  -第08章  方差分析

第一节 方差分析的基本思想
看一个例子
例8-1 为研究钙离子对体重的影响作用,某研究者将36 只肥胖模型大白鼠随机分为三组,每组12只,分别给 予高脂正常剂量钙(0.5%)、高脂高剂量钙(1.0%)和高 脂高剂量钙(1.5%)三种不同的饲料,喂养9周,测其 喂养前后体重的差值。问三组不同喂养方式下大白鼠 体重改变是否不同?
• 三种喂养方式体重改变的平均值各不相同,这种变异 称为组间变异

是组内均值
X
与总均值
i
X
之差的平方和
360
340
组间变异反映了:
320
三种喂养方式的差异(影响), 300
同时也包含了随机误差。
280
260
240
k ni
220
SS组间
(Xi X )2
200
i1 j
180
X甲
X
X乙
X丙



3、组内变异(SS组内,variation within groups)
0.05
2、根据公式计算SS、MS及F值,列于方差分析表内(计 算过程省略)
变异来源 总变异 组间 组内(误差)
完全随机设计的方差分析表
平方和 SS 自由度
均方MS
47758.32
35
31291.67
2
15645.83
16466.65
33
498.99
F值
31.36
3、确定P值,作出判断
分子自由度=k-1=2,分母自由度=n-k=33,查F 界值表(方差分析用)
表 8-1 三种不同喂养方式下大白鼠体重喂养前后差值(g)
正常钙(0.5%) 高剂量钙(1.0%) 高剂量钙(1.5%)

医学统计学八种检验方法

医学统计学八种检验方法

医学统计学八种检验方法医学统计学是医学研究中一个重要的分支,它通过对医学数据进行收集、整理和分析,以帮助医学研究者得出准确可靠的结论。

而在医学统计学中,检验方法是评价医学研究数据是否具有统计意义的一种重要工具。

下面将介绍医学统计学中常用的八种检验方法。

1.正态性检验:正态性检验是用来检验数据是否符合正态分布的统计性质。

常见的正态性检验方法有Shapiro-Wilk检验和Kolmogorov-Smirnov检验。

2.两独立样本t检验:该方法用于检验两个不相互依赖的样本均值之间是否存在差异。

适用于连续变量的比较,例如治疗前后的体重变化。

3.配对样本t检验:配对样本t检验适用于对同一组研究对象在不同时间或不同条件下进行比较。

如药物治疗前后患者的血压比较。

4.卡方检验:卡方检验是用来检验分类变量之间是否存在关联性的方法。

适用于分组数据的比较,例如男女性别与健康状况之间的关系。

5.方差分析:方差分析是用来检验多个组之间是否存在显著差异的方法。

适用于分析多个因素对结果的影响,如不同年龄组对某种疾病发生率的影响。

6.生存分析:生存分析用于研究事件发生时间和随时间而变化的危险率。

适用于研究患者生存期、疾病复发时间等,常见的分析方法有Kaplan-Meier曲线和Cox比例风险模型。

7.相关分析:相关分析用于研究两个连续变量之间的关系。

常见的相关分析方法包括皮尔逊相关系数和Spearman等级相关系数。

8.回归分析:回归分析用于研究一个或多个自变量对因变量的影响程度和方向的方法。

适用于分析影响因素较多的情况,如探讨年龄、性别、病情等因素对治疗效果的影响。

以上八种检验方法在医学统计学中被广泛运用,每种方法都有其适用的场景和注意事项。

在进行医学研究时,选择合适的检验方法能够提高研究结果的可靠性,从而为临床实践和医学决策提供准确依据。

因此,熟练掌握这些统计方法是每个医学研究者必备的基本技能。

医学统计学-8-方差分析

医学统计学-8-方差分析

第二节 单因素方差分析
单因素方差分析
单因素方差分析:研究的是一个处理因素的 不同水平间效应的差别。
处 理 因 素
水平1 水平2 水平1 水平2 水平c
单因素方差分析
例1、某地用A、B和C三种方案治疗血红蛋 白含量不满10g的婴幼儿贫血患者,A方案 为每公斤体重每天口服2.5%硫酸亚铁1ml, B方案为每公斤体重每天口服2.5%硫酸亚 铁0.5ml,C方案为每公斤体重每天口服3g 鸡肝粉,治疗一月后,记录下每名受试者血 红蛋白的上升克数,资料见下表,问三种治 疗方案对婴幼儿贫血的疗效是否相同?
A、B、C三种方案治疗婴幼儿贫血的疗效观察表
治疗方案 A n=20
血红蛋白增加量(g) 1.8 1.4 0.5 1.2 2.3 2.3 3.7 0.7 2.4 0.5 2.0 1.4 1.5 1.7 2.7 3.0 1.1 3.2 0.9 2.5
B
n=19
0.2
0.0 2.1 -0.7
0.5
1.6 1.9 1.3
q XA XB


MSe 1 1 2 nA nB
ν=νe
一、q检验
例、在前面对某地用A、B和C三种方案治疗 血红蛋白含量不满10g的婴幼儿贫血患者的 例题(完全随机设计方差分析例1)进行了 方差分析,我们得出三组总体不等的结论。 究竟哪些总体均数之间存在着差别,我们需 要在前方差分析基础之上,再对该资料作两 两比较的q检验。
随机因素是无法避免的,而实质性差异是我们 需要得到的。 如何排除随机因素的干扰,利用样本信息对总 体均数间是否存在差异作出推断?
方差分析的基本思想
按照设计类型将总变异分解为处理因素引 起的变异和随机因素造成的变异; 以处理因素变异与随机因素变异之比来构 造检验统计量F。

医学统计学知识点

医学统计学知识点

1.一般来说,两均数比较用t检验,而两个以上均数的比较就必须用方差分析了。

t检验的应用条件:当样本含量n较小时(如n< 50=,理论上要求样本取自正态总体,两小样本均数比较时还要求两样本总体方差相等。

但在实际应用时,与上述条件略有偏离,只要其分布为单峰近似对称分布,则对结果亦影响不大。

u检验的应用条件:样本含量n较大,一般要求n>50。

其实,u检验和t检验都属同类,其方法步骤也基本相同,不同的地方仅在于确定P值时界值的选择。

2.两均数比较可选用t检验,(当样本含量较大,如n>100时可用u检验);两样本方差比较可选用F检验、率的比较可选用u检验或x2检验。

3.完全随机设计是分别从两个研究总体中随机抽取样本,对这两个样本均数进行比较,以推断它们所代表的总体是否一致。

4.t检验的基本步骤:①建立假设:H0、H1②确定检验水准:α=0.05③计算统计量t:根据不同的资料选用相应的计算公式④查t值表,确定P值:t ≥ tα,υP≤αt ≤ tα,υP≥α⑤统计推断结论P>0.05,接受H0,差别无显著意义;0.01<P≤0.05,拒绝H0,接受H1,差别有显著意义;P≤0.01 拒绝H0,接受H1,差别有非常显著意义。

5.t检验的注意事项①资料必须有可比性;②必须是计量资料;③资料必须呈正态或近似正态分布;④要根据不同的资料类型选用不同的计算公式;要正确理解统计结论的含义。

方差分析一、方差分析的用途及应用条件(一)用途1、检验两个或多个样本均数间的差异有无统计学意义;2、回归方程的线性假设检验;3、检验两个或多个因素间有无交互作用。

(二)应用条件1、各个样本是相互独立的随机样本;2、各个样本来自正态总体;3、各个处理组(样本)的总体方差方差相等,即方差齐。

二、 方差分析的基本思想 (一)方差分析中变异的分解此类资料的变异,可以分出三种:1、总变异:表现为所有数据大小不等,用总的离均差平方和表示,记为SS 总。

卫生统计学专题八:t检验

卫生统计学专题八:t检验

专题八 t 检验⒈t 检验基础t 检验是一种以t 分布为基础,以t 值为检验统计量资料的假设检验方法。

⑴t 检验的基本思想:假设在H 0成立的条件下做随机抽样,按照t 分布的规律得现有样本统计量t 值的概率为P ,将P 值与事先设定的检验水准进行比较,判断是否拒绝H 0。

⑵t 检验的应用条件:①样本含量较少(n <50);②样本来自正态总体(两样本均数比较时还要求两样本的总体方差相等,即方差齐性)。

【注】实际应用时,与上述条件略有偏离,只要其分布为单峰近似对称分布,对结果影响不大。

⑶t 检验的主要应用:①单个样本均数与总体均数的比较;②配对设计资料的差值均数与总体均数0的比较;③成组设计的两样本均数差异的比较。

⑷单样本t 检验基本公式:t=x0s x μ-=nsx 0μ- υ=n-1⒉z 检验z 分布(标准正态分布)是t 分布的特例,当样本n ≥50或者总体σ已知时用z 检验。

⑴单样本z 检验基本公式:z=nsx 0μ- 或 z=nx 0σμ-⑵单样本z 检验的步骤与单样本t 检验的基本相似。

⒊配对设计均数的比较 配对设计是为了控制某些非处理因素对实验结果的影响而采用的设计方式,应用配对设计可以减少实验误差和个体差异对结果的影响,提高统计处理的效率。

⑴配对设计的主要四种情况:①配对的两受试对象分别接受两种处理,如在动物实验中,常先将动物按照窝别、体重等配对成若干对,同一对的两受试对象随机分配到实验组和对照组,然后观察比较两组的实验结果。

②同一样品用两种不同方法测量同一指标或接受不同处理。

③自身对比,即将同一受试对象(实验或治疗)前后的结果进行比较。

④同一对象的两个部位给予不同处理。

⑵对配对资料的分析:一般用配对t 检验,其检验假设为:差值的总体均数为0即μd =0。

计算统计量的公式为:t=ns 0d d-,υ=n-1式中d 为差值的均数;s d 为差值的标准差;n 为对子数。

⑶关于自身对照(同体比较)的t 检验:①在医学研究中,我们常常对同一批患者治疗前后的某些生理、生化指标进行测量以观察疗效,对于这些资料可以按照配对t 检验。

《医学统计学》完整课件完整版

《医学统计学》完整课件完整版

《医学统计学》完整课件完整版一、教学内容本节课的教学内容来自于《医学统计学》的第五章,主要内容包括:t检验、方差分析、秩和检验。

二、教学目标1. 使学生了解并掌握t检验、方差分析、秩和检验的基本原理和应用。

2. 培养学生运用医学统计学方法分析和解决实际问题的能力。

3. 帮助学生建立正确的统计学思维方式,提高科学研究素养。

三、教学难点与重点1. 教学难点:t检验、方差分析、秩和检验的计算方法和应用。

2. 教学重点:t检验、方差分析、秩和检验的基本原理和操作步骤。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:教材、笔记本、计算器。

五、教学过程1. 实践情景引入:以一项临床试验为例,介绍t检验在医学研究中的应用。

2. t检验:(1)讲解t检验的基本原理和适用条件。

(2)演示t检验的计算过程,并列举实例进行分析。

(3)引导学生通过教材示例,自行完成t检验的计算和分析。

3. 方差分析:(1)介绍方差分析的基本原理和适用条件。

(2)演示方差分析的计算过程,并列举实例进行分析。

(3)引导学生通过教材示例,自行完成方差分析的计算和分析。

4. 秩和检验:(1)讲解秩和检验的基本原理和适用条件。

(2)演示秩和检验的计算过程,并列举实例进行分析。

(3)引导学生通过教材示例,自行完成秩和检验的计算和分析。

六、板书设计板书内容主要包括t检验、方差分析、秩和检验的基本原理、适用条件、计算方法和实例分析。

七、作业设计1. 题目:某临床试验中,研究者比较了两种药物的治疗效果,随机抽取了60名患者,分别给予甲药和乙药治疗,疗程为4周。

治疗结束后,对患者的疗效进行了评价。

假设评价结果如下:甲药组:痊愈20人,显效15人,有效10人,无效5人。

乙药组:痊愈18人,显效12人,有效8人,无效12人。

请运用t检验分析两种药物的治疗效果是否存在显著性差异。

答案:(略)2. 题目:某研究者对某疾病的治疗方法进行了临床试验,随机抽取了80名患者,分别给予甲法和乙法治疗,疗程为6个月。

医学统计学 方差分析

医学统计学 方差分析

100.66
110.31
4
367.60
5
80.57
97.90
115.76
103.56
4
397.79
6
102.77
81.20
90.30
138.54
4
412.81
ni
6
6
6
6
24( n )
Xi
550.01
537.30
618.19
726.28
2431.78( X )
Xi
91.67
89.55
103.03
2 =32 得: F0.05(2,32) 3.30, F0.01(2,32) 5.34 ,P<0.01。按 =0.05 水准,拒绝 H0 ,
差别有统计学意义,可以认为喂养三种不同饲料的大鼠红细胞数的总体均数不 全相同。
随机区组设计的两因素方差分析
例9.2 利用随机区组设计研究不同温
度对家兔血糖浓度的影响,某研究者进行 了如下实验:将 24只家兔按窝别配成6个 区组, 每组 4 只, 分别随机分配到温度 15℃、 20℃、 25℃、 30℃的4个处理组 中,测量家兔的血糖浓度值(mmol/L),结 果如下表9.4所示,分析4种温度下测量家 兔的血糖浓度值是否不同?
23
3742.5521
3
1247.5174 8.2717
1491.2744
5
298.2549 1.9776
2262.2511
15
150.8167
P
<0.01 >0.05
3. 确定 P 值,作出统计推断
根据处理组 F 值的分子的自由度处理 ,分母的自由度 误差 ;区组 F 值的分子的 自由度区组 ,分母的自由度 误差 查 F 界值表(附表 4),得到处理组和区组的 P 值。 根据表 9.6,按 =0.05 水准,对于不同区组间,不拒绝 H0 ,尚不能认为不同窝 别家兔血糖浓度值不同;对于不同处理组间,拒绝 H0 ,接受 H1 ,差异具有统 计学意义,可以认为 4 种温度下家兔血糖浓度值不全相同,即处理组 4 个总体 均数中至少有 2 个不同。

t检验、u检验、卡方检验、F检验、方差分析

t检验、u检验、卡方检验、F检验、方差分析

统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。

单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。

配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。

u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。

当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。

当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。

F检验又叫方差齐性检验。

在两样本t检验中要用到F检验。

从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。

若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。

其中要判断两总体方差是否相等,就可以用F检验。

简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。

在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。

卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。

方差分析用方差分析比较多个样本均数,可有效地控制第一类错误。

方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。

其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。

我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
患 者
1
2
3
150
4
140
5
90
6
120
7
100
8
100
9
90
10 11
125 119
150 125
表1 10名高血压病人治疗前后的舒张压(mmHg)
1
2
3
4
5678910病例 编号
治疗 前 治疗 后 117 127 141 107 110 114 115 138 127 122 123 108 120 107 100 98 102 152 104 107
例:11例克山病人的血磷测定值(mg%)如表4-8所示, 问克山病人的血磷是否高于健康人的血磷值112mg%? 克山病人的血磷测定值(mg%)
58
45 56 48 49 63
57
49 52 47 46 60
7
8 9
55
49 41
54
52 46
17
18 19
34
38 46
39
38 42
10
38
42
20
44
40
例 用某种药物治疗10名高血压病人,对每一例病 人治疗前、后的舒张压(mmHg)进行了测量,结 果见(表4-6),问该种药物是否有降压效果?
t检验与方差分析
5 December 2007
2.某医院病理科研究人体两肾的重量, 20例男性尸 解时的左、右肾的称重记录见表4-7,问左、右肾重 量有无不同?
编号 1 2 3 4 5 6 左肾 右肾 编号 11 12 13 14 15 16 左肾 56 54 58 59 46 49 右肾 52 50 54 50 42 47
相关文档
最新文档