人教版高中数学必修第一册对数函数的定义教案
4.4对数函数-人教A版高中数学必修第一册(2019版)教案

4.4 对数函数-人教A版高中数学必修第一册(2019版)教案教学目标1.了解对数函数的定义与性质;2.掌握对数函数与指数函数的互逆关系;3.掌握对数函数的常用计算方法;4.能够运用对数函数解决实际问题。
教学重点1.对数函数与指数函数的互逆关系;2.对数函数的计算方法;3.运用对数函数解决实际问题。
教学难点1.运用对数函数解决实际问题。
教学过程导入环节1.老师介绍对数函数的概念,引入大家对对数函数的初步认识;2.引导学生思考指数函数与对数函数的关系。
讲解环节1.带领学生探究对数函数的定义与性质;2.利用白板和课件展示对数函数与指数函数的互逆关系;3.讲解对数函数的计算方法。
拓展训练1.练习题。
课堂上对对数函数的计算方法进行拓展训练;2.实际问题运用。
引导学生解决一些实际问题,如:瓶子里有几颗芝麻?数颗芝麻太麻烦,现在我把这些芝麻放在一个桶里,顺手拧了几下,芝麻就乱了,这时候你就不得不手动数了,如果用各种技巧将芝麻分成若干堆,让每堆的芝麻颗数尽量相等,这时就需要运用对数函数了。
教学方式1.讲授和讲解相结合;2.以教师讲解引导为主,学生自主思考为辅助;3.在讲解中引导学生进行课堂练习和实际问题讨论。
教学措施1.制定教案,并准备好教学资料及课件;2.定时提问,引导学生思考;3.给予课堂练习和讨论的机会。
教学效果评估1.课堂发言的积极性及准确性;2.课堂练习的完成情况;3.讨论的理解度和深度;4.在实际问题中应用对数函数解决问题的能力。
教学反思本节课的设计在引导学生对对数函数的认识上有一定效果,但是在实际问题应用中学生的思考深度不够,需要引导学生多思考。
在下一节课中需对实际问题运用进行更多的训练和引导。
高中数学对数函数备课教案

高中数学对数函数备课教案备课内容:对数函数
教学目标:
1. 了解对数函数的定义和性质;
2. 掌握对数函数的图像特点和变化规律;
3. 能够解决对数函数的相关题目。
教学重点:
1. 对数函数的定义和性质;
2. 对数函数的图像特点和变化规律。
教学难点:
1. 对数函数与指数函数之间的关系;
2. 解决对数函数相关题目的方法。
教学准备:
1. 教学课件;
2. 教辅书籍;
3. 黑板、粉笔;
4. 试题集。
教学步骤:
一、导入(5分钟)
1. 上课前,与学生讨论指数函数的相关知识;
2. 引入对数函数的概念,并与指数函数进行比较。
二、讲解(15分钟)
1. 讲解对数函数的定义和性质;
2. 展示对数函数的图像特点和变化规律;
3. 指导学生如何分析对数函数的性质和变化规律。
三、练习(15分钟)
1. 让学生通过计算和作图来练习对数函数相关题目;
2. 纠正学生的错误,并解释正确的解题方法。
四、总结(5分钟)
1. 总结对数函数的重要性及与指数函数的关系;
2. 强调对数函数在实际问题中的应用。
五、作业布置(5分钟)
1. 布置对数函数相关的作业;
2. 可根据学生的不同水平布置不同难度的题目。
教学反思:
在备课过程中,要充分理解对数函数的概念及其性质,并通过实际例题进行讲解,让学生
理解对数函数的图像特点和变化规律。
同时,要设计合理的练习题目,帮助学生巩固所学
知识,提高解题能力。
在教学过程中,要及时发现学生的问题并加以解决,确保教学效果。
4.3.1 对数的概念(教案) 高中数学人教A版(2019)必修第一册

第四章 指数函数与对数函数4.3对数4.3.1 对数的概念教学设计一、教学目标1.理解对数的概念,了解对数运算与指数运算的互逆关系,及常用对数和自然对数2.掌握对数式和指数式的互化.3.通过指数与对数的互化培养学生的逆向思维.二、教学重难点教学重点对数的概念及其性质.教学难点对数式和指数式的互化.三、教学过程(一)探索新知探究一:对数的概念一般地,如果(>0,1)x a N a a =≠且,那么数x 叫作以a 为底N 的对数,记作log a x N =,其中a 叫作对数的底数,N 叫作真数.如果24416,2=log 16=则,读作:2是以4为底16的对数.举例并说出“谁是以谁为底谁的对数”. 例:12414=2=log 22,则,读作:12是以4为底2的对数. 探究二:对数式与指数式的互化在对数的概念中,要注意:(1)底数的限制:>0,1a a ≠且.(2)log x a a N N x =⇔=.指数式⇔对数式幂底数a ←→对数底数指数x ←→对数幂N ←→真数对数式:log a N 可以看作一记号,表示底为a (>0,1)a a ≠且,幂为N 的指数式的指数,也表示方程(>0,1)x a N a a =≠且的解,它也可以看作一种运算,即已知底为a (>0,1)a a ≠且, 幂为N,求幂指数的运算.对数运算是指数运算的逆运算. 探究三:对数的性质对于对数函数来说,有两类对数形式要特别注意,(1)以10为底的对数叫作常用对数,并把10log lg N N 记为;(2)以无理数e 2.71828≈为底的对数叫作自然对数,并把log ln e N N 记为.以后解题时,在没有指出对数的底的情况下,都是常用对数,如100的对数等于2,即lg1002=.(三)课堂练习1.已知幂函数()y f x =的图象过点(4,2),则3log (3)f 的值为( )答案:C2.已知2a m =,14b n ⎛⎫=⎪⎝⎭,则a b +=( )A.22log m nB.2logC.2logD.22log mn 答案:B解析:本题考查指数与对数的转换及对数运算的性质.212222241log log log log log log log 2a b m n m n m +=+=-=+=. 3.下列指数式与对数式互化不正确的一组是( )A.0e 1=与ln10=B.3log 92=与1293=C.13182-=与811log 23=-D.7log 71=与177=答案:B 解析:3log 92=化为指数式为239=,故选B.4.设0.120.21a =,0.210.12b =,0.21log 0.12c =,则( )A.a b c >>B.c b a >>C.b a c >>D.c a b >>答案:D解析:由0.210.120.1200.120.120.210.21=1<<<,0.210.21log 0.12log 0.211>=,可得c a b >>,故选D. 四、小结作业小结:本节课我们主要学习了哪些内容?1.对数的定义及其记法;2.对数式和指数式的关系;3.对数的性质;4.自然对数和常用对数的概念.五、板书设计4.3.1 对数的概念1.对数的定义及其记法;2.对数式和指数式的关系;3.对数的性质;4.自然对数和常用对数的概念.。
高中数学对数函数概念教案

高中数学对数函数概念教案
一、教学目标:
1.了解对数的基本概念和性质;
2.掌握对数函数的定义及其性质;
3.能够运用对数函数解决相关问题。
二、教学内容:
1.对数的概念和定义;
2.对数函数的性质和图像;
3.对数函数的应用实例。
三、教学重点与难点:
1.掌握对数函数的定义和性质;
2.理解对数函数的图像和变化规律。
四、教学方法:
1.教师讲授相结合的方法;
2.示例分析、讨论交流的方法;
3.练习与实践结合的方法。
五、教学过程:
1.导入:通过一个生活中的实例引入对数的概念,引起学生对对数的兴趣;
2.讲解:介绍对数的定义和性质,引导学生理解对数函数的概念;
3.示例:通过具体的例题演示对数函数的计算和图像,让学生掌握对数函数的运用方法;
4.练习:让学生进行相关的练习,巩固对数函数的理解和应用;
5.总结:对本节课所学内容进行总结,强化对数函数的概念。
六、教学反思:
本节课对于对数函数概念的教学,需要结合具体案例进行讲解,引导学生理解对数函数的定义和性质。
同时,通过练习和实践加深学生对对数函数的理解和掌握。
在教学中要注重培养学生的数学思维和解决问题的能力,让学生在实际应用中灵活运用对数函数。
高一数学对数函数教案5篇

高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。
新人教版高中数学必修一教案:第4节 对数函数

2.5对数函数及其性质【知识要点】2.反函数(回忆反函数的定义,如何求反函数)3. 对数函数的定义域(回忆求定义域的方法,对照对数函数的性质求对数函数定义域)4. 对数函数的值域(对照函数值域求法求解对数函数的值域)5. 对数函数的单调性及应用(回忆单调性的定义与证明,如何求解)6. 对数函数的综合应用【知识应用】1.方法:在解题时,要会结合函数图象解题,注意底数a 的取值范围。
当a 大于1时,函数是单调增,当a 小于1时,函数是单调减,并且恒过点(1,0),由此画出函数图象。
【J 】例1 集合A={y ∈R|y=lgx,x>1},B={-2,-1,1,2},则下列结论中正确的是( )A. A ⋂B={-2,-1}B. (R C A )⋃B=(-∞,0)C. A ⋃B=(0,+∞)D. (R C A )⋂B={-2,-1}【L 】例2 以下四个数中的最大者是( )A 2ln 2() B ln (ln2) C D ln2【C 】例3 已知1<x<10,试比较2(lg )x 、2lg x lg (lgx )的大小。
2. 方法:(1)由反函数定义可知,原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。
因此,求反函数时,首先都要对原函数的定义域和值域进行研究,对于分段函数的反函数,应先分别求出每一段函数的反函数,再将它综合成一个函数即可。
(2)反函数的求法:a..由y=f(x)解出x b.把x 与y 的位置互换 c.写出解析式的定义域(注意:并不是每个函数都有反函数,有些函数没有反函数,如y=2x ;一般来说,单调函数有反函数)(3)反函数的性质:a.互为反函数的两个函数的图像关于直线y=x 对称 b.若函数y=f(x)图像上有一点(a ,b ),则(b ,a )必在其反函数图像上,反之若(b,a )在反函数图像上,则(a ,b )必在原函数图像上。
c.互为反函数的函数具有相同的单调性、奇偶性。
人教版高中必修1《对数函数》教案

人教版高中必修1《对数函数》教案
《人教版高中必修1《对数函数》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
教材分析
<一>地位与作用
对数函数是高中数学继指数函数之后的重要初等函数之一,无论从知识角度还是从思想方法角度对数函数都与指数函数有类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。
而且学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际中的应用奠定良好的基础。
<二>教学目标
【知识目标】1、理解对数函数的定义,掌握对数函数的图象和性质;
2、会求和对数函数有关的函数的定义域;
3、会利用对数函数单调性比较两个对数的大小。
【能力目标】1、通过对底的讨论,使学生对分类讨论的思想有进一步的认识,体会由特殊到一般的数学思想;
2、通过例题、习题的解决,使学生领悟化归思想在解决问题中的作用。
【情感目标】学生在参与中感受数学,探索数学,提高学习数学的兴趣,增强学好数学的自信心。
<三>教学重难点
教学重点:理解对数函数的定义,掌握对数函数图像和性质。
教学难点:底数a对函数值变化的影响及对数函数性质的应用。
一、教学方法:探究与小组合作教学法。
二、教学用具:多媒体,三角板,坐标纸。
四、教学过程设计
在对教材及学生全面深入了解的基础上,我设计了以下五个教学
环节:
人教版高中必修1《对数函数》教案这篇文章共6731字。
高中数学教案《对数函数》

教学计划:《对数函数》一、教学目标1.知识与技能:o学生能够理解对数函数的概念,掌握对数函数的一般形式及其性质。
o学生能够识别并绘制对数函数的图像,理解图像与函数性质之间的关系。
o学生能够运用对数函数解决简单的实际问题,如计算复利、对数增长等。
2.过程与方法:o通过与指数函数的对比,引导学生理解对数函数的概念和必要性。
o通过观察、分析对数函数图像,培养学生的数形结合能力和逻辑推理能力。
o通过小组合作探究,培养学生的协作学习能力和问题解决能力。
3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探索数学奥秘的好奇心。
o培养学生的耐心和细心,提高解决复杂问题的毅力。
o引导学生认识到数学在现实生活中的应用价值,增强应用数学的意识。
二、教学重点和难点●重点:对数函数的概念、一般形式、性质及其图像特征。
●难点:理解对数函数图像与函数性质之间的关系,以及运用对数函数解决实际问题。
三、教学过程1. 复习旧知,引入新课(5分钟)●复习指数函数:简要回顾指数函数的概念、性质和图像特征,为学习对数函数做好铺垫。
●生活实例引入:通过介绍天文学中的星等计算、地震震级等实例,引导学生思考这些实例中隐藏的数学规律,从而引出对数函数的概念。
●明确学习目标:阐述本节课将要学习的内容——对数函数,并明确学习目标。
2. 对数函数概念与性质讲解(15分钟)●定义讲解:详细讲解对数函数的概念,强调其与指数函数的互逆关系,并给出对数函数的一般形式(如y=log a x,其中a>0且a≠1,x>0)。
●性质探讨:引导学生根据对数函数的定义,探讨其定义域、值域、单调性、奇偶性等基本性质。
●对比分析:将对数函数与指数函数进行对比分析,帮助学生更好地理解两者的联系与区别。
3. 对数函数图像分析(10分钟)●图像绘制:利用多媒体设备展示不同底数下对数函数的图像,引导学生观察图像特征。
●特征归纳:引导学生根据图像特征归纳出对数函数的图像特征,如底数大于1时图像上升缓慢,底数在0和1之间时图像下降迅速等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.8(第一课时 对数函数的定义、图象和性质)教学目的:1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系; 2.会求对数函数的定义域;3.渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。
教学重点:对数函数的定义、图象、性质 教学难点:对数函数与指数函数间的关系. 教学形式:计算机辅助教学 教学过程: 一、复习引入:对于函数y =x 2,根据对数的定义,可以写成对数的形式,就是y x 2log = 如果用x 表示自变量,y 表示函数,这个函数就是x y 2log = 由反函数概念可知, x y 2log =与指数函数x y 2=互为反函数。
二、新授内容: 1.对数函数的定义:函数x y a log =)10(≠>a a 且叫做对数函数;它是指数函数x a y = )10(≠>a a 且的反函数。
对数函数x y a log = )10(≠>a a 且的定义域为),0(+∞,值域为),(+∞-∞。
2.对数函数的图象由于对数函数x y a log =与指数函数x a y =互为反函数,所以x y a log =的图象与x a y =的图象关于直线x y =对称。
因此,我们只要画出和x a y =的图象关于x y =对称的曲线,就可以得到x y a log =的图象,然后根据图象特征得出对数函数的性质。
3.对数函数的性质先回顾指数函数)10(≠>=a a a y x且的图象和性质。
三、例题:例1求下列函数的定义域:[(1)—(3) 课本P83例1] (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -= (4)2x x y lg(2322)=-+⋅-解:(4)2x x x 23220,122,0x 1-+⋅->∴<<∴<< 故函数2x x y lg(2322)=-+⋅-的定义域为(0,1).例2求下列函数的反函数(1)121-⎪⎭⎫⎝⎛=xy (2)3)21(12+=+x y )0(<x解:(1) 121+=⎪⎭⎫⎝⎛y x∴)1(log )(211+=-x x f )1(->x(2) 3)21(12-=+y x ∴112()log (3)1f x x -=--- )273(<<x四、练习:1.画出函数y=3log x 及y=x 31log 的图象,并且说明这两个函数的相同性质和不同性质.解:相同性质:两图象都位于y 轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0. 不同性质:y=3log x 的图象是上升的曲线,y=x 31log 的图象是下降的曲线,这说明前者在(0,+∞)上是增函数,后者在(0,+∞)上是减函数.2.求下列函数的定义域:(1)y=3log (1-x) (2)y=x2log 1(3)y=x311log 7- x y 3log )4(= 五、作业:习题2.8 1,22.8(第二课时 对数函数性质的应用)教学目的:1.巩固对数函数性质,掌握比较同底数对数大小的方法; 2.,能够运用对数函数的性质解决具体问题; 教学重点:对数函数性质的应用 教学难点:对数函数性质的应用. 教学过程: 一、复习引入:1.对数函数的性质:a>10<a<1二、例题:例1比较下列各组数中两个值的大小:(课本P83 例2) ⑴5.8log ,4.3log 22; ⑵7.2log ,8.1log 3.03.0; ⑶)1,0(9.5log ,1.5log ≠>a a a a例2 比较下列各组中两个值的大小:(课本P84 例3) ⑴6log ,7log 76; ⑵8.0log ,log 23π 例3 求下列函数的定义域、值域: ⑴41212-=--x y ⑵)52(log 22++=x x y ⑶)54(log 231++-=x x y ⑷)(log 2x x y a --=)10(<<a解:⑴要使函数有意义,则须:041212≥---x 即:11212≤≤-⇒-≥--x x∵11≤≤-x ∴012≤-≤-x 从而 1122-≤--≤-x∴2124112≤≤--x ∴41412012≤-≤--x ∴210≤≤y ∴定义域为[-1,1],值域为]21,0[⑵∵44)1(5222≥++=++x x x 对一切实数都恒成立∴函数定义域为R从而24log )52(log 222=≥++x x 即函数值域为),2[+∞ ⑶要使函数有意义,则须:5105405422<<-⇒<--⇒>++-x x x x x 由51<<-x ∴在此区间内 9)54(max 2=++-x x ∴ 95402≤++-≤x x从而 29log )54(log 31231-=≥++-x x 即:值域为2-≥y∴定义域为[-1,5],值域为),2[+∞-⑷要使函数有意义,则须:⎩⎨⎧≥-->--)2(0)(log )1(022x x x x a由①:01<<-x由②:∵10<<a 时 则须 12≤--x x ,R x ∈ 综合①②得 01<<-x 当01<<-x 时 41)(max 2=--x x ∴4102≤--<x x ∴41log )(log 2aa x x ≥-- ∴ 41log a y ≥∴定义域为(-1,0),值域为)41log [∞+,a 三、练习:比较大小 ⑴3.0log 7.0log 4.03.0<⑵216.04.3318.0log 7.0log -⎪⎭⎫⎝⎛<<⑶1.0log 1.0log 2.03.0> 四、作业:习题2.8 3,42.8(第三课时 对数形式的复合函数)教学目的:1.掌握对数形式的复合函数单调性的判断及证明方法;2.渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。
教学重点:函数单调性证明通法教学难点:对数运算性质、对数函数性质的应用. 教学过程: 一、复习引入:1.判断及证明函数单调性的基本步骤:假设—作差—变形—判断二、新授内容:例1 ⑴证明函数)1(log )(22+=x x f 在),0(+∞上是增函数。
⑵函数)1(log )(22+=x x f 在)0,(-∞上是减函数还是增函数?⑴证明:设),0(,21+∞∈x x ,且21x x < 则)1(log )1(log )()(22221221+-+=-x x x f x f110222121+<+∴<<x x x x又x y 2log = 在),0(+∞上是增函数∴)1(log )1(log 222212+<+x x 即)()(21x f x f <∴函数)1(log )(22+=x x f 在),0(+∞上是增函数 ⑵解:是减函数,证明如下: 设)0,(,21-∞∈x x ,且21x x <则)1(log )1(log )()(22221221+-+=-x x x f x f110222121+>+∴<<x x x x又x y 2log = 在),0(+∞上是增函数∴)1(log )1(log 222212+>+x x 即)()(21x f x f > ∴函数)1(log )(22+=x x f 在)0,(-∞上是减函数 小结:复合函数的单调性)(),(x g x f 的单调相同,))((x g f y =为增函数,否则为减函数例2 求函数)32(log 221--=x x y 的单调区间,并用单调定义给予证明。
解:定义域 130322-<>⇒>--x x x x 或单调减区间是),3(+∞ 设2121),3(,x x x x <+∞∈且 则)32(log 121211--=x x y )32(log 222212--=x x y---)32(121x x )32(222--x x =)2)((1212-+-x x x x∵312>>x x ∴012>-x x 0212>-+x x ∴)32(121--x x >)32(222--x x 又底数1210<< ∴012<-y y 即 12y y < ∴y 在),3(+∞上是减函数。
同理可证:y 在)1,(--∞上是增函数 三、练习:1.求y=3.0log (2x -2x)的单调递减区间 解:先求定义域:由2x -2x >0,得x(x-2)>0 ∴x <0或x >2∵函数y=3.0log t 是减函数故所求单调减区间即t=2x -2x 在定义域内的增区间 又t=2x -2x 的对称轴为x=1 ∴所求单调递减区间为(2,+∞) 2.求函数y=2log (2x -4x)的单调递增区间 解:先求定义域:由2x -4x >0得x(x-4)>0 ∴x <0或x >4又函数y=2log t 是增函数故所求单调递增区间为t=2x -4x 在定义域内的单调递增区间 ∵t=2x -4x 的对称轴为x=2 ∴所求单调递增区间为:(4,+∞)3.已知y=a log (2-x a )在[0,1]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1当a >1时,函数t=2-x a >0是减函数由y=a log (2-x a )在[0,1]上x 的减函数,知y=a log t 是增函数, ∴a >1由x ∈[0,1]时,2-x a ≥2-a >0,得a <2, ∴1<a <2当0<a<1时,函数t=2-x a >0是增函数由y=a log (2-x a )在[0,1]上x 的减函数,知y=a log t 是减函数, ∴0<a<1由x ∈[0,1]时,2-x a ≥2-1>0, ∴0<a<1 综上述,0<a<1或1<a <2 五、课后作业:(1)证明函数y=21log (2x +1)在(0,+∞)上是减函数;(2)判断函数y=21log (2x +1)在(-∞,0)上是增减性.∴函数)1(log )(22+=x x f 在),0(+∞上是增函数证明:(1)设),0(,21+∞∈x x ,且21x x <,则)1(log )1(log )()(2221212121+-+=-x x x f x f110222121+<+∴<<x x x x又x y 21log = 在),0(+∞上是减函数∴)1(log )1(log 22212121+>+x x 即)()(21x f x f >∴函数y=21log (2x +1)在(0,+∞)上是减函数(2)设)0,(,21-∞∈x x ,且21x x <,则)1(log )1(log )()(2221212121+-+=-x x x f x f110222121+>+∴<<x x x x又x y 21log = 在),0(+∞上是减函数∴)1(log )1(log 22212121+<+x x 即)()(21x f x f <∴y=21log (2x +1)在(-∞,0)上是增函数2.8(第四课时 对数函数的综合应用)教学目的:应用对数函数的概念和性质解决一些较简单的问题 重点难点:对数概念和性质的综合应用 教学过程:一、 复习引入a>10<a<1图 象性质(1)定义域:(0,+∞)(2)值域:R(3)过点(1,0),即当1=x 时,0=y二、 例题例1 如右图,的曲线是对数函数y=log a x 的图象,已知a 的取值432,,,355则相应于曲线C 1,C 2,C 3,C 4的a 值依次为432423,,;,,;355355432423C.,; D.,.355355分析:指数函数的图象在第一象限内从下到上对应的底数从小到大;(见课件第1页)对数函数的图象在第一象限内从左到右的底数从小到大.见课件第2页) 答:选A.例2 若a 2>b>a>1,试比较a b b a a blog ,log ,log a,log b b a的大小.解:a a a 2b b a b b a a ab a 1,01,log 0,log b log a 1,b bb ba b a 1,a 1,0log log a,a aa blog log log a log b.b a >>∴<<∴<>=>>>∴>>∴<<∴<<<例3 求函数212y log (x 2x 3)=-++的定义域、值域和单调区间.解:要使y 有意义,须 –x 2+2x+3>0,解得-1<x<3,所以函数的定义域是(-1,3).设t=–x 2+2x+3 由0<–x 2+2x+3=-(x-1)2+4≤4,知0<t ≤4.又∵12y log t =是单调减函数,∴y ≥-2,即所求函数的值域是[-2,+∞).因为函数t=–x 2+2x+3=-(x-1)2+4在(-1,1]上递增。