微管微丝、中间纤维
第八章 微丝 第九章 微管 第十章 中间纤维

第八章微丝本章重点:微丝的功能微丝特异性药物主要内容:形态结构:存在形式:分散存在,聚集成束,交联成网微丝的化学组成肌肉由肌原纤维组成肌原纤维: 粗肌丝和细肌丝组成,粗肌丝:肌球蛋白细肌丝:肌动蛋白/原肌球蛋白/肌钙蛋白。
微丝的组装一.在适宜的温度,存在ATP、K+、Mg2+离子的条件下,(达临界浓度以上)肌动蛋白单体可自组装为纤维。
组装步骤:1.成核:几个G-肌动蛋白开始聚合形成核心结构;2.微丝生长:G-肌动蛋白从两端加到多聚体上,加到正端比加到负端速度快10倍以上。
(此为结构极性;功能极性即行使功能具有方向性)3.处于平衡状态:微丝延长到一定时期,游离肌动蛋白单体浓度降低至临界浓度,正端延长速度等于负端缩短速度,长度处于平衡状态(此过程---踏车现象)二.微丝组装的非稳态动力模型ATP肌动蛋白浓度高时,纤维末端形成一连串的ATP肌动蛋白---ATP 帽。
ATP肌动蛋白对F-肌动蛋白亲和力高。
ADP肌动蛋白亲和力低。
三.★微丝特异性药物(重点)细胞松弛素B可切断微丝纤维,并结合在微丝末端抑制肌动蛋白加合到微丝纤维上,特异性的抑制微丝功能。
鬼笔环肽与微丝能够特异性的结合,使微丝纤维稳定而抑制其解聚。
荧光标记的鬼笔环肽可特异性的显示微丝。
★微丝功能(重点):五月天 - 时光机.wma(1)维持细胞的形态:参与构成细胞骨架,很多细胞质膜下有肌动蛋白和一些微丝结合蛋白形成的骨架网络,使细胞膜具有一定的强度和韧性,维持形态。
(形成微绒毛和应力纤维)(2)肌肉的收缩:骨骼肌细胞的收缩单位是肌原纤维。
肌肉收缩是细肌丝与粗肌丝相互滑动所致。
(3)细胞的运动与物质转运:1.细胞运动质膜下平行排列的肌动蛋白纤维使细胞产生各种运动。
如阿米巴运动,变皱膜运动,胞质环流及吞噬活动等。
这些运动可被细胞松弛素抑制。
(变皱膜运动:1.微丝伸长,细胞表面突起,形成伪足;2.伪足与基质接触部位形成黏着斑;3.黏着斑解离,细胞向前移动。
细胞膜骨架与细胞质流动的关系

细胞膜骨架与细胞质流动的关系细胞是生命的基本单位,它们可以通过细胞质流动等多种方式进行各种各样的运动和功能。
在细胞内,细胞膜骨架起着不可或缺的作用。
那么,细胞膜骨架与细胞质流动之间存在着怎样的关系呢?细胞膜骨架是细胞膜内侧的一层支架结构,由微丝、中间纤维、微管等细胞骨架组成。
它们贯穿整个细胞,并与细胞质内的许多结构相互作用。
因此,细胞膜骨架影响着细胞的各种生物学过程。
细胞质流动是指细胞质内物质向细胞膜的流动。
这涉及到细胞质内的分子、胞器和蛋白质等物质。
这些物质在细胞内的流动速度和方向对于细胞的正常运转非常关键。
在细胞内,微管是细胞质流动的主要骨架和基础。
它们提供了细胞质内径向流动的轨迹和速度。
微丝和中间纤维则可以控制细胞质流动的方向和速度。
微管和微丝的组成与排列方式对于细胞质流动起着关键作用。
细胞质流动通常是由与细胞膜垂直的微管束来产生的,它们将物质推向细胞表面。
微丝和中间纤维通过与微管网络相互作用,控制了细胞质内物质的方向和速度。
除了微管、微丝和中间纤维之外,细胞膜骨架还包括许多其他的组成部分,如蛋白质、糖脂等。
这些结构和物质与微管、微丝和中间纤维相互合作,形成了一个复杂的细胞骨架网络。
细胞膜骨架和细胞质流动之间的关系是复杂且多样的。
细胞质流动可以通过微管、微丝和中间纤维的变化来调节,并且细胞膜骨架还可以控制细胞质流动的方向和速度。
此外,细胞膜骨架通过控制细胞膜上的结构和蛋白质,对细胞膜的生物学过程产生影响,间接地影响了细胞质流动。
总之,细胞膜骨架和细胞质流动之间存在着复杂而密切的联系。
它们相互作用,控制着细胞的生命活动。
未来进一步研究这种联系的机制,不仅有助于增进对细胞生物学的理解,也将有助于生物医学领域的相应应用。
第八章 微丝 第九章 微管 第十章 中间纤维

第八章微丝本章重点:微丝的功能微丝特异性药物主要内容:形态结构:存在形式:分散存在,聚集成束,交联成网微丝的化学组成肌肉由肌原纤维组成肌原纤维: 粗肌丝和细肌丝组成,粗肌丝:肌球蛋白细肌丝:肌动蛋白/原肌球蛋白/肌钙蛋白。
微丝的组装一.在适宜的温度,存在ATP、K+、Mg2+离子的条件下,(达临界浓度以上)肌动蛋白单体可自组装为纤维。
组装步骤:1.成核:几个G-肌动蛋白开始聚合形成核心结构;2.微丝生长:G-肌动蛋白从两端加到多聚体上,加到正端比加到负端速度快10倍以上。
(此为结构极性;功能极性即行使功能具有方向性)3.处于平衡状态:微丝延长到一定时期,游离肌动蛋白单体浓度降低至临界浓度,正端延长速度等于负端缩短速度,长度处于平衡状态(此过程---踏车现象)二.微丝组装的非稳态动力模型ATP肌动蛋白浓度高时,纤维末端形成一连串的ATP肌动蛋白---ATP 帽。
ATP肌动蛋白对F-肌动蛋白亲和力高。
ADP肌动蛋白亲和力低。
三.★微丝特异性药物(重点)细胞松弛素B可切断微丝纤维,并结合在微丝末端抑制肌动蛋白加合到微丝纤维上,特异性的抑制微丝功能。
鬼笔环肽与微丝能够特异性的结合,使微丝纤维稳定而抑制其解聚。
荧光标记的鬼笔环肽可特异性的显示微丝。
★微丝功能(重点):五月天 - 时光机.wma(1)维持细胞的形态:参与构成细胞骨架,很多细胞质膜下有肌动蛋白和一些微丝结合蛋白形成的骨架网络,使细胞膜具有一定的强度和韧性,维持形态。
(形成微绒毛和应力纤维)(2)肌肉的收缩:骨骼肌细胞的收缩单位是肌原纤维。
肌肉收缩是细肌丝与粗肌丝相互滑动所致。
(3)细胞的运动与物质转运:1.细胞运动质膜下平行排列的肌动蛋白纤维使细胞产生各种运动。
如阿米巴运动,变皱膜运动,胞质环流及吞噬活动等。
这些运动可被细胞松弛素抑制。
(变皱膜运动:1.微丝伸长,细胞表面突起,形成伪足;2.伪足与基质接触部位形成黏着斑;3.黏着斑解离,细胞向前移动。
细胞生物学课后习题

细胞骨架名词解释1.细胞骨架(cytoskeleton):真核细胞中由纤维状蛋白质组成的网络系统,可分为三种:微丝、微管和中间纤维。
2.微丝(microfilament):是由肌动蛋白单体聚合而成的纤维状结构,肌动蛋白头尾相连组成微丝,具有极性。
3.中间纤维(intermediate filament, IF):10nm的纤维状蛋白结构,由于其直径介于微管和微丝之间,故称之为中间纤维。
IF蛋白由约310个aa形成的、非常保守的a-螺旋杆状区和高度可变的非螺旋端部组成。
4.微管(microtubule):管蛋白组成的管状结构,由13根原丝平行排列组成的圆柱形管状结构,原丝由α-tubulin和β-tubulin组成的异二聚体组成。
5.踏车模型:当肌动蛋白浓度高于正端临界浓度,而低于负端临界浓度时,微丝可以表现出在正端因加入肌动蛋白而延长,而在负端因肌动蛋白脱落而缩短。
6.微管组织中心(MTOC):细胞内能够起始微管成核并使之延伸的结构,微管组织中心MTOC是细胞组织微管聚合的特殊细胞器或部位。
大多数动物细胞的MTOC是中心体。
鞭毛和纤毛的MTOC是基体。
卵母细胞和植物细胞中没有中心体。
7.胞质分裂环:在有丝分裂末期,两个即将分裂的子细胞之间产生一个收缩环。
收缩环是由大量平行排列的微丝组成,由分裂末期胞质中的肌动蛋白装配而成,随着收缩环的收缩,两个子细胞被分开。
胞质分裂后,收缩环即消失。
填空题1.在细胞内微管以单管、二联体和三联体3种形式存在。
2.微管壁由13根原纤丝组成。
3.微管由管蛋白分子组成,微管的单体形式是α-tubulin和β-tubulin组成的异二聚体。
4.微管结合蛋白具有稳定微管,防止解聚,协调微管与其他细胞成分相互关系的作用。
5.中心体含有一对垂直排列的中心粒,外面被无定形结构γ-tubulin所包围。
6.基体类似于中心粒,是由9个三联管组成的小型圆柱形细胞器。
7.在细胞内参与物质运输的马达蛋白分为三类:沿微丝运动的肌球蛋白、沿微管运动的驱动蛋白和动力蛋白。
细胞的细胞骨架与细胞内运输

细胞的细胞骨架与细胞内运输细胞是生命的基本单位,它们在体内承担许多重要的功能,包括细胞内物质的转运和细胞运动。
细胞骨架是一种由蛋白质纤维组成的网络结构,它不仅为细胞提供形状支持,还起着维持细胞内稳定性和促进细胞内物质交换的重要作用。
在细胞内运输过程中,细胞骨架发挥着关键的调节作用,本文将从细胞骨架结构、细胞骨架与细胞内运输的关系以及细胞骨架相关疾病三个方面展开阐述。
一、细胞骨架的结构细胞骨架主要由三种类型的蛋白质纤维组成,分别是微丝、中间丝和微管。
微丝是由肌动蛋白组成的纤维,具有较小的直径和较短的长度,常见于细胞边缘和细胞黏附点。
中间丝是较粗的纤维,主要由角蛋白组成,分布在整个细胞内,起到细胞结构支撑的作用。
微管是由α-β微管蛋白二聚体组成的管状结构,直径较大,长度较长,参与细胞分裂和细胞运输等过程。
细胞骨架不仅限于这三种蛋白质纤维,还包括一些结合蛋白和连接蛋白。
结合蛋白可以将不同类型的纤维连接在一起,形成细胞骨架的整体结构。
连接蛋白则将细胞骨架与其他细胞结构相连接,以维持细胞的形状和机械强度。
二、细胞骨架与细胞内运输的关系细胞内运输是指细胞中物质的运输和分布过程,包括内质网运输、高尔基体运输和线粒体运输等。
这些物质需要通过细胞骨架的支持和调节才能完成。
1. 内质网运输:内质网是细胞内重要的蛋白质合成和修饰器官,内质网蛋白质的合成和折叠主要在内质网中进行。
完成折叠的蛋白质需要通过囊泡运输到其他细胞器或细胞膜。
这一过程受到微丝和微管的支持,微丝通过作用于囊泡膜的马达蛋白使其沿着微丝运动,而微管通过作用于囊泡膜的马达蛋白使其沿着微管运动。
2. 高尔基体运输:高尔基体是细胞的分泌系统,它与内质网相连,并通过囊泡运输分泌物质至细胞膜或细胞外。
这一过程同样需要细胞骨架的支持,微管通过支持和调节囊泡的运动,确保物质按照正确的路径和速度运输到目的地。
3. 线粒体运输:线粒体是细胞内的能量合成器官,它需要通过细胞骨架的支持才能在细胞中合适地分布。
微管微丝、中间纤维

中)【9(2)+2】
的微丝,有韧性,支持膜,有支 具严格的#43;C10)(中心粒 架作用。
根据氨基酸顺序的同源性,提出新的分类:
【9(3)+0】和基粒中【9(3)+0】) 肌丝(?):(永久性结构)存在 Ⅰ酸性角蛋白、Ⅱ中性和碱性角蛋白、Ⅲ波形纤维蛋白,
于肌细胞中,有收缩作用。
微管
微丝
中间丝
存 几乎存在于所有真核细胞(除少数 所有真核细胞
不同中间丝严格地分布在不同类型细胞中
在 细胞,如人的红细胞)
形 微管蛋白异二聚体(α-β)装配 由 G-肌动蛋白组成 F-肌动蛋白纤 8 个 4 聚体或 4 个 8 聚体组成的空心管状纤
态 成原纤维在装配成管状结构
维(实心)。长短不一。 在细胞
动态的
动 延长靠正极装配 GTP 微管蛋白
态 微管组织中心(决定微管极性)—
α-β +
影 微管蛋白浓度
装配与温度和蛋白浓度无关,不需要 ATP 或 GTP
响
温 度 : <4 ℃ : 解 聚 >37 ℃ : 促 进 组
装
装
配 Ca2+
因
压力 素
药 秋水仙素:阻断组装
细胞松弛素:阻止聚合,导致解 无
物
聚
白,胶质纤维酸性蛋白、Ⅳ神经元纤维蛋白、Ⅴ核纤层蛋白
神经丝( ?、?):存在于树突及 蛋白(新发现)
突触中,与乙酰胆碱(Ach)运输
有关。
极 有 ( - α-β + )
有
无
性
装 踏车现象
踏车现象
二聚体→四聚体→原纤维→(8 根原纤维)中间纤维
配 (+)极装配速度较(-)极快
光学显微镜下观察到的细胞骨架的形态特征

光学显微镜下观察到的细胞骨架的形态特征大家好,我今天要和大家谈谈光学显微镜下观察到的细胞骨架的形态特征。
我们要明确什么是细胞骨架。
细胞骨架是真核细胞中一种由蛋白质纤维组成的网状结构,它能够维持细胞的形态、保持细胞内部结构的有序性、参与细胞的运动和物质运输等重要功能。
那么,在光学显微镜下,我们是如何观察到细胞骨架的形态特征呢?接下来,我将从以下几个方面进行详细阐述。
一、细胞骨架的基本组成细胞骨架主要由微丝、微管和中间纤维三类蛋白质组成。
其中,微丝是最常见的一种蛋白质纤维,它们呈细长的丝状结构,可以自由地弯曲和拉伸。
微管则是由微丝相互连接形成的管状结构,它们比微丝更粗壮,也更容易被观察到。
中间纤维则介于微丝和微管之间,它们的长度和直径都比较适中,但数量较多。
这三类蛋白质纤维共同构成了细胞骨架的基本框架。
二、光学显微镜下的细胞骨架观察方法要想在光学显微镜下观察到细胞骨架的形态特征,我们需要先将细胞置于某种特殊的染色剂中进行染色,这样才能使细胞内的蛋白质纤维更加明显。
常用的染色剂有吉姆萨染料、乙酰苯胺蓝等。
然后,我们需要将染色后的细胞放置在显微镜玻片上,并通过调节镜头焦距和光源亮度等参数,使得细胞内的蛋白质纤维能够清晰地显示出来。
我们还需要使用专业的显微镜设备,如扫描电子显微镜(SEM)或透射电子显微镜(TEM),对细胞骨架进行更加深入的研究。
三、光学显微镜下观察到的细胞骨架形态特征通过光学显微镜观察到的细胞骨架形态特征主要包括以下几个方面:1. 微丝的形态:微丝呈细长的丝状结构,通常呈现出分支状或螺旋状的排列方式。
不同类型的微丝在形态上有所差异,例如动力蛋白微丝呈现出高度动态的结构特点,而锚定蛋白微丝则具有较强的稳定性。
2. 微管的形态:微管呈管状结构,通常呈现出直管或弯管两种类型。
直管微管的两端较为尖锐,而弯管微管则呈现出较为平缓的曲度。
微管还可以相互连接形成复杂的三维结构。
3. 中间纤维的形态:中间纤维介于微丝和微管之间,其形态介于两者之间。
细胞生物学大题

细胞生物学大题:细胞骨架:2、什么是微管组织中心,它与微管有何关系。
答:微管组织中心是指微管装配的发生处。
它可以调节微管蛋白的聚合和解聚,使微管增长或缩短。
而微管是由微管蛋白组成的一个结构。
二者有很大的不同,但又有十分密切的关系。
微管组织中心可以指挥微管的组装与去组装,它可以根据细胞的生理需要,调节微管的活动。
如在细胞有丝分裂前期,根据染色体平均分配的需要,从微管组织中心:中心粒和染色体着丝粒处进行微管的装配形成纺锤体,到分裂末期,纺锤体解聚成微管蛋白。
所以说,微管组织中心是微管活动的指挥1、比较微管、微丝和中间纤维的异同。
答:微管、微丝和中间纤维的相同点:(1)在化学组成上均由蛋白质构成。
(2)在结构上都是纤维状,共同组成细胞骨架。
(3)在功能都可支持细胞的形状;信息的传递;都能在细胞运动和细胞分裂上发挥重要作用。
微管、(1类细胞中的基本成分也不同。
(2)在结构上,微管和中间纤维是中空的纤维状,微丝是实心的纤维状。
微管的结构是均一的,而中等纤维结构是为中央为杆状部,两侧为头部或尾部。
(3)功能不同:微管可构成中心粒、鞭毛或纤毛等重要的细胞器和附属结构,在细胞运动时或细胞分裂时发挥作用:微丝在细胞的肌性收缩或非肌性收缩中发挥作用,使细胞更好的执行生理功能;中等纤维具有固定细胞核作用,行使子细胞中的细胞器分配与定位的功能,还可能与DNA的复制与转录有关。
总之,微管、微丝和中间纤维是真核细胞内重要的非膜相结构,共同担负维持细胞形态,细胞器位置的固定及物质和信息传递重要功能。
细胞核(除此见笔记画星号部分)细胞核的基本结构和主要功能细胞核是真核细胞内最大、最重要的细胞器,主要由核被膜、染色质、核仁及由非组蛋白质组成的网络状的核基质组成,是遗传信息的贮存场所,是细胞内基因复制和RNA转录的中心,是细胞生命活动的调控中心。
3、简述核仁的结构及其功能。
答:在光学显微镜下,核仁通常是匀质的球形小体,一般有1-2个,但也有多个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主干
C 端(非
【H2—V2—
H 亚区(同源区) V 亚区(可变区) E 亚区(末端
因种类而有很大差异
结 I 型:MAP1
肌肉收缩系统的有关蛋白:肌球 约 15 种
合 II 型:MAP2、MAP4 Tau
蛋白、原肌球蛋白、肌钙蛋白(其 flanggrin 使角蛋白交联成束
蛋 MAPs 促进微管的组装,抑制其解 他)
中)【9(2)+2】
微丝,有韧性,支持膜,有支架 具严格的组织特异性
三联管(A13+B10+C10)(中心粒 作用。
根据氨基酸顺序的同源性,提出新的分类:
【9(3)+0】和基粒中【9(3)+0】) 肌丝():(永久性结构)存在于 Ⅰ酸性角蛋白、Ⅱ中性和碱性角蛋白、Ⅲ波形纤维蛋白,
肌细胞中,有收缩作用。
二聚体→四聚体→原纤维→(8 根原纤维)中间纤维 动态的
α-β +
影 微管蛋白浓度
响
温 度 : <4 ℃ : 解 聚 >37 ℃ : 促 进 组
装
装
配
Ca2+ 因
压力 素
药 秋水仙素:阻断组装
细胞松弛素:阻止聚合,导致解 无
物
聚
装配与温度和蛋白浓度无关,不需要 ATP 或 GTP
长春花碱:阻断,抑制组 鬼笔环肽:抑制解聚,促进聚合 装
运动
质分裂等。
5 维持细胞核膜稳定
6 参与细胞分化
结
中,可成束、成网或纤维状分散
构
分布
化 α 微管蛋白、β 微管蛋白 学 少量微管相关蛋白 组 γ 微管蛋白-微管组织中心 成
肌动蛋白(α 分布于各种肌肉细胞 中,β 和γ 分布于肌细胞和非肌 细胞中) 结合蛋白
比微丝、微管复杂
单体结构:N 端(非螺旋) 【E1—V1—H1】
1A 亚区螺旋-L1-1B 亚区螺旋-L12-2A 亚区螺旋-L2-2B 亚区
紫杉酚:重水(D2O)促进
装配,并使稳定
功 1.维持细胞形态
1. 细 胞 骨 架 之 一 , 维 持 细 胞 形 1 在细胞内形成一个完整的网状骨架系统
能 2.参与纤毛和鞭毛的构建和运动 态。
2 为细胞提供机械强度支持
4.参与细胞内物质运输
2.参与信号传递
3 参与细胞连接
5.参与纺锤体的构建和染色体的 3.参与肌肉收缩、变形运动、胞 4 参与细胞内信息传递及物质运输
Plectin 将波形蛋白纤维与微管交联在一起
白 聚,具有稳定微管的作用
非肌肉细胞中的有关蛋白:肌球 Ankyrin 把结蛋白纤维与质膜连在一起
蛋白、原肌球蛋白、辅肌动蛋白
等
类 ห้องสมุดไป่ตู้管(13)
张力微丝(、):存在于一般细胞 角蛋白纤维、波形纤维、结蛋白纤维、神经元纤维、神经胶
型 二联管(A13+B10)(纤毛和鞭毛 中,常位于膜内侧,如桥粒中的 维
微管
微丝
中间丝
存 几乎存在于所有真核细胞(除少数 所有真核细胞
不同中间丝严格地分布在不同类型细胞中
在 细胞,如人的红细胞)
形 微管蛋白异二聚体(α-β)装配成 由 G-肌动蛋白组成 F-肌动蛋白纤 8 个 4 聚体或 4 个 8 聚体组成的空心管状纤
态 原纤维在装配成管状结构
维(实心)。长短不一。 在细胞
白,胶质纤维酸性蛋白、Ⅳ神经元纤维蛋白、Ⅴ核纤层蛋白
神经丝( 、):存在于树突及突 蛋白(新发现)
触中,与乙酰胆碱(Ach)运输有
关。
极 有 ( - α-β + )
有
无
性
装 踏车现象 配 (+)极装配速度较(-)极快 动 延长靠正极装配 GTP 微管蛋白 态 微管组织中心(决定微管极性)—
踏车现象 (+)极装配速度较(-)极快