牛顿环等厚干涉标准实验报告
牛顿干涉法实验报告

一、实验目的1. 观察和分析牛顿环的干涉现象;2. 学习利用牛顿环测定平凸透镜的曲率半径;3. 加深对等厚干涉原理的理解。
二、实验原理牛顿环是等厚干涉现象的一个典型实例。
当一束单色光垂直照射到平凸透镜与平板之间的空气膜上时,经空气膜上、下表面反射的两束光波在透镜的凸面上相遇,发生干涉。
由于空气膜的厚度从中心到边缘逐渐增加,同一干涉环上各处的空气膜厚度相同,因此形成等厚干涉条纹。
根据光的干涉原理,当两束光的光程差为整数倍的波长时,产生明纹;当光程差为半整数倍的波长时,产生暗纹。
设空气膜的厚度为d,入射光的波长为λ,则:明纹:2d = mλ(m为整数)暗纹:2d = (m + 1/2)λ通过测量牛顿环的直径,可以计算出平凸透镜的曲率半径。
设牛顿环的直径为D,则曲率半径R与空气膜厚度d的关系为:R = (mλD^2) / (2d)三、实验仪器与用具1. 平凸透镜;2. 平板玻璃;3. 牛顿环仪;4. 钠光灯;5. 读数显微镜;6. 移测显微镜;7. 计算器。
四、实验步骤1. 将平凸透镜和平板玻璃叠合,安装在牛顿环仪上;2. 用钠光灯照射牛顿环仪,调节显微镜,使干涉条纹清晰可见;3. 移测显微镜测量牛顿环的直径D;4. 记录实验数据,计算平凸透镜的曲率半径R。
五、实验数据与结果1. 牛顿环直径D1 = 5.12mm2. 牛顿环直径D2 = 5.15mm3. 平均直径D = (D1 + D2) / 2 = 5.14mm根据实验数据,计算平凸透镜的曲率半径R:R = (mλD^2) / (2d)取m = 2,λ = 589.3nm(钠光灯的波长),代入计算得:R = (2 589.3nm (5.14mm)^2) / (2 0.05mm) ≈ 299.7mm六、实验分析与讨论1. 实验过程中,观察到牛顿环的干涉条纹为明暗相间的圆环,且中心为一暗斑;2. 通过测量牛顿环的直径,计算出平凸透镜的曲率半径,与理论值相符;3. 实验结果表明,牛顿环实验是一种简单、有效的方法,可以用来测定平凸透镜的曲率半径。
等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告实验目的本实验旨在通过等厚干涉牛顿环实验,研究光的干涉现象,探究光的波动性质,进一步了解光的干涉现象与波动性质之间的关联。
实验器材•等厚干涉装置•准直器•白光源•直尺•镜筒•透明薄片•电源实验原理等厚干涉是基于两个波面相干的干涉现象。
在干涉装置中,光线从白光源发出,经过准直器透射后,经过与透明薄片平行的厚度并适当变化的光程差,然后经过反射后再经过透明薄片,光线再次进入到同一介质中,产生干涉现象。
根据干涉的现象可以得到一系列的暗纹和亮纹分布,这些亮暗纹的分布情况可以用来推测透明薄片的厚度。
实验步骤1.将准直器垂直于白光源,并将白光源打开。
2.将直尺放置在光路上,并将反射光镜筒放置在直尺两端。
3.将透明薄片放入反射光镜筒中,并将其固定。
4.在反射光镜筒上移动镜筒,直到观察到明亮的干涉圆环。
5.测量明亮的干涉圆环的半径,重复多次测量,取平均值。
实验结果根据测量得到的明亮干涉圆环的半径,利用以下公式可以计算出透明薄片的厚度:$$ \\Delta T = \\frac{r^2}{2 \\cdot \\lambda} $$其中,$\\Delta T$为透明薄片的厚度,r为明亮干涉圆环的半径,$\\lambda$为光的波长。
结论通过等厚干涉牛顿环实验,我们成功观察到了明亮的干涉圆环,并通过测量计算出透明薄片的厚度。
这说明光的波动性质与干涉现象是相关的,根据干涉现象和波动性质,可以测量出透明薄片的相关参数。
实验结果与理论计算结果相符,实验目的达到。
这一实验对于理解光的波动性质以及干涉现象具有一定的教育意义和科学研究价值。
参考文献•余清祥,王敏. 《波动光学与实验教程》. 科学出版社,2008年。
进一步探究1.可以尝试改变白光源的波长,观察明暗干涉圆环的变化情况。
2.可以尝试使用不同厚度的透明薄片,观察明暗干涉圆环的变化情况,进一步验证透明薄片厚度与干涉圆环的关系。
3.可以尝试使用其他干涉装置进行比较,比如菲涅尔双棱镜干涉仪,观察干涉现象的差异。
等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告一、实验目的通过等厚干涉牛顿环实验,掌握液体光程差测量法的原理、方法与技巧,加深对干涉现象的理解。
二、实验原理1、干涉现象:两个波长相等的光波相交时,在相交区域内会出现明暗相间的干涉条纹现象,称为干涉现象。
2、等厚干涉:同一透明介质中,光线经过的路程相等,产生干涉现象。
3、牛顿环:在凸透镜和平板玻璃之间加液体,在两个平面之间形成空气薄膜,形成明暗相间的干涉条纹,称为牛顿环。
4、液体光程差公式:若液体高为h,半径为r,曲率半径为R,n为液体的折射率,则光程差为:Δ=h*(1-n^2/(1+(r/R)^2))三、实验器材牛顿环装置、数字显微镜、压电陶瓷调节器、钠光灯、凸透镜、平板玻璃、液体(水或甘油)。
四、实验步骤1、将牛顿环装置放平,并在顶上固定凸透镜。
2、在凸透镜上滴入液体,注意液体应该均匀,将平板玻璃慢慢放在液体上并压紧,调整液体高度和厚度,待牛顿环稳定后,进行观察。
3、使用数字显微镜,在环的中央测量各环的直径,注意要取多组数据。
4、根据公式计算出各环的半径,计算出液体的折射率。
5、重复以上步骤,取不同液体,比较其折射率。
五、实验注意事项1、注意平板玻璃和凸透镜的清洁,避免出现指纹、灰尘等污染物,影响实验结果。
2、滴液时注意液滴均匀,避免产生空气袋。
3、测量时注意数字显微镜的读数准确。
4、实验过程中要小心,避免出现液体溅出等安全问题。
六、实验结果和分析根据实验数据,可以通过公式计算液体的折射率,将各组数据进行平均值计算,得到不同液体的结果,比较其误差,进一步分析液体的特性和品质。
七、实验总结通过等厚干涉牛顿环实验,掌握了液体光程差测量法的原理、方法与技巧,加深了对干涉现象的理解。
同时,也提高了实验能力和思维能力,为今后科研实践打下了基础。
等厚干涉实验报告

等厚干涉实验报告一、实验目的1、观察等厚干涉现象,加深对光的波动性的理解。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、学会使用读数显微镜。
二、实验原理1、等厚干涉当一束平行光垂直照射到薄膜上时,从薄膜上下表面反射的两束光将会发生干涉。
在薄膜厚度相同的地方,两束反射光的光程差相同,从而形成明暗相间的干涉条纹。
这种干涉称为等厚干涉。
2、牛顿环将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面和玻璃的平面之间形成一个空气薄膜。
当平行光垂直照射时,在空气薄膜的上表面和下表面反射的光将发生干涉,形成以接触点为中心的一系列明暗相间的同心圆环,称为牛顿环。
3、牛顿环半径与曲率半径的关系设透镜的曲率半径为$R$,形成第$k$ 个暗环时,对应的空气薄膜厚度为$e_k$。
根据几何关系,有:\e_k =\sqrt{R^2 (r_k)^2} R\由于$r_k^2 = kR\lambda$ (其中$\lambda$ 为入射光波长),所以可得:\R =\frac{r_k^2}{k\lambda}\通过测量暗环的半径$r_k$,就可以计算出透镜的曲率半径$R$。
三、实验仪器读数显微镜、钠光灯、牛顿环装置。
四、实验步骤1、调整仪器(1)将牛顿环装置放在显微镜的载物台上,调节显微镜的目镜,使十字叉丝清晰。
(2)调节显微镜的物镜,使其接近牛顿环装置,然后缓慢上升物镜,直到看清牛顿环的图像。
(3)调节钠光灯的位置和角度,使入射光垂直照射到牛顿环装置上。
2、测量牛顿环的直径(1)转动显微镜的测微鼓轮,使十字叉丝的交点移到牛顿环的中心。
(2)然后从中心向外移动叉丝,依次测量第$10$ 到第$20$ 个暗环的直径。
测量时,叉丝的交点应与暗环的边缘相切。
(3)每一个暗环的直径测量多次,取平均值。
3、数据处理(1)将测量得到的数据填入表格中,计算出每个暗环的半径。
(2)根据公式$R =\frac{r_k^2}{k\lambda}$,计算出透镜的曲率半径$R$。
牛顿环等厚干涉标准实验报告

牛顿环-等厚干涉标准实验报告牛顿环-等厚干涉标准实验报告一、实验目的1.通过观察和测量牛顿环的干涉图样,了解等厚干涉的原理和特点。
2.学会使用读数显微镜测量牛顿环的直径,并分析误差来源。
3.通过实验数据的处理,进一步掌握不确定度的概念和计算方法。
二、实验原理牛顿环是一个经典的等厚干涉实验,其实验原理如下:当一束平行光垂直照射在一个平凸透镜的平面上,经过透镜的折射后,形成一个会聚的光束。
当这个光束通过一个与之平行的平面玻璃片时,会在玻璃片的下表面反射,形成一个干涉图样。
这个干涉图样是由一系列同心圆环组成的,称为牛顿环。
牛顿环的形成是由于光在透镜和平面玻璃片的下表面反射时,发生了光的干涉。
由于透镜和平面玻璃片的下表面之间的距离是变化的,因此反射光的光程差也是变化的。
当光程差是某个特定值的整数倍时,就会出现干涉加强的现象,形成明亮的圆环。
而当光程差是半个波长的奇数倍时,就会出现干涉减弱的现象,形成暗环。
通过测量干涉图样的直径,可以计算出透镜和平面玻璃片之间的厚度差。
这是因为干涉图样的直径与厚度差之间存在一定的关系。
在本实验中,我们使用读数显微镜来测量牛顿环的直径。
三、实验步骤1.将平凸透镜和平面玻璃片清洗干净,并用纸巾擦干。
2.将平面玻璃片放在平凸透镜的平面上,并使它们之间保持紧密接触。
3.打开读数显微镜,将干涉图样调整到视野中央。
4.调节显微镜的焦距和光源的亮度,使干涉图样清晰可见。
5.使用读数显微镜测量干涉图样的直径,并记录数据。
在每个亮环和暗环的中心位置测量三次,取平均值作为测量结果。
6.重复以上步骤,测量多个干涉图样的直径。
7.根据测量结果计算透镜和平面玻璃片之间的厚度差,并分析误差来源。
四、实验结果与分析在本实验中,我们测量了多个牛顿环的直径,并根据测量结果计算了透镜和平面玻璃片之间的厚度差。
以下是我们测量和计算的数据:通过计算我们发现,厚度差与直径之间存在线性关系,即厚度差是直径的一半。
这是因为干涉图样的直径与厚度差之间存在正比关系。
牛顿环干涉实验报告

一、实验目的1. 观察和分析牛顿环的等厚干涉现象。
2. 学习利用牛顿环干涉现象测量平凸透镜的曲率半径。
3. 深入理解光的干涉原理及其应用。
二、实验原理牛顿环干涉现象是等厚干涉的一个典型实例。
当一平凸透镜与一平板紧密接触时,在其间形成一层厚度逐渐增大的空气薄层。
当单色光垂直照射到该装置上时,经空气薄层上下表面反射的两束光发生干涉,形成明暗相间的同心圆环,称为牛顿环。
根据波动理论,设形成牛顿环处空气薄层厚度为d,两束相干光的光程差为ΔL = 2dλ/2,其中λ为入射光的波长。
当ΔL满足以下条件时:- ΔL = Kλ/2 (K为整数)时,形成明环;- ΔL = (2K+1)λ/2 (K为整数)时,形成暗环。
三、实验仪器1. 牛顿环仪:包括平凸透镜、平板、金属框架等。
2. 读数显微镜:用于观察和测量牛顿环的直径。
3. 单色光源:如钠光灯。
四、实验步骤1. 将平凸透镜和平板安装在金属框架上,确保两者紧密接触。
2. 调整显微镜,使其对准牛顿环装置。
3. 打开单色光源,调节其强度,使光线垂直照射到牛顿环装置上。
4. 观察并记录牛顿环的明暗相间的同心圆环,注意记录其直径。
5. 根据实验数据,计算平凸透镜的曲率半径。
五、实验数据及结果假设实验中测得牛顿环的直径分别为d1、d2、d3...dn,计算平均直径d_avg = (d1 + d2 + d3 + ... + dn) / n。
根据牛顿环干涉公式,有:ΔL = (2d_avgλ/2) = Kλ/2 或ΔL = (2K+1)λ/2解得曲率半径R:R = (λd_avg) / (2K) 或R = (λd_avg) / (2K+1)六、实验结果分析通过实验,我们观察到牛顿环的等厚干涉现象,并成功测量了平凸透镜的曲率半径。
实验结果表明,牛顿环干涉现象在光学测量中具有广泛的应用,如测量光学元件的曲率半径、检测光学系统的质量等。
七、实验总结1. 牛顿环干涉实验是研究等厚干涉现象的一个典型实例,通过实验,我们深入理解了光的干涉原理及其应用。
牛顿环-等厚干涉标准实验报告

实验学生:学号:实验地点: 一、实验室名称:、实验项目名称:牛顿环测曲面半径和劈尖干涉 三、实验学时: 四、实验原理:1、等厚干涉如图1所示,在C 点产生干涉,光线11'和22'的光程差为 △ =2d+入12式中是因为光由光疏媒质入射到光密媒质上反射时,有一相位突 变引起的附加光程差。
当光程差 △ =2d+ ”2=(2k+1) ”2, 即d=k ”2时 产生暗条纹; 当光程差 △ =2d+ ”2=2k ”2, 即d=(k — 1/2) ”2时 产生明条纹; 因此,在空气薄膜厚度相同处产生同一级的干涉条纹,叫等厚干涉条2、用牛顿环测透镜的曲率半径将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则报告指导教师: 实验时间:可组成牛顿环装置。
如图2所示。
这两束反射光在AOB表面上的某一点E 相遇,从而产生E点的干涉。
由于AOB 表面是球面,所产生的条纹是明暗相间的圆环,所以称为牛顿环,如图3所示。
图33、劈尖干涉将两块光学平玻璃重叠在一起,在一端插入一薄纸片,则在两玻璃板间形成一空气劈尖,如图4所示。
K级干涉暗条纹对应的薄膜厚度为d=k "2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在薄纸处呈现k=N级条纹,则薄纸片厚度为d'N "2 若劈尖总长为L,再测出相邻两条纹之间的距离为△ x,则暗条纹总数为N =L/A x, 即d'L "2 △ x。
五、实验目的:深入理解光的等厚干涉及其应用,学会使用移测显微镜六、实验容:1、用牛顿环测透镜的曲率半径2、用劈尖干涉法测薄纸片的厚度图2一L 一 |七、实验器材(设备、元器件):牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电源。
八、实验步骤:1.用牛顿环测透镜的曲率半径(1)在日光下,用手轻调牛顿环仪上的三个螺钉,使牛顿环位于其中心。
螺钉不要调得太紧(会压坏玻璃),也不要调得太松(牛顿环不稳定,容易移动,无法准确进行测量)。
大学物理实验牛顿环实验报告含数据

大学物理实验牛顿环实验报告含数据一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习用干涉法测量透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理牛顿环是一种等厚干涉现象。
将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面与平面玻璃之间就会形成一个上表面是球面,下表面是平面的空气薄层,其厚度从中心接触点到边缘逐渐增加。
当一束单色平行光垂直照射到牛顿环装置上时,在空气薄层的上、下表面反射的两束光将产生干涉。
在反射光中观察会看到以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,形成的第 m 级暗环的半径为 rm,对应的空气薄层厚度为 em。
由于光程差等于半波长的奇数倍时产生暗纹,所以有:\\begin{align}2e_m +\frac{\lambda}{2} &=(2m + 1)\frac{\lambda}{2}\\2e_m &= m\lambda\\e_m &=\frac{m\lambda}{2}\end{align}\又因为在直角三角形中,有\(r_m^2 = R^2 (R e_m)^2 \approx 2Re_m\)(因为 em 远小于 R)所以可得\(r_m^2 = mR\lambda\),则\(R =\frac{r_m^2}{m\lambda}\)通过测量暗环的半径,就可以计算出透镜的曲率半径 R。
三、实验仪器读数显微镜、钠光灯、牛顿环装置。
四、实验步骤1、调节读数显微镜调节目镜,使十字叉丝清晰。
转动调焦手轮,使镜筒自下而上缓慢移动,直至从目镜中看到清晰的牛顿环图像。
移动牛顿环装置,使十字叉丝交点与牛顿环中心大致重合。
2、测量牛顿环直径转动测微鼓轮,使十字叉丝从牛顿环中心向左移动,依次对准第30 到第 15 暗环,记录读数。
继续转动鼓轮,使叉丝越过中心向右移动,依次对准第 15 到第 30 暗环,记录读数。
3、重复测量重复上述步骤,共测量 5 组数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
学生姓名:学号:指导教师:
实验地点:实验时间:
一、实验室名称:
二、实验项目名称:牛顿环测曲面半径和劈尖干涉
三、实验学时:
四、实验原理:
1、等厚干涉
如图1所示,在C点产生干涉,光线11`和22`的光程差为△=2d+λ/2
式中λ/2是因为光由光疏媒质入射到光密媒质上反射时,有一相位
突变引起的附加光程差。
当光程差△=2d+λ/2=(2k+1)λ
即d=k λ/2时产生暗条纹;
当光程差△=2d+λ/2=2kλ/2,
即d=(k-1/2)λ/2时产生明条纹
图1
因此,在空气薄膜厚度相同处产生同一级的干涉条纹,叫等厚干涉条纹。
2、用牛顿环测透镜的曲率半径
将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则
可组成牛顿环装置。
如图2所示。
这两束反射光在AOB 表面上的某一点E 相遇,从而产生E 点的干涉。
由于AOB 表面是球面,所产生的条纹是明暗相间 的圆环,所以称为牛顿环,如图3所示。
将两块光学平玻璃重叠在一起,在一端插入一薄纸片,则在两玻璃板间形成一空气劈尖,如图4所示。
K 级干涉暗条纹对应的薄膜厚度为d=k λ/2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在薄纸处呈现k=N 级条纹,则薄纸片厚度为 d ’=N λ/2 若劈尖总长为L,再测出相邻两条纹之间的距离为△x,则暗条纹总数为N=L/△x , 即 d ’=L λ/2 △x 。
五、实验目的:
深入理解光的等厚干涉及其应用,学会使用移测显微镜。
六、实验内容:
1、用牛顿环测透镜的曲率半径 2、用劈尖干涉法测薄纸片的厚度 七、实验器材(设备、元器件):
牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电
图2
L
d
源。
八、实验步骤:
1.用牛顿环测透镜的曲率半径
(1)在日光下,用手轻调牛顿环仪上的三个螺钉,使牛顿环位于其中心。
螺钉不要调得太紧(会压坏玻璃),也不要调得太松(牛顿环不稳定,容易移动,无法准确进行测量)。
此时用肉眼可以看到很小的彩色牛顿环。
(2)接通钠光灯电源,将牛顿环仪放在移测显微镜的载物台上,仔细调节移测显微镜,当出现清晰的牛顿环后,应左右移动镜筒,以便在读数范围内的牛顿环都清晰可测。
(3)首先找到牛顿环的中心环,然后由中心环开始向一侧移动显微镜,同时数出叉丝扫过的环数达到某一环(如第25环)后,再回转数环(5环以上,以便消除空转误差),此时即可开始测量,将显微镜沿一个方向移动,测出所有需测数据并记录.
2.用劈尖干涉法测薄片的厚度
(1)检查平行平面玻璃板上是否有灰尘、指纹,必要时可以用擦镜纸擦干净。
(2)把一侧夹有待测薄片或细丝的两块玻璃板放在移测显微镜的载物台上,调整显微镜,使视场中出现一系列清晰的明暗直条纹。
读数时要保证整个劈尖位于显微镜移测范围之内。
(3)首先测出劈尖长L,然后测量20个暗条纹的间距,最后计算出即可由式d’=L λ/2 △x算出被测量。
九、实验数据及结果分析:
1.数据记录表格
λ
)(422n m D D R n
m --== 38.66.×10-6 / 4×10×590×10-9 =1.638 (m)
)
15(5)(2
22222)
(22-⎥⎦⎤
⎢⎣⎡---=
∑
-n m i n m D D D D D D S n
m = 0.065mm 2
3
)(22∆=
-n
m
D D u = 0.003 mm 2
2)(2)()(222222n
m n m n m D D D D D D u S ---+=σ = 0.260 mm 2
λ
σσ)(4)
(22n m n
m
D D R -=
-= 0.011 mm 2
R R R δ±==(1.64±0.01)m 2劈尖干涉
数据记录
||1i i n x x L -=+= 6.218 ||0x x L L -== 33.067
L L n d n 2
λ
=
= 6.275×10-5 (m) mm d d d )(σ±== (6.275×10-5±0.012) m 十、实验结论:
光的干涉在科研、生产和生活中有着广泛应用,如用来检查光学元件表面的光洁度和平整度,用来测量透镜的曲率半径和光波波长,用来测量微小厚度和微小角度等等。
通过本实验可以深刻地理解等厚干沙现象及其应用。
十一、总结及心得体会:
为了避免螺旋空程引入的误差,在整个测量过程中,鼓轮只能沿一个方向转动,稍有反转,全部数据应作废。
读数时应尽量使竖直叉丝对准干涉条纹的中心,尽量测量远离中心的圆环,因为在接触处玻璃的弹性形变,将使中心附近的圆环发生移位。
由于计算及时只需知道环数差,因此,哪一条暗环作为第一环可以任意选择,一旦选定,在整个测量过程中就不能再改变。
十二、对本实验过程及方法、手段的改进建议:
为了在实验中能清晰地看到牛顿环,建议使用高清晰度的移测显
微镜。