材料科学基础线缺陷位错

合集下载

线缺陷和面缺陷

线缺陷和面缺陷

线缺陷和面缺陷在材料科学和工程中,缺陷是指材料在制造、加工或使用过程中出现的各种不规则形态。

这些缺陷可能影响材料的性能,如强度、电导率、热导率等。

根据存在的范围,缺陷可以分为线缺陷、面缺陷和体缺陷。

以下是关于线缺陷和面缺陷的详细解释。

一、线缺陷线缺陷是指沿着材料某一特定方向(通常是晶体结构中的某一方向)分布的缺陷。

这种缺陷可以在晶体内任何位置出现,影响材料的力学、电学和热学性能。

常见的线缺陷包括位错和层错。

1.位错位错是指晶体中某处的原子或离子偏离了正常的晶格位置,形成了一个“线状”的缺陷。

位错是金属材料中最常见的一种缺陷,它对材料的强度、硬度、塑性和韧性等力学性能都有重要影响。

根据形成机制,位错可以分为刃型位错、螺型位错和混合位错等。

2.层错层错是指晶体中相邻的两个原子平面之间出现的错位。

它通常发生在两个不同原子面的交界处,对材料的力学和电学性能有很大影响。

层错的形成与材料中的温度、压力和杂质等因素有关。

二、面缺陷面缺陷是指分布在材料表面或近表面的缺陷。

这类缺陷对材料性能的影响主要表现在表面效应和界面效应上。

常见的面缺陷包括晶界、相界和表面粗糙等。

1.晶界晶界是指多晶体材料中相邻晶粒之间的界面。

由于不同晶粒的晶体取向不同,晶界处会产生一定的应力集中。

晶界对材料的力学性能、电学性能和热学性能都有一定影响。

为了提高材料性能,可以通过优化晶粒尺寸和分布来减少晶界数量。

2.相界相界是指多相材料中不同相之间的界面。

相界处的原子结构和化学成分往往与主体材料不同,导致其性能具有各向异性。

相界对材料的力学性能、电学性能和热学性能都有重要影响。

优化相界结构可以提高材料的综合性能。

3.表面粗糙表面粗糙是指材料表面或近表面的微观不平整性。

它可能是由于加工过程中冷却速度不均匀、材料氧化等原因导致的。

表面粗糙会影响材料的表面能、润湿性、涂层附着力和摩擦学性能等。

通过表面处理技术(如抛光、喷砂等)可以改善表面粗糙度,提高材料的性能。

材料科学基础位错理论

材料科学基础位错理论
返回
1.1 点缺陷
一、点缺陷的形式与分类
• 金属晶体中,点缺陷的存在形式有:空位、间隙原子,置换原子。 • 半金属Si、Ge中掺入三价和五价杂质元素,晶体中产生载流子,得
到P型(空穴)和N型(电子)半导体材料。 • 离子晶体中,单一点缺陷的出现,晶体将失去电平衡。为了保持电
中性,将以复合点缺陷形式出现,形成能较高。
返回
• 半共格界面:(界面能中等) 当相邻晶粒的晶面间距相差较大时,将由若干位
错来补偿其错配,出现共格区与非共格区相间界面。
AB
半共格界面中的 共格区A +非共格区B
返回
• 非共格界面: (界面能高) 当两相邻的晶粒的晶面间距相差很大时,界面上的
原子排列完全不吻合,出现高缺陷分布的界面。
返回
二、界面结构
螺位错柏氏矢量的确定:
b
右旋闭合回路
完整晶体中回路

螺位错

b
右螺
左螺
b b
b b
b
b
返回
混合型位错的柏氏矢量
b
bs
be
be b sin bs b cos
返回
2、柏氏矢量的意义
• 意义在于:通过比较反映出位错周围点阵畸变的总积 累(包括强度和取向)。位错可定义为柏氏矢量不为 零的晶体缺陷。

返回
4、实际晶体中的柏氏矢量
• 实际晶体中位错的 b,通常用晶向表示。
b
a
uvw
n
ra b n
u2 v2 w2
b表示错排的程度,称为位错的强度。一般晶体的滑移是
在原子最密集的平面和最密集的方向上进行,所以沿该方
向造成的位错柏氏矢量,等于最短的滑移矢量。(称为初 基矢量)。这种位错称为单位位错。—— 为b最近邻的原子

材料科学基础四大强化机制

材料科学基础四大强化机制

材料科学基础四大强化机制材料科学是研究材料的结构、性能、制备和应用的学科,是现代科学技术的重要基础。

为了提高材料的性能和功能,材料科学基础研究通常会采用一系列的强化机制。

本文将介绍材料科学基础中的四大强化机制,并分别进行详细解析。

一、晶体缺陷强化机制晶体缺陷是指晶体内部的缺陷或畸变,包括点缺陷、线缺陷和面缺陷等。

晶体缺陷强化机制是通过引入和控制晶体缺陷,来提高材料的力学性能和稳定性。

点缺陷可以通过合金元素的掺杂来引入,从而改变晶体的结构和性能。

线缺陷可以通过外加应力或热处理来引入,从而阻碍晶体的滑移和变形,提高材料的强度和硬度。

面缺陷可以通过晶粒细化和相界强化来实现,从而提高材料的塑性和韧性。

二、相变强化机制相变是指材料在温度、压力或组分等条件改变下发生的结构转变。

相变强化机制是通过控制材料的相变行为,来调控材料的性能和结构。

例如,通过合金化和热处理,可以控制材料的相变温度和相变速率,从而改变材料的硬度、强度和韧性。

此外,相变还可以引发材料的形状记忆效应和超弹性等特殊性能。

三、晶界强化机制晶界是指晶体之间的界面或界面区域,是晶体内部的缺陷和畸变的集中位置。

晶界强化机制是通过控制和调控晶界的结构和性质,来提高材料的力学性能和稳定性。

晶界可以通过晶粒尺寸控制和晶界工程来实现强化。

晶粒尺寸的减小可以提高材料的塑性和韧性,而晶界工程可以通过合金元素的添加和热处理来调控晶界的能量和结构,从而提高材料的强度和硬度。

四、位错强化机制位错是材料中晶格的缺陷和畸变,是材料塑性变形的基本单位。

位错强化机制是通过控制和调控位错的密度和类型,来提高材料的力学性能和稳定性。

位错可以通过外加应力和热处理来引入和操控,从而阻碍材料的滑移和变形,提高材料的强度和硬度。

位错还可以引发材料的弹性形变和塑性形变等特殊性能。

总结起来,材料科学基础中的四大强化机制分别是晶体缺陷强化、相变强化、晶界强化和位错强化。

这些强化机制通过引入和控制材料的缺陷、相变、晶界和位错等结构特征,可以有效地提高材料的力学性能和稳定性,为材料科学和工程提供了重要的理论和实践基础。

材料科学基础第三章晶体缺陷

材料科学基础第三章晶体缺陷

够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。

材料科学基础位错理论

材料科学基础位错理论

材料科学基础位错理论位错理论是材料科学领域中的重要概念之一、它是位错理论与晶体缺陷之间相互关联的核心。

本文将从位错的定义、分类和特征出发,进一步介绍位错理论的基本原理和应用。

首先,位错是固体晶体结构中的一种缺陷。

当晶体晶格中发生断裂、错位或移动时,就会形成位错。

位错可以被看作是晶体中原子排列的异常,它具有一定的形态、构型和特征。

根据位错发生的方向和类型,位错可分为直线位错、面位错和体位错。

直线位错是沿晶体其中一方向上的错排,常用符号表示为b。

直线位错一般由滑移面和滑移方向两个参数来表征。

滑移面是指位错的平移面,滑移方向是位错在晶体中的移动方向。

直线位错可以进一步分为边位错和螺位错。

边位错的滑移面为滑移方向的垂直面,螺位错则是在滑移面上存在沿位错线方向扭曲的位错。

面位错是晶体晶格上的一次干涉现象,即滑移面上的两部分之间发生错排。

面位错通常由面位错面和偏移量来描述。

面位错可以是平面GLIDE面位错、垂直GLIDE面位错或螺脚面位错。

体位错是沿体方向上的排列不规则导致的位错。

体位错通常是由滑移面间的晶体滑移产生的。

位错理论的基本原理是通过研究位错在晶体中的移动机制和相互作用,来理解材料的塑性变形和力学行为。

位错理论最早由奥斯勒(Oliver)于1905年提出,他认为材料的塑性变形是由于位错在晶体中游走和相互作用所引起的。

这一理论为后来的位错理论奠定了基础。

位错理论的应用非常广泛。

在材料加工和设计中,位错理论被广泛用于控制材料的力学性能和微观结构。

通过控制位错的生成、运动和相互作用,可以获得理想的材料性能。

同时,位错理论也被用于研究材料的磁性、电子输运和热传导性能等方面。

此外,位错理论也在材料的缺陷工程和腐蚀研究中发挥着重要作用。

通过控制位错的形态和分布,在材料中引入有利于抵抗腐蚀的位错类型,可以提高材料的抗腐蚀性能。

位错理论也可以用于解释材料的断裂行为和疲劳寿命等方面。

总结起来,位错理论是材料科学基础中的重要内容。

第3章点缺陷、位错的基本类型和特征_材料科学基础

第3章点缺陷、位错的基本类型和特征_材料科学基础



陷,如Fe1-xO、Zn1+xO等晶体中的缺陷。
特点:其化学组成随周围气氛的性质及其分压大
小而变化。是一种半导体材料。
4. 其它原因,如电荷缺陷,辐照缺陷等
6


3.1 点缺陷

1. 基本概念:如果在任何方向上缺陷区的尺寸


都远小于晶体或晶粒的线度,因而可以忽略

不计,那么这种缺陷就叫做点缺陷。 点缺陷
T 100K 300K 500K 700K 900K 1000K n/N 10-57 10-19 10-11 10-8.1 10-6.3 10-5.7
14
3.1
点 4. 点缺陷的产生

陷 ➢ 平衡点缺陷:热振动中的能力起伏。 ➢ 过饱和点缺陷:外来作用,如高温淬火、辐 照、冷加工等。
15
3.1
点 5. 点缺陷的运动:迁移、复合-浓度降低;聚集
需的能量,叫空位移动能Em。自扩散激活能 相当于空位形成能与移动能的总和。
17
3.1
6. 点缺陷与材料行为

缺 (1)结构变化:晶格畸变(如空位引起晶格收

缩,间隙原子引起晶格膨胀,置换原子可引
起收缩或膨胀。);形成其他晶体缺陷(如
过饱和的空位可集中形成内部的空洞,集中
一片的塌陷形成位错。)
(2)性能变化:物理性能:如电阻率增大,密 度减小。力学性能:屈服强度提高(间隙原 子和异类原子的存在会增加位错的运动阻 力。)加快原子的扩散迁移
位错运动导致晶体滑移的方向;该矢量的模|b|表示
了畸变的程度,即位错强度。
② 柏氏矢量的守恒性:柏氏矢量与回路起点及其具体途 径无关。一根不分岔的位错线,不论其形状如何变化 (直线、曲折线或闭合的环状),也不管位错线上各 处的位错类型是否相同,其各部位的柏氏矢量都相同; 而且当位错在晶体中运动或者改变方向时,其柏氏矢 量不变,即一根位错线具有唯一的柏氏矢量。

材料科学基础结构缺陷详解

材料科学基础结构缺陷详解
远大于Sckottky 空位形成能(约为1ev)。
第一节 点缺陷
1-2 点缺陷的平均浓度
Material
以空位平均浓度为例:
C Aexp( Ev kT)
式中:C —— 空位的平均浓度; A —— 缺陷形成的自由能; k —— 波尔兹曼常数; T —— 温度;
上式说明:点缺陷的平均浓度与温度密切相关,温度越高,C以指数 规律急剧增大。
b
a
uvw,其
n
中n是与点阵类型有关的常数。柏氏矢量的模
a b
u2 v2 w2

n
四、位错的柏氏矢量( b )
7. 位错密度
Material
位错的密度包括以下两种: •体密度(ρv ) •面密度( ρs )
第一节 点缺陷
1-1 点缺陷的类型及形成(续)
Material
有动 画哦
(a)Schottky空位形成示意图
(b)Frankel空位形成示意图
第一节 点缺陷
1-1 点缺陷的类型及形成(续)
Material
④点缺陷形成能: 点缺陷形成能=电子能+畸变能
(空位形成能中,电子能是主要的;间隙原子形成能,畸变能是主 要的。) 间隙原子形成能 > 空位形成能 Frankel 空位形成能=空位形成能 + 间隙原子形成能(约为4ev),
材料科学基础
第一讲 晶体中的结构缺陷
缺陷在空间的分布情况
缺陷在空间的分布有如下三种情况:
Guidelines
①点缺陷: 是零维缺陷,包括空位、间隙原子、置换原子等;
②线缺陷: 是一维缺陷,即位错;
③面缺陷: 是二维缺陷,包括晶界、相界、孪晶界、堆垛层错等;
缺陷在空间的分布情况

晶体缺陷-线缺陷讲解

晶体缺陷-线缺陷讲解
(1)有一个额外的半原子面;
(2)刃型位错线可理解为晶体中已滑 移区与未滑移区的边界线;
(3)滑移面必定是同时包含有位错线 和滑移矢量的平面,在其他面上不 A 能滑移;
(4)晶体中存在刃型位错之后,位错 周围的点阵发生弹性畸变;
(5)在位错线周围的过渡区(畸变区 )每个原子具有较大的平均能量。
H D
错中心附近的原子沿柏氏矢量方向在滑移面上不断 地作少量的位移(小于一个原子间距)而逐步实现 的。(刃型位错和螺型位错均可发生) 4.2 位错的攀移
刃型位错在垂直于滑移面的方向上运动,即发 生攀移。实质上就是构成刃型位错的多余半原子面 的扩大或缩小。(螺型位错没有多余的半原子面, 因此不会发生攀移运动)
12
三.柏氏矢量
(a) 实际晶体
(a) 理想晶体
13
三.柏氏矢量
3.2 右手法则(确定刃型位
错的正负): 先人为的规定位错线方向,
用右手的拇指、食指和中指构 成直角坐标,以食指指向位错 线的方向,中指指向柏氏矢量 的方向,则拇指的指向代办多 余半原子面的位向,且规定拇 指向上者为正刃型位错;反之 为负刃型位错。
(2)线缺陷:特征是在两个方向上尺寸很小,另外一 个方向上延伸较长。如各种位错;
(3)面缺陷:特征是在一个方向上尺寸很小,另外两 个方向上扩展很大。如晶界、孪晶界等。
5
二.位错(dislocation)
2.1 位错的定义:晶体的线缺陷表现为各种
类型的位错。即晶体中某处一列或若干列原 子有规律的错排。
3.1 柏氏矢量的确定:柏氏矢量可通过
柏氏回路(Burgers circuit)来确定。 在含有位错的实际晶体中作一个包含位 错发生畸变的回路,然后将这同样大小 的回路置于理想晶体中,此时回路将不 能封闭,需引一个额外的矢量b连接回路 ,才能使回路闭合,这个矢量b就是实际 晶体中位错的柏氏矢量。如图所示: a )实际晶体(b) 完整晶体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– Dislocation strengthening is one of the major strengthening mechanisms for metallic materials
– The properties of LED depend considerably on the dislocation density in light emission materials such as GaN and SiC (the lower, the better)
Tensile stresses
Represented by symbol - positive dislocation; - negative
Screw dislocation
Representation
AB – dislocation line
Open circles – atom positions above the slip plane; solid circles – atom positions below the slip plane
– To reduce the energy of the system, grains tend to grow to reduce the total grain boundary area.
– Degree of misorientation – low angle boundary (<10o) and high angle boundary (>15o). Low angle boundaries are composed of dislocations
External Surfaces
• Surface atoms are not bonded to the nearest neighbors above the surface, leading to a higher energy state, i.e., a surface energy
• To be stable, materials need to reduce the surface energy.
• Observation of dislocations
Dark lines - dislocations
Plane Defects
Features: two dimensional
Outline
• External surfaces • Grain boundaries • Twin boundaries • Stacking faults • Phase boundaries
– One dislocation just has one b
– For metals, b normally points in a close-packed crystal direction and its magnitude is the interatomic spacing because the slip direction is normally in the close-packed direction
Linear Defect – Dislocations
Features: one dimensional
• Classification and formation
– Edge dislocation and screw dislocation
Edge dislocation
Compressive stresses
• To reduce the surface energy, the materials tend to minimize the total surface area
Grain Boundaries
In polycrystalline materials, a grain boundary is the boundary between two adjacent grains which have different orientations
• Features of grain boundaries
– 2~3 atomic layers thick (0.5~1 nm)
– Within the boundary, there is some atomic mismatch and the density is lower, so the grain boundary is in a higher energy state, leading to a grain boundary energy
Mixed dislocation
• Burgers vector
– Used to indicate the direction and magnitude of the lattice distortion caused by a dislocation
– Denoted as b
– For edge dislocations, b is perpendicular to the dislocation line; for screw dislocations, b is parallel to the dislocation line; for mixed dislocations, b is neither perpendicular nor parallel to the dislocation line
Edge dislocation
Screw dislocation
Mixed dislocation
• Effects of dislocations on the properties of materials
– Play a crucial role in the plastic deformation of materials
Tilt boundary
nt the extent of CSL e.g., 3, 15, etc.
相关文档
最新文档