2018北京市朝阳区高三第二次综合练习数学(文)

合集下载

北京市朝阳区2018届高考二模数学试题(文)含答案

北京市朝阳区2018届高考二模数学试题(文)含答案

北京市朝阳区高三年级第二次综合练习数学学科测试(文史类) 第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|320A x x x =-+<,{}|1B x x =≥,则AB =( )A .(2]-∞,B .(1)+∞,C .(12),D .[1)+∞, 2.计算2(1)i -=( )A .2iB .2i -C .2i -D .2i +3.已知x ,y 满足不等式220101x y x y y --⎧⎪+-⎨⎪⎩,,≤≥≤则3z y x =-的最小值是( )A .1B .3-C .1-D . 72-4.在ABC △中,1a =,6A π∠=,4B π∠=,则c =( )AB 62- C.625.“01a <<且01b <<”是“log 0a b >”的( ) A .充分而不必要条件 B .必要而不充分条件 C.充分必要条件 D .既不充分也不必要条件6.如图,角α,β均以Ox 为始边,终边与单位圆O 分别交于点A ,B ,则OA OB ⋅=( )A .sin()αβ-B .sin()αβ+ C.cos()αβ- D .cos()αβ+7.已知定义在R 上的奇函数()f x 在[0)+∞,上单调递减,且0a b +>,0b c +>,,0a c +>,则()()()f a f b f c ++的值( )A .恒为正B .恒为负 C.恒为0 D .无法确定8.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为( )A .4B .5 C.6 D .7第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上) 9.执行如图所示的程序框图,则输出的S = .10.双曲线22143x y -=的焦点坐标是 ;渐近线方程是 .11.已知0x >,0y >,且满足4x y +=,则lg lg x y +的最大值为 . 12.已知某三棱锥的三视图如图所示,则该三棱锥的体积是 .13.在平面直角坐标系xOy 中,点P (不过原点)到x 轴,y 轴的距离之和的2倍等于点P 到原点距离的平方,则点P 的轨迹所围成的图形的面积是 .14.如图,已知四面体ABCD 的棱AB ∥平面α,且AB =1.四面体ABCD 以AB 所在的直线为轴旋转x 弧度,且始终在水平放置的平面α上方.如果将四面体ABCD 在平面α内正投影面积看成关于x 的函数,记为()S x ,则函数()S x 的最小值为 ;()S x 的最小正周期为 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.已知函数()2sin (sin cos )f x x x x a =+-的图象经过点(1)2π,,a ∈R .(1)求a 的值,并求函数()f x 的单调递增区间; (2)若当[0]2x π∈,时,求函数()f x 的最小值.16.已知数列{}n a 的前n 项和2n S pn qn =+(p ,q ∈R ,*n ∈N )且13a =,424S =. (1)求数列{}n a 的通项公式;(2)设2n a n b =,求数列{}n b 的前n 项和n T . 17.(1)根据表中数据写出这10年内银杏数列的中位数,并计算这10年栽种银杏数量的平均数;(2)从统计的数据中,在栽种侧柏与银杏数量之差的绝对值不小于300株的年份中,任意抽取2年,恰有1年栽种侧柏的数列比银杏数量多的概率.18.如图,在四棱锥P ABCD -中,平面PBC ⊥平面ABCD .PBC △是等腰三角形,且3PB PC ==.四边形ABCD 是直角梯形,AB DC ∥,AD DC ⊥,5AB =,4AD =,3DC =(1)求证:AB ∥平面PDC ;(2)当平面PBC ⊥平面ABCD 时,求四棱锥P ABCD -的体积;(3)请在图中所给的五个点P ,A ,B ,C ,D 中找出两个点,使得这两点所在的直线与直线BC 垂直,并给出证明.19. 已知椭圆W :22221x y a b+=(0a b >>A 在圆O :224x y +=上(O 为坐标原点).(1)求椭圆W 的方程;(2)过点A 作直线AQ 交椭圆W 于另外一点Q ,交y 轴于点R ,P 为椭圆W 上一点,且OP AQ ∥,求证:2AQ AR OP⋅为定值.20. 已知函数()x f x xe =,()1g x ax =+,a ∈R .(1)若曲线()y f x =在点(0(0))f ,处的切线与直线()y g x =垂直,求a 的值; (2)若方程()()0f x g x -=在(22)-,上恰有两个不同的实数根,求a 的取值范围;(3)若对任意1[22]x ∈-,,总存在唯一的2(2)x ∈-∞,,使得21()()f x g x =,求a 的取值范围.。

2018年高三最新 北京朝阳区2018届高三理科数学二模试

2018年高三最新 北京朝阳区2018届高三理科数学二模试

朝阳区高三数学第二次统一练习试卷 (理工农医类)2018.5(考试时间120分钟,满分150分) 参考公式:三角函数积化和差公式)]sin()[sin(21cos sin βββ-++=a a a)]sin()[sin(21sin cos βββ--+=a a a)]cos()[cos(21cos cos βββ-++=a a a)]cos()[cos(21sin sin βββ--+-=a a a正棱锥、圆锥侧面积公式:cl S 21=锥侧 其中c 表示底面周长,l 表示斜高或母线长。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上将该选项涂黑。

(1)设全集 I={-2,-1,21-,31,21,1,2,3}, A={31,21,1,2,3}, B={-2,2}则集合{-2}等于()(A )B A ⋂ (B )A ∩B (C)B A ⋂ (D)B A ⋃(2)直线0153:1=+-y x l 与直线044:2=--y x l 所成的角的大小是() (A )32π (B )3π(C )4π (D )6π(3)11->a是a<-1成立的() (A )充分不必要条件 (B )必要不充分条件(C )充分且必要条件 (D )既不充分不必要条件 (4)已知圆锥的体积为π316,中截面面积为π,则圆锥的侧面积为() (A )π54 (B )π52 (C )π62 (D )π172(5)函数)3arccos(x y = )310(≤≤x 的反函数是() (A ))0(cos 312π≤≤=x x y (B ))220(cos 312π≤≤=x x y(C ))0(cos 312π≤≤=x x y (D))220(cos 312π≤≤=x x y (6)若幂函数ax x f =)(满足f(2)=4,那么函数|)1(log |)(+x x g a 的图象为()(7)如图,正四面体S —ABC 中,D 为SC 的中点,则BD 与SA 所成角的余弦值是()(A )33 (B )32 (C )63 (D )62 (8)函数)4cos()4cos(2)(ππ-+=x x x f 周期为()(A )π (B)23π (C )2π (D )3π(9)某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼的外墙。

2018北京朝阳高三二模文科数学试题(含答案

2018北京朝阳高三二模文科数学试题(含答案

北京市朝阳区高三年级第二次综合练习数学学科测试 (文史类)2018.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{}2320A x x x =-+<,{}1B x x =≥,则=ABA .(],2-∞B .()1+∞,C .()12,D .[)1+∞, 2.计算()21i -=A.2iB. 2i -C. 2i -D. 2+i3.已知,x y 满足不等式组220101,x y x y y --≤⎧⎪+-≥⎨⎪≤⎩,,则3z y x =-的最小值是A.1B.3-C.1-D.72-4.在ABC △中,ππ1,,64a A B =∠=∠=,则c =A.5.“01a <<且01b <<”是“log 0a b >”A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6. 如图,角α,β均以Ox 为始边,终边与单位圆O 分别交于点A ,B ,则OA OB ⋅=A. sin()αβ-B. sin()αβ+C. cos()αβ-D. cos()αβ+7.已知定义在R 上的奇函数()f x 在[0,)+∞上单调递减,且0a b +>,0b c +>,0a c +>,则()()()f a f b f c ++的值A . 恒为正B .恒为负C .恒为0D .无法确定8.某校中国象棋社团组织比赛.采用单循环赛制,即要求每个参赛选手必须且只须和其他选手比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次却比其他人都少.则本次比赛的参赛人数至少为 A. 5 B. 6 C. 7 D.8第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.执行如图所示的程序框图,则输出的S = .10.双曲线22143x y -=的焦点坐标是_________,渐近线方程是___________.11. 已知0,0x y >>,且满足4x y +=,则lg lg x y +的最大值为 .12. 已知某三棱锥的三视图如图所示,则该三棱锥的体积是_________.13.在平面直角坐标系xOy 中,点P (不过原点)到x 轴,y 轴的距离之和的2倍等于点P 到原点距离的平方.则点P 的轨迹所围成的图形的面积是 .14. 如图,已知四面体ABCD 的棱AB //平面α,且AB =,其余的棱长均为1.四面体ABCD 以AB 所在的直线为轴旋转x 弧度,且四面体ABCD 始终在水平放置的平面α的上方.如果将四面体ABCD 在平面α内正投影面积看成关于x 的函数,记为()S x ,则函数()S x 的最小正周期为 ;()S x 的最小值为 .俯视图三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)已知函数()2sin (sin cos )f x x x x a =+-的图象经过点(,1)2π,a ∈R . (Ⅰ)求a 的值,并求函数()f x 的单调递增区间; (Ⅱ)当[0,]2x π∈时,求函数()f x 的最小值.16.(本小题满分13分)已知数列{}n a 的前n 项和2(,,*)n S pn qn p q n =+∈∈R N ,且143,24a S ==.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2n a n b =,求数列{}n b 的前n 项和n T .某市的一个义务植树点,统计了近10年栽种侧柏和银杏的数据(单位:株),制表如下:平均数;(Ⅱ)从统计的数据中,在栽种侧柏与银杏数量之差的绝对值不小于300株的年份中,任意抽取2年,恰有1年栽种侧柏的数量比银杏数量多的概率.18.(本小题满分14分)如图,在四棱锥P ABCD -中,△PBC 是等腰三角形,且3PB PC ==.四边形ABCD 是直角梯形,ABDC ,AD DC ⊥,5,4,3AB AD DC ===.(Ⅰ)求证:AB //平面PDC ;(Ⅱ)当平面PBC ⊥平面ABCD 时,求四棱锥P ABCD -的体积;(Ⅲ)请在图中所给的五个点,,,,P A B C D 中找出两个点,使得这两点所在直线与直线BC垂直,并给出证明...已知椭圆2222:1(0)x y W a b a b +=>>,其左顶点A 在圆22:4O x y +=上(O 为坐标原点). (I )求椭圆W 的方程;(II) 过点A 作直线AQ 交椭圆W 于另外一点Q ,交y 轴于点R .P 为椭圆W 上一点,且//OP AQ ,求证:2AQ AR OP⋅为定值.20. (本小题满分13分)已知函数()e xf x x =,()1g x ax =+,a ∈R .(Ⅰ)若曲线()y f x =在点(0,(0))f 处的切线与直线()y g x =垂直,求a 的值; (Ⅱ)若方程()()0f x g x -=在(2,2)-上恰有两个不同的实数根,求a 的取值范围; (Ⅲ)若对任意1[2,2]x ∈-,总存在唯一的2(,2)x ∈-∞,使得21()()f x g x =,求a 的取值范围.北京市朝阳区高三年级第二次综合练习数学学科测试答案(文史类) 2018.5二、填空题(本题满分30分)三、解答题(本题满分80分) 15. (本小题满分13分) 解:(Ⅰ)根据题意得2sin(sin cos )1222a πππ+-=,即2(10)1a +-=, 解得1a =. ()2s i n (s i n c o sf x x x x =+- 22sin 2sin cos 1x x x =+-sin 2cos 2x x =-)4x π=-.由222242k x k πππ-+π≤-≤+π(k ∈Z ),得322244k x k ππ-+π≤≤+π, 所以388k x k ππ-+π≤≤+π, 所以函数()f x 的单调递增区间是3[,88k k k ππ-+π+π](∈)Z .……………7分(Ⅱ)由(Ⅰ)可知())4f x x π=-. 当[0,]2x π∈时,2[,]444x ππ3π-∈-,所以sin(2)124x π-≤-≤.所以1()f x -≤≤ 所以当244x ππ-=-,即0x =时,()f x 取得最小值1-.……………13分 16. (本小题满分13分) 解:(Ⅰ)根据题意得3,16424.p q p q +=⎧⎨+=⎩即3,4 6.p q p q +=⎧⎨+=⎩. 解得1,2.p q =⎧⎨=⎩ 所以22n S n n =+. 当2n ≥时,221(2)[(1)2(1)]21nn n a S S n n n n n -=-=+--+-=+.因为13211a ==⨯+也适合上式,所以21(*)n a n n =+∈N . ……………7分(Ⅱ)因为23121242n n n n b b +++==,且131228a b ===, 所以数列{}n b 是以8为首项,4为公比的等比数列,所以8(14)8(41)143n nn T -==--.……………… 13分17. (本小题满分13分)解:(Ⅰ)这10年中栽种银杏数量的中位数为3700株.设平均数为x ,则34003300360036003700420044003700+4200+4200=383010x +++++++=株.……… 4分(Ⅱ)根据表中数据,满足条件的年份有2009,2010,2011,2013,2014共5年.从这5年中抽取2年,有2009,2010;2009,2011;2009,2013;2009,2014;2010,2011;2010,2013;2010,2014;2011,2013;2011,2014;2013,2014共10种情况.设事件A 表示“任取2年,恰有1年栽种侧柏的数量比银杏的数量多”.则事件A 包括2009,2010;2009,2013;2009,2014;2010,2011;2011,2013;2011,2014共6种情况.所以63()==105P A . 答:任取2年,恰有1年栽种侧柏的数量比银杏的数量多的概率为35………………13分 18. (本小题满分14分) 证明:(Ⅰ)因为ABDC ,又因为AB PDC ⊄平面,DC PDC ⊂平面, 所以//AB 平面PDC . ……3分(Ⅱ)取BC 中点F ,连接PF .又因为PB PC =,所以PF BC ⊥,又因为平面PBC ⊥平面ABCD , 平面PBC平面ABCD =BC ,所以PF ⊥平面ABCD .在直角梯形ABCD 中,因为ABDC ,且AD DC ⊥,4,3AD DC ==,5AB =,所以BC =1=(35)4162ABCD S +⨯=梯形.又因为3PB =,BF ,所以2PF =.所以1132162333P ABCD ABCD V S PF -=⋅=⋅⋅=梯形.……………… 9分 (Ⅲ),A P 点为所求的点. 证明如下:连接,AF AC . 在直角梯形ABCD 中,因为AB DC ,且AD DC ⊥,4,3AD DC ==,所以5AC =.因为5AB =,点F 为BC 中点,所以AF BC ⊥. 又因为BC PF ⊥,AFPF F =,所以BC PAF ⊥平面.又因为PA PAF ⊂平面,所以PA BC ⊥.…………14分 19. (本小题满分14分)解:(I )因为椭圆W 的左顶点A 在圆22:4O x y +=上, 令0y =,得2x =±,所以2a =.,所以c e a ==,所以c =所以2221b a c =-=, 所以W 的方程为2214x y +=.…………5分 (II)证明:设00(,)P x y ,易知00x ≠,有222200001,444x y x y 即+=+=, 设(,)Q Q Q x y ,直线AQ 方程为00(2)y y x x =+,联立22001,4(2).x y y y x x ⎧+=⎪⎪⎨⎪=+⎪⎩即 22222200000(4)161640x y x y x y x +++-=,即2222000440x y x y x ++-=, 所以2024Q x y -+=-,即2024Q x y =-,所以,2200224244Q x y y +=-+=-. 故有:2022002(44)22=2Q x AQ AR AQ AR y OPOPx x x OP+⋅-⨯⋅=⋅==. …………14分. 20. (本小题满分13分)解:(Ⅰ)由题意可知()(1)x f x x e '=+,(0)1f '=,因为曲线()y f x =在点(0,(0))f 处的切线与直线()y g x =垂直,所以1a =-.……………… 3分(Ⅱ)令()()()h x f x g x =-,(2,2)x ∈-.则()(1)e ,()(2)e 0x x h x x a h x x '''=+-=+>所以,()h x '在区间(2,2)-上单调递增.依题意,(2)0(2)0h h '-<⎧⎨'>⎩ ,解得221(,3e )e a ∈-.所以0(2,2)x ∃∈-,使得0()0h x '=,即00(1)e 0x x a +-=, 于是()h x 的最小值为0000()e 1x h x x ax =--.依题意,0(2)0(2)0()0h h h x ->⎧⎪>⎨⎪<⎩,,,因为000020000000()e 1e (1)e 1e 10x x x x h x x ax x x x x =--=-+-=--<,所以,解得22111(,e )e 22a ∈+-.……………… 8分 (Ⅲ) ()(1)e x f x x '=+⋅,令()0f x '=,得1x =-.当(,1)x ∈-∞-时,()0f x '<,函数()f x 为减函数; 当(12)x ∈-,时,()0f x '>,函数()f x 为增函数. 所以函数()f x 的最小值1(1)ef -=-. 又2(2)2e f =.显然当0x <时,()0f x <.令2()e ,1x t x x x =<-.则2()(2)e .x t x x x '=+令()0t x '=,得2x =-或0.所以()t x 在()2-∞-,内为增函数,在()21--,内为减函数. 所以max 24()(2)1et x t =-=<.所以2e 1x x <. 又1x <-,所以1e x x x>. 而当1x <-时,()11,0x ∈-, 所以当(],1x ∈-∞-时,1(),0e f x ⎡⎫∈-⎪⎢⎣⎭; 当(1,0)x ∈-时,1(),0e f x ⎛⎫∈- ⎪⎝⎭.(1) 当0a =时,()1g x =,符合题意; (2) 当0a >时,易得()[21,21]g x a a ∈-++.依题意2210212e a a -+≥⎧⎨+<⎩,,所以21,21e ,2a a ⎧≤⎪⎪⎨⎪<-⎪⎩所以此时102a <≤.(3) 当0a <,则()[2121]g x a a ∈+-+,,依题意2210212e a a +≥⎧⎨-+<⎩,, 所以21,21e ,2a a ⎧≥-⎪⎪⎨⎪>-+⎪⎩所以102a -≤<. 综上11[,]22a ∈-. ……………13分。

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。

2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题纸上,写在本试卷上无效。

3.考试结束后,将本试卷和答题纸一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。

$(-4,-3)$B。

$[-4,-3]$C。

$(-\infty,-3)\cup(4,+\infty)$D。

$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。

$-\frac{2}{5}+\frac{1}{5}i$B。

$-\frac{2}{5}-\frac{1}{5}i$C。

$\frac{2}{5}+\frac{1}{5}i$D。

$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。

$\frac{2}{3}$B。

$\frac{1}{5}$C。

$\frac{2}{5}$D。

$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。

北京市朝阳区高三二模数学(文)试卷 Word版含答案

北京市朝阳区高三二模数学(文)试卷 Word版含答案

北京市朝阳区高三年级第二次综合练习数学学科测试(文史类) 2017.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知i 为虚数单位,则复数z =(1i)i +对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(2)已知x y >,则下列不等式一定成立的是 (A )11x y< (B )2log ()0x y -> (C )33x y <(D ) 11()()22x y <(3)执行如图所示的程序框图,则输出的S 值是(A )15 (B )29 (C ) 31 (D ) 63(4)“0,0x y >>”是“2y xx y+≥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)将函数()cos 2f x x =图象上所有点向右平移π4个单位长度后得到函数()g x 的图象,若()g x 在区间[0,]a 上单调递增,则实数a 的最大值为 (A )π8 (B )π4 (C )π2 (D )3π4(6)某三棱锥的三视图如图所示,则该三棱锥最长的棱长为(A(B) (C )3 (D)(7)已知过定点(20)P ,的直线l与曲线y =相交于Α,Β两点,Ο为坐标原点,当ΑΟΒ∆的面积最大时,直线l 的倾斜角为(A )150 (B )135 (C )120 (D )30(8)“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为a ,b ,c (a b c >>且,,a b c *∈N ),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是(A)甲 (B )乙 (C )丙 (D )乙和丙都有可能第二部分(非选择题 共110分) 二、填空题:本大题共6小题,每小题5分,共30分.(9)已知集合{}121x A x -=>,{}()0B x x x =-2<,则AB = .(10)在平面直角坐标系中,已知点()1,0A -,()1,2B ,()3,1C -,点(),P x y 为ABC ∆边界及内部的任意一点,则x y +的最大值为 .(11)已知平面向量,a b 满足()(2)4+⋅-=-a b a b ,且2=a ,4=b ,则a 与b 的夹角等于 .俯视图正视图侧视图(12)设函数31,0,(),0,x x f x x a x ⎧+>=⎨+≤⎩则(1)f = ;若()f x 在其定义域内为单调递增函数,则实数a 的取值范围是 .(13)已知双曲线22221(0,0)x y a b a b-=>>与抛物线28y x =有一个公共的焦点F .设这两曲线的一个交点为P ,若5PF =,则点P 的横坐标是 ;该双曲线的渐近线方程为 .(14)设P 为曲线1C 上动点,Q 为曲线2C 上动点,则称PQ 的最小值为曲线1C ,2C 之间的距离,记作12(,)d C C .若221:2C x y +=,222:(3)(3)2C x y -+-=,则12(,)d C C = _____;若3:e 20xC y -=,4:ln ln 2C x y +=,则34(,)d C C =_______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c >>2sin =0b C -.(Ⅰ)求角B 的大小;(Ⅱ)若b =1c =,求a 和△ABC 的面积.(16)(本小题满分13分)已知数列{}n a 是首项113a =,公比13q =的等比数列.设132log 1n n b a =- *()n ∈N .(Ⅰ)求证:数列{}n b 为等差数列;(Ⅱ)设2n n n c a b =+,求数列{}n c 的前n 项和n T .(17)(本小题满分13分)某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.(Ⅰ)求a 的值及样本中男生身高在[185,195](单位:cm )的人数;(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;(Ⅲ)在样本中,从身高在[145,155)和[185,195](单位:cm )内的男生中任选两人,求这两人的身高都不低于185 cm 的概率.(18)(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90ACB ∠=︒,1AC BC ==,12AA =,D 是棱1AA 的中点.(Ⅰ)求证:11B C 平面BCD ;(Ⅱ)求三棱锥1B C CD -的体积;(Ⅲ)在线段BD 上是否存在点Q ,使得1CQ BC ⊥?请说明理由.ABC A 1B 1C 1Da已知椭圆W :22214x y b+=(0)b >的一个焦点坐标为0). (Ⅰ)求椭圆W 的方程和离心率;(Ⅱ)若椭圆W 与y 轴交于A ,B 两点(A 点在B 点的上方),M 是椭圆上异于A ,B 的任意一点,过点M 作MN y ⊥轴于N ,E 为线段MN 的中点,直线AE 与直线1y =-交于点C ,G 为线段BC 的中点,O 为坐标原点.求OEG ∠的大小.(20)(本小题满分13分)已知函数()ln f x x x =,2()2a g x x x a =+-()a ∈R . (Ⅰ)若直线x m =()0m >与曲线()y f x =和()y g x =分别交于,M N 两点.设曲线()y f x =在点M 处的切线为1l ,()y g x =在点N 处的切线为2l .(ⅰ)当e m =时,若1l ⊥2l ,求a 的值;(ⅱ)若12l l ,求a 的最大值;(Ⅱ)设函数()()()h x f x g x =-在其定义域内恰有两个不同的极值点1x ,2x ,且12x x <.若0λ>,且21ln 1ln x x λλ->-恒成立,求λ的取值范围.北京市朝阳区高三年级第二次综合练习数学学科测试(文史类) 2017.5三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.解:2sin =0b C -,2sin sin 0C B C -=.因为0πC <<,所以sin 0C ≠,所以sin 2B =. 因为0πB <<,且a b c >>,所以π3B =. …………6分(Ⅱ)因为b =1c =,所以由余弦定理2222cos b a c ac B =+-,得2211212a a =+-⨯⨯,即220a a --=. 解得2a =或1a =-(舍).所以2a =.11=sin 2122ABC S ac B ∆=⨯⨯=. …………13分 (16)(本小题满分13分)解:(Ⅰ)由已知得:1111()()333n nn a -=⋅=. 1312log ()1=213n n b n =--(*n ∈N ).则12(1)1212n n b b n n +-=+--+=.所以数列{}n b 是以1为首项,2为公差的等差数列. …………6分(Ⅱ)由(Ⅰ)知,241n b n =-,则数列2{}n b 是以3为首项,4为公差的等差数列.21()413n n n n c a b n =+=+-.则111...()37...(41)393nn T n =+++++++-.即n T =11[1()]33113n ⨯--+(341)2n n +-⋅.即21112()223nn T n n =++-⋅ (*n ∈N ). …………13分 (17)(本小题满分13分) 解:(Ⅰ)根据题意,(0.0050.0200.0250.040a ++++⨯=. 解得 0.010a =.所以样本中学生身高在[185,195]内(单位:cm )的人数为400.01104⨯⨯=. ……………4分(Ⅱ)设样本中男生身高的平均值为x ,则1500.051600.21700.41800.251900.1x =⨯+⨯+⨯+⨯+⨯7.532684519171.5=++++= .所以,该校男生的平均身高为171.5 cm . …………8分(Ⅲ)样本中男生身高在[145,155)内的人有400.005102⨯⨯=(个),记这两人为,A B . 由(Ⅰ)可知,学生身高在[185,195]内的人有4个,记这四人为,,,a b c d . 所以,身高在[145,155)和[185,195]内的男生共6人.从这6人中任意选取2人,有,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB , 共15种情况.设所选两人的身高都不低于185 cm 为事件M ,事件M 包括,,,,,ab ac ad bc bd cd ,共6种情况. 所以,所选两人的身高都不低于185 cm 的概率为62()155P M ==. ………………13分(18)(本小题满分14分)解:(Ⅰ)在三棱柱111ABC A B C -中,11B C BC ,且BC ⊂平面BCD ,11B C ⊄平面BCD , 所以11B C 平面BCD . ………………4分(Ⅱ)因为1AA ⊥底面ABC ,90ACB ∠=︒,所以1AA BC ⊥,AC BC ⊥, 则BC ⊥平面11AAC C . 即BC ⊥平面1C CD .所以111111332B CC D C CD V S BC CC AC BC -=⋅=⨯⋅⋅111211323=⨯⨯⨯⨯=. ………9分 (Ⅲ)因为在侧面11ACC A 中,112AC AA =,1AA AC ⊥,D 是棱1AA 的中点, 所以1145,45A DC ADC ∠=︒∠=︒.则1C D DC ⊥. 因为BC ⊥平面1C CD , 所以1BC C D ⊥. 所以1C D ⊥平面BCD . 又1C D ⊂平面1C DB ,所以平面BCD ⊥平面1C DB ,且平面BCD平面1C DB BD =,过点C 作CQ BD ⊥于Q ,所以CQ ⊥平面1C DB . 则 CQ ⊥1BC .所以在线段BD 上存在点Q ,使得1CQ BC ⊥. …………14分 (19)(本小题满分14分)解:(Ⅰ)依题意,2a =,c =2221b a c =-=.则椭圆W 的方程为2214x y +=.离心率2c e a ==. …………4分 (Ⅱ)设M 00(,)x y ,00x ≠,则N 0(0,)y ,E 00(,)2x y . 又A (0,1),所以直线AE 的方程为002(1)1y y x x --=. 令1y =-,则C 0(,1)1x y --.又B (0,1)-,G 为线段BC 的中点,所以G 00(,1)2(1)x y --.所以00(,)2x OE y =,0000(,1)22(1)x x GE y y =-+-, 000000()(1)222(1)x x x OE GE y y y ⋅=-++- 2220000044(1)x x y y y =-++-.因为点M 在椭圆W 上,则220014x y +=,所以220044x y =-. 则200014(1)x OE GE y y ⋅=-+-0011y y =--+0=.因此OE GE ⊥.故90OEG ∠=. ……………14分 (20)(本小题满分13分)解:(Ⅰ) 函数()f x 的定义域为{}0x x >.()1l n f x x '=+,()1g x ax '=+. (ⅰ)当e m =时,(e)2f '=,(e)e 1g a '=+.因为12l l ⊥,所以(e)(e)1f g ''⋅=-. 即2(e 1)=1a +-. 解得32ea =-. ………………3分 (ⅱ)因为12l l ,则()()f m g m ''=在()+∞0,上有解.即ln 0m am -=在()+∞0,上有解.设()ln F x x ax =-,0x >, 则11()axF x a x x-'=-=. (1)当0a ≤时,()0F x '>恒成立,则函数()F x 在()+∞0,上为增函数.1 当0a <时,取e a x =,(e )e (1e )0.a a a F a a a =-=-<取e x =,(e)=1e 0F a ->,所以()F x 在()+∞0,上存在零点.2当0a =时,()ln F x x =存在零点,1x =,满足题意.(2)当0a >时,令()0F x '=,则1x a=. 则()F x 在(0)a1,上为增函数,1(,)a +∞上为减函数.所以()F x 的最大值为11()ln 10F a a=-≥.解得10<ea ≤.取1x =,(1)=0F a -<.因此当1(0,]ea ∈时,方程()0F x =在()+∞0,上有解. 所以,a 的最大值是1e. ………………8分 另解:函数()f x 的定义域为{}0x x >.()1ln f x x '=+,()1g x ax '=+. 则()1ln f m m '=+,()1g m am '=+.因为12l l ,则()()f m g m ''=在()+∞0,上有解.即ln m am =在()+∞0,上有解. 因为0m >,所以ln ma m=. 令ln ()xF x x =(0x >). 21l n ()0xF x x -'==. 得e x =.当(0,e)x ∈,()0F x '>,()F x 为增函数; 当()e,x ∈+∞,()0F x '<,()F x 为减函数; 所以max 1()(e)eF x F ==. 所以,a 的最大值是1e. ………………8分(Ⅱ) 2()ln 2a h x x x x x a =--+ (0),x > ()ln h x x ax '=-.因为12,x x 为()h x 在其定义域内的两个不同的极值点,所以12,x x 是方程ln 0x ax -=的两个根.即11ln x ax =,22ln x ax =.两式作差得,1212ln ln x x a x x -=-.因为0,λ>120x x <<,由21ln 1ln x x λλ->-,得121ln ln x x λλ+<+. 则121211()a x x a x x λλλλ++<+⇔>+⇔1212ln ln x x x x --121x x λλ+>+⇔112212(1)()ln x x x x x x λλ+-<+.令12x t x =,则(0,1)t ∈,由题意知:ln t <(1)(1)t t λλ+-+在(0,1)t ∈上恒成立,令(1)(1))ln t t t t λϕλ+-=-+(,则221(1)()()t t t λϕλ+'=-+=22(1)()()t t t t λλ--+. (1)当21λ≥,即1λ≥时, (0,1)t ∀∈,()0t ϕ'>,所以()t ϕ在()0,1上单调递增.又(1)0ϕ=,则()0t ϕ<在()0,1上恒成立. (2)当21λ<,即01λ<<时, ()20,t λ∈时,()0t ϕ'>,()t ϕ在()20,λ上为增函数;当()21t λ∈,时,()0t ϕ'<,()t ϕ在()21λ,上为减函数.又(1)0ϕ=,所以()t ϕ不恒小于0,不合题意.综上,[1,)λ∈+∞. ………………13分。

北京市朝阳区高三数学第二次综合练习试题 文 (朝阳二模)新人教A版

北京市朝阳区高三数学第二次综合练习试题 文 (朝阳二模)新人教A版

数学试卷(文史类)(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)注意事项:考生务必将答案答在答题卡上,在试卷上作答无效.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 设集合{0,1234,5}{12}U A ==,,,,,,{}2540B x x x =∈-+<Z ,则()UA B =A .{0,1,2,3}B .{5}C .{124},,D .{0,4,5}2. 在复平面内,复数i2iz =-对应的点所在的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 如果命题“p 且q ”是假命题,“q ⌝”也是假命题,则A .命题“⌝p 或q ”是假命题B .命题“p 或q ”是假命题C .命题“⌝p 且q ”是真命题D .命题“p 且q ⌝”是真命题4. 已知△ABC 中,2AB =, 3AC =,0AB AC ⋅<,且△ABC 的面积为32,则BAC ∠= A .150 B .120 C .60或120 D .30或1505. 已知双曲线2215x y m -=(0m >)的右焦点与抛物线212y x =的焦点相同,则此双曲线的离心率为A .6 B.2 C .32 D . 346. 如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,如果直 角三角形的直角边长都为1,那么这个几何体的表面积为 A .61B .23C.32+ D.32+7. 给出下列命题:正视图 俯视图侧视图:p 函数44()sin cos f x x x =-的最小正周期是π;:q R x ∃∈,使得2log (1)0x +<; :r 已知向量(1)λ,a,2(1),λb ,(11)-,c ,则(+)//a b c 的充要条件是1λ=-.其中所有真命题是A .qB .pC .,p rD .,p q 8. 已知函数22, ,()42, x m f x x x x m>⎧=⎨++≤⎩的图象与直线y x =恰有三个公共点,则实数m 的取值范围是A .(,1]-∞-B .[1,2)-C .[1,2]-D . [2,)+∞第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡上. 9. 函数2cos y x =,[0,2]x ∈π的单调递增区间是 .10. 运行如图所示的程序框图,输出的结果是 .11. 直线3y kx =+与圆22(3)(2)4x y -+-=相交于,A B 两点,若AB =则实数k 的值是 . 12. 若实数,x y 满足10,0,x y x -+≤⎧⎨≤⎩则22x y +的最小值是 .13. 一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x ()x *∈N 件.当20x ≤时,年销售总收入为(233x x -)万元;(第10题图)当20x >时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为 ,该工厂的年产量为 件时,所得年利润最大.(年利润=年销售总收入-年总投资)14. 在如图所示的数表中,第i 行第j 列的数记为,i j a ,且满足11,,12,j j i a a i -==,1,1,1,(,)i j i j i j a a a i j *+++=+∈N ,则此数表中的第2行第7列的数是 ;记第3行的数3,5,8,13,22,39,⋅⋅⋅为数列{}n b ,则数列{}n b 的通项公式是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 把答案答在答题卡上.15. (本小题满分13分)已知函数2()cos cos f x x x x m =-+()m R ∈的图象过点(,0)12M π.(Ⅰ)求m 的值;(Ⅱ)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,若cos cos 2cos c B b C a B +=,求()f A 的取值范围.16.(本小题满分13分)高三年级进行模拟考试,某班参加考试的40名同学的成绩统计如下:规定分数在90分及以上为及格,120分及以上为优秀,成绩高于85分低于90分的同学为希望生.已知该班希望生有2名.(Ⅰ)从该班所有学生中任选一名,求其成绩及格的概率;(Ⅱ)当a =11时,从该班所有学生中任选一名,求其成绩优秀的概率;(Ⅲ)从分数在(70,90)的5名学生中,任选2名同学参加辅导,求其中恰有1名希望生的概率.17. (本小题满分13分)如图,四边形ABCD 为正方形,⊥EA 平面ABCD ,//EF AB ,=4,=2,=1AB AE EF .(Ⅰ)求证:⊥BC AF ; (Ⅱ)若点M 在线段AC 上,且满足14CM CA =, 求证://EM 平面FBC ;第1行 1 2 4 8 … 第2行 2 3 5 9 … 第3行 3 5 8 13 … … …(Ⅲ)试判断直线AF 与平面EBC 是否垂直?若垂直,请给出证明;若不垂直,请说明理由.18.(本小题满分14分)设函数22()ln (0)a f x a x a x=+≠. (Ⅰ)已知曲线()y f x =在点(1,(1))f 处的切线l 的斜率为23a -,求实数a 的值; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)在(Ⅰ)的条件下,求证:对于定义域内的任意一个x ,都有()3f x x ≥-.19.(本小题满分14分)在平面直角坐标系xOy 中,点E 到两点1(1,0)F -,2(1,0)F 的距离之和为E 的轨迹为曲线C .(Ⅰ)写出C 的方程;(Ⅱ)设过点2(1,0)F 的斜率为k (0k ≠)的直线l 与曲线C 交于不同的两点M ,N ,点P 在y 轴上,且PM PN =,求点P 纵坐标的取值范围.20.(本小题满分13分) 已知数列12:,,,n n A a a a ,满足01==n a a ,且当n k ≤≤2(k ∈*N )时,1)(21=--k k a a .令12()n n S A a a a =++⋅⋅⋅+.(Ⅰ)写出)(5A S 的所有可能取值; (Ⅱ)求)(n A S 的最大值.北京市朝阳区高三年级第二次综合练习 数学试卷答案(文史类) 2012.5一、选择题:二、填空题:三、解答题: (15)(本小题满分13分)解:(Ⅰ)1()2(cos 21)22f x x x m =-++1sin(2)62x m π=--+. ……3分 由已知点(,0)12M π在函数()f x 的图象上,所以1sin(2)01262m ππ⋅--+=, 12m =. ………5分 (Ⅱ) 因为cos cos 2cos c B b C a B +=,所以sin cos sin cos C B B C +=2sin cos A B ,所以sin()2sin cos B C A B +=,即sin 2sin cos A A B =. ………7分 因为(0,A ∈π),所以sin 0A ≠,所以1cos 2B =, ………8分 又因为(0,B ∈π),所以π3B =,2π3A C +=. ………10分 所以2π03A <<,π26A -∈7(,)66ππ-, ………11分 所以()f A =sin(2)6A π-∈1(,1]2-. ………13分(16)(本小题满分13分)解:(Ⅰ)设“从该班所有学生中任选一名,其成绩及格”为事件A ,则4057()408P A -==. 答:从该班所有学生中任选一名,其成绩及格的概率为78. ………3分 (Ⅱ)设“从该班所有学生中任选一名,其成绩优秀”为事件B ,则当11a 时,成绩优秀的学生人数为40511159---=,所以9()40P B =.答:从该班所有学生中任选一名,其成绩优秀的概率为940. ………7分(Ⅲ)设“从分数在(7090),的5名学生中,任选2名同学参加辅导,其中恰有1名希望生”为事件C .记这5名学生分别为a ,b ,c ,d ,e ,其中希望生为a ,b .从中任选2名,所有可能的情况为:ab , ac , ad , ae ,bc ,bd ,be ,cd ,ce ,de ,共10种. ………9分 其中恰有1名希望生的情况有ac , ad , ae ,bc ,bd ,be ,共6种. ………11分 所以63()105P C ==. 答:从分数在(7090),的5名学生中,任选2名同学参加辅导,其中恰有1名希望生的概率为35. ………13分 (17)(本小题满分13分) 解:(Ⅰ)因为EF//AB ,所以EF 与AB 确定平面EABF ,因为⊥EA 平面ABCD ,所以⊥EA BC . ………2分 由已知得⊥AB BC 且=EA AB A , 所以⊥BC 平面EABF . ………3分 又AF ⊂平面EABF ,所以⊥BC AF . ………4分 (Ⅱ)过M 作MN BC ⊥,垂足为N ,连结FN ,则MN //AB . .………5分又14CM AC =,所以14MN AB =. 又EF //AB 且14EF AB =,所以EF //MN ..………6分且EF MN =,所以四边形EFNM 为平行四边形.………7分 所以EM //FN .又FN ⊂平面FBC ,EM ⊄平面FBC ,所以//EM 平面FBC . ………9分 (Ⅲ)直线AF 垂直于平面EBC . ………10分证明如下:由(Ⅰ)可知,AF BC ⊥.在四边形ABFE 中,=4,=2,=1AB AE EF ,90BAE AEF ∠=∠=, 所以1tan tan 2EBA FAE ∠=∠=,则EBA FAE ∠=∠. 设AFBE P =,因为90PAE PAB ∠+∠=,故90PBA PAB ∠+∠=则90APB ∠=,即⊥EB AF . ………12分又因为=EBBC B ,所以⊥AF 平面EBC . ………13分(18)(本小题满分14分)解:(Ⅰ)()f x 的定义域为{|0}x x >, . ………1分222()a a f x x x'=-. ………2分根据题意,(1)23f a '=-,所以2223a a a -=-,即2210a a -+=,解得1a =. .………4分(Ⅱ)2222(2)()a a a x a f x x x x -'=-=.(1)当0a <时,因为0x >,所以20x a ->,(2)0a x a -<,所以()0f x '<,函数()f x 在(0,)+∞上单调递减. ………6分 (2)当0a >时,若02x a <<,则(2)0a x a -<,()0f x '<,函数()f x 在(0,2)a 上单调递减; 若2x a >,则(2)0a x a ->,()0f x '>,函数()f x 在(2,)a +∞上单调递增. …8分 综上所述,当0a <时,函数()f x 在(0,)+∞上单调递减;当0a >时,函数()f x 在(0,2)a 上单调递减,在(2,)a +∞上单调递增. ………9分 (Ⅲ)由(Ⅰ)可知2()ln f x x x=+. 设()()(3)g x f x x =--,即2()ln 3g x x x x=++-. 2222122(1)(2)()1(0)x x x x g x x x x x x +--+'=-+==>. ………10分当x 变化时,()g x ',()g x 的变化情况如下表:1x =是()g x 在(0,)+∞上的唯一极值点,且是极小值点,从而也是()g x 的最小值点.可见()(1)0g x g ==最小值, .………13分 所以()0g x ≥,即()(3)0f x x --≥,所以对于定义域内的每一个x ,都有()3f x x ≥-. ………14分(19)(本小题满分14分)解:(Ⅰ)由题设知1212||||||EF EF F F +=>,根据椭圆的定义,E 的轨迹是焦点为1F ,2F,长轴长为设其方程为222210x y (a b )a b+=>>则1c =,a =1b =,所以C 的方程为2212x y +=. ………5分 (II )依题设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2212x y +=并整理得, 2222(21)4220k x k x k +-+-= . 2880k ∆=+>. ………6分设11(,)M x y ,22(,)N x y ,则2122421k x x k +=+, 21222221k x x k -=+ ..………7分 设MN 的中点为Q ,则22221Q k x k =+,2(1)21Q Qky k x k =-=-+,即2222(,)2121k kQ k k -++. ………8分 因为0k ≠,所以直线MN 的垂直平分线的方程为22212()2121kk y x k k k +=--++, ……9分 令0x =解得,211212P k y k k k==++, .………10分当0k >时,因为12k k+≥0P y <≤; .………12分当0k <时,因为12k k+≤-0P y ≤<. .………13分综上得点P 纵坐标的取值范围是2[,0)(0,]44-. .………14分 (20)(本小题满分13分)解:(Ⅰ)由题设,满足条件的数列5A 的所有可能情况有: (1)01210,,,,.此时5()=4S A ; (2)01010,,,,.此时5()=2S A ; (3)01010,,,,.-此时5()=0S A ; (4)01210,,,,.---此时5()=4S A -; (5)01010,,,,.-此时5()=0S A ; (6)01010,,,,.--此时5()=2S A -.所以,)(5A S 的所有可能取值为:4-,2-,0,2,4. .………5分(Ⅱ)由1)(21=--k k a a ,可设11k k k a a c ---=,则11k c -=或11k c -=-(n k ≤≤2,k ∈*N ),211a a c -=, 322a a c -=, …11n n n a a c ---=, 所以1121n n a a c c c -=++++. ………7分因为01==n a a ,所以1210n c c c -+++=,且n 为奇数,121,,,n c c c -是由21-n 个1和21-n 个1-构成的数列. 所以112121()()()n n S A c c c c c c -=+++++++1221(1)(2)2n n n c n c c c --=-+-+++.则当121,,,n c c c -的前21-n 项取1,后21-n 项取1-时)(n A S 最大,此时)(n A S 11(1)(2)(21)22n n n n +-=-+-++-+++2(1)4n -=..……10分 证明如下: 假设121,,,n c c c -的前21-n 项中恰有t 项12,,,t m m m c c c 取1-,则 121,,,n c c c -的后21-n 项中恰有t 项12,,t n n n c c c 取1,其中112n t -≤≤,112i n m -≤≤,112i n n n -<≤-,1,2,,i t =. 所以()n S A 1211212211(1)(2)222n n n n n n n c n c c c c c -+--+-=-+-++++++11(1)(2)(21)22n n n n +-=-+-++-+++122[()()()]t n m n m n m --+-++-122[()()()]t n n n n n n +-+-++-221122(1)(1)2[()()()]44t t n n n m n m n m --=--+-+⋅⋅⋅+-<.所以)(n A S 的最大值为2(1)4n -. .………13分。

2018北京市各城区二模数学(文科)分类汇编之数列含答案

2018北京市各城区二模数学(文科)分类汇编之数列含答案

2018市各城区二模数学(文科)分类汇编之数列含答案【西城二模】15.(本小题满分13分)在等差数列{}n a 和等比数列{}n b 中,111a b ==,22a b =,432a b +=. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n n a b +的前n 项和n S .解:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意,得21,2(13).d q d q +=⎧⎨++=⎩………………2分 解得2,3,d q =⎧⎨=⎩或1,0.d q =-⎧⎨=⎩(舍去)………………4分所以21n a n =-,13n n b -=.………………6分 (Ⅱ)因为1213n n n a b n -+=-+,………………7分所以21[135(21)](1333)n n S n -=++++-+++++………………9分[1(21)]13213nn n +--=+-………………11分 2312n n -=+.………………13分【海淀二模】(15)(本小题13分)已知等差数列{}n a 满足1223n n a a n +-=+ (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n n a b +是首项为1,公比为2的等比数列,求数列{}n b 的前n 项和.15.(本小题13分) 解:(Ⅰ)方法1: 因为数列{}n a 是等差数列,所以212n n n a a a +++=. 因为3221+=-+n a a n n ,所以223n a n +=+. 所以,当3n ≥时,2(2)321n a n n =-+=-. 所以21(1,2,3,).n a n n =-=………………6分方法2:设等差数列{}n a 的公差为d , 因为3221+=-+n a a n n ,所以21322527.a a a a -=⎧⎨-=⎩所以11+2537.a d a d =⎧⎨+=⎩所以112.a d =⎧⎨=⎩所以1(1)21(1,2,3,)n a a n d n n =+-=-=………………6分(Ⅱ)因为数列{}n n a b +是首项为1,公比为2的等比数列,所以12n n n a b -+=因为21n a n =-,所以12(21)n n b n -=--.设数列{}n b 的前n 项和为n S , 则1(1242)[135(21)]n n S n -=++++-++++-12(121)122n n n -+-=-- 221n n =--所以数列{}n b 的前n 项和为221.n n --. ………………13分 【东城二模】(15)(本小题13分)已知{}n a 是公差为2等差数列,数列{}n b 满足11b =,212b =,且1(1)n n n a b nb ++=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求{}n b 的前n 项和n S . (15)(共13分)解:(Ⅰ)因为1(1)n n n a b nb ++=,所以121(1)1a b b +=⨯. 因为11b =,212b =, 所以11a =.因为等差数列{}n a 的公差为2,所以21n a n =-,*n ∈N .……………6分 (Ⅱ)由(Ⅰ)知21n a n =-.因为1(1)n n n a b nb ++=, 所以11(21)12n n b n b n +==-+. 所以数列{}n b 是首项为1,公比为12的等比数列. 所以数列{}n b 的前n 项和n S 11()122[1()]1212nn -==--,*n ∈N .……………13分 【XX 二模】16.已知数列{}n a 的前n 项和2n S pn qn =+(p ,q ∈R ,*n ∈N )且13a =,424S =. (1)求数列{}n a 的通项公式;(2)设2n a n b =,求数列{}n b 的前n 项和n T . 【解析】解:(Ⅰ)∵数列{}n a 的前n 项和为2n S pn qn =+∴当1n =时,11a S p q ==+当2n ≥时,21(1)(1)n S p n q n -=-+-∴221()[(1)(1)]2nn n a S S pn qn p n q n pn q p -=-=---+-=+-检验1a p q =+符合2n a pn q p =+-∴数列{}n a 的通项公式为2n a pn q p =+-∵12(1)(2)2,()n na a p n q p pn q p p p +-=++--+-=∈R∴{}n a 是等差数列,设公差为d ∵143,24a S ==∴414342S a d ⨯=+解得2d = ∴数列{}n a 的通项公式为*3(1)221()n a n n n =+-⨯=+∈N(Ⅱ)由(Ⅰ)可知21n a n =+∴2122n a n nb +==设数列{}n b 的前n 项和为n T , 则12124242424n n nT -=⨯+⨯++⨯+⨯1212(4444)n n -=++++4(14)214n -=⨯- 8(41)3n -=所以数列{}n b 的前n 项和为8(41).3n n T -=【丰台二模】 (16)(本小题共13分)已知数列{}n a 的前n 项和2=3n S n ,等比数列{}n b 满足11=3a b ,242b b a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列21{}n b -的前n 项和n T . (16)(本小题共13分) 解:(Ⅰ)因为23n S n =,所以113a S ==.…………………1分 当2n ≥时,1n n n a S S -=-2233(1)n n =--63n =-.…………………3分因为当1n =时,16133a ⨯-==,…………………4分 所以数列{}n a 的通项公式是63n a n =-.…………………5分 (Ⅱ)设数列{}n b 的公比为q .因为113a b =,所以11b =.…………………6分 因为242b b a ⋅=,所以239b =.…………………8分因为2310b b q =>,所以33b =,且23q =.…………………10分因为{}n b 是等比数列,所以21{}n b -是首项为11b =,公比为23q =的等比数列.…………………11分所以212(1())131(31)1132n n nn b q T q --===---. 即1(31)2nn T =-.…………………13分 【昌平二模】 16.(本小题13分) 已知数列{}n a 满足1211,2a a ==,数列{}n b 是公差为2的等差数列,且11n n n n b a a na +++=. (I )求数列{}n b 的通项公式; (II )求数列{}n a 前n 项的和n S . 16.(共13分)解:(Ⅰ)因为11n n n nb a a na +++=,所以1221b a a a += . 又因为1212a a =1,=, 所以11b =.所以数列{}n b 的通项公式是2-1n b n =. --------------------7分 (Ⅱ)由(Ⅰ)知2-1n b n =,且11n n n n b a a na +++=.所以11(21)n n nn a a na ++-+=,得到112n n a a += .所以数列{}n a 是以1为首项,12为公比的等比数列. 那么数列{}n a 前n 项和111()222112nn n S --==--.--------------------13分 【顺义二模】15.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,且151, 3.a a =-=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足2n a n b =,求数列{}n b 的前n 项和.【房山二模】 (15)(本小题13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =.问:5b 与数列{}n a 的第几项相等?解:(Ⅰ)设等差数列{}n a 的公差为d .因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+(1,2,)n =.…………6分 (Ⅱ)设等比数列{}n b 的公比为q .因为238b a ==,3716b a ==,所以2q =,14b =. 所以5154264b -=⨯=. 由6422n =+得31n =.所以5b 与数列{}n a 的第31项相等.…………13分。

2018北京高三二模数学理分类汇编-排列组合

2018北京高三二模数学理分类汇编-排列组合
A.-4Байду номын сангаасB.-10C.10D.40
2018北京高三二模数学理分类汇编--排列组合二项式定理答案
1、10
2、3、-1
3、D
4、6
5、20
6、D
2018北京高三二模数学理分类汇编--排列组合二项式定理
一、排列组合
1、(2019丰台一模)
2、(2019门头沟一模)
3、(2019西城一模)
4、(2019大兴一模)
5、(2019海淀一模)
6、(2019石景山一模)
二、二项式定理
1、(2018海淀二模)在 的二项展开式中, 的系数为
2、(2018朝阳二模)若 展开式的二次项系数之和为 ,则 ;其展开式中含 项的系数为.(用数字作答)
3、(2018东城二模)在(x+ )5的展开式&x3中的系数10,则实数a等于
A.-1B. C.1D.2
4、(2018西城二模) 的展开式中 的系数是____
5、(2018昌平二模)在二项式 的展开式中,第四项的系数是.(用数字作答)
6、(2018丰台二模)在 的展开式中,若二项式系数的和为32,则 的系数为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8. 某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜
者得 2 分,负者得 0 分,平局两人各得 1分 . 若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比
赛的参赛人数至少为(

1/4
A. 4
B . 5 C. 6
D .7
第Ⅱ卷(共 110 分)
( 3)若对任意 x1 [ 2 ,2] ,总存在唯一的 x2 ( ,2) ,使得 f (x2 ) g( x1 ) ,求 a 的取值范围 .
4/4
6
4
A. 6 2
B
.6 2
C.
6
D
.2
2
2
2
2
5. “ 0 a 1 且 0 b 1”是“ log a b 0 ”的(

A.充分而不必要条件
C. 充分必要条件
D
B .必要而不充分条件 .既不充分也不必要条件
6. 如图,角 , 均以 Ox 为始边,终边与单位圆 O 分别交于点 A , B ,则 OA OB ( )
.
13. 在平面直角坐标系 xOy 中,点 P (不过原点)到 x 轴, y 轴的距离之和的 2 倍等于点 P 到原点距离的平方,则
点 P 的轨迹所围成的图形的面积是

14. 如图,已知四面体 ABCD 的棱 AB ∥平面 ,且 AB 2 ,其余的棱长均为 1. 四面体 ABCD 以 AB 所在的直线
15. 已知函数 f (x) 2sin x(sin x cos x) a 的图象经过点 ( ,1) , a R . 2
( 1)求 a 的值,并求函数 f ( x) 的单调递增区间;
( 2)若当 x [0 , ] 时,求函数 f ( x) 的最小值 . 2
16. 已知数列 an 的前 n 项和 Sn pn2 qn ( p , q R , n N* )且 a1 3 , S4 24 .
B . (1, )
2. 计算 (1 i ) 2 (

C . (1,2)
D . [1, )
A. 2i
B
. 2i C . 2 i D . 2 i
2x y 2≤ 0,
3. 已知 x , y 满足不等式 x y 1≥ 0 , 则 z y 3 x 的最小值是(

y≤1
A. 1
B
.3 C .1
D .7
2
4. 在 △ ABC 中, a 1, A , B ,则 c ( )
( 1)求数列 an 的通项公式;
( 2)设 bn 2an ,求数列 bn 的前 n 项和 Tn .
17.
年份
2008

2010
2011
2012
2013
2014
2015
2016
2017
侧柏
3200 3600 3300 3900 3500 3300 3900 3600 4100 4000
银杏
3400 3300 3600 3600 3700 4200 4400 3700 4200 4200
直角梯形, AB ∥ DC , AD DC , AB 5 , AD 4 , DC 3
( 1)求证: AB ∥ 平面 PDC ;
( 2)当平面 PBC 平面 ABCD 时,求四棱锥 P ABCD 的体积;
( 3)请在图中所给的五个点 P , A , B , C , D 中找出两个点,使得这两点所在的直线与直线
BC 垂直,并给出
证明 .
2
2
19.
已知椭圆
W

x a2
y b2
1( a b 0 )的离心率为
3 ,其左顶点 A 在圆 O : x 2 2
y2
4 上( O 为坐标原点) .
3/4
( 1)求椭圆 W 的方程;
AQ AR
( 2)过点 A作直线 AQ 交椭圆 W 于另外一点 Q ,交 y 轴于点 R ,P 为椭圆 W 上一点, 且 OP∥ AQ ,求证:
二、填空题(每题 5 分,满分 30 分,将答案填在答题纸上)
9. 执行如图所示的程序框图,则输出的 S
.
2
10. 双曲线 x 4
2
y 1 的焦点坐标是 3
;渐近线方程是
.
11. 已知 x 0 , y 0 ,且满足 x y 4 ,则 lg x lg y 的最大值为
.
12. 已知某三棱锥的三视图如图所示,则该三棱锥的体积是
2
OP
为定值 . 20. 已知函数 f ( x) xex , g ( x) ax 1 , a R . ( 1)若曲线 y f (x) 在点 (0 , f (0)) 处的切线与直线 y g( x) 垂直,求 a 的值; ( 2)若方程 f (x) g (x) 0 在 ( 2 ,2) 上恰有两个不同的实数根,求 a 的取值范围;
( 1)根据表中数据写出这 10年内银杏数列的中位数,并计算这 10 年栽种银杏数量的平均数;
( 2)从统计的数据中,在栽种侧柏与银杏数量之差的绝对值不小于
300株的年份中,任意抽取 2 年,恰有 1年栽种
侧柏的数列比银杏数量多的概率 .
18. 如图,在四棱锥 P ABCD 中,平面 PBC 平面 ABCD . △PBC 是等腰三角形,且 PB PC 3 . 四边形 ABCD 是
A. sin(
)
B . sin(
) C. cos( )
D . cos( )
7. 已知定义在 R 上的奇函数 f ( x) 在 [0 , ) 上单调递减,且 a b 0 , b c 0 ,, a c 0 ,则 f (a) f (b ) f (c)
的值(

A.恒为正
B .恒为负
C. 恒为 0
D
.无法确定
为轴旋转 x 弧度,且始终在水平放置的平面 记为 S( x) ,则函数 S(x) 的最小值为
上方 . 如果将四面体 ABCD 在平面 内正投影面积看成关于 x 的函数,
; S(x) 的最小正周期为

2/4
三、解答题 (本大题共 6 小题,共 80 分 . 解答应写出文字说明、证明过程或演算步骤
.)
2018 北京市朝阳区高三第二次综合练习数
学(文)
第Ⅰ卷(共 40 分)
一、选择题:本大题共 8 个小题 , 每小题 5 分 , 共 40 分. 在每小题给出的四个选项中,只有一项是符合题目要求的
.
1. 已知集合 A x| x2 3x 2 0 , B x | x ≥ 1 ,则 A B ( )
A. ( ,2]
相关文档
最新文档