不锈钢零件机加工工艺
不锈钢薄壁螺母零件加工工艺设计

合精度要求 。通过对该薄壁零件的加工 , 为进一步研 究类似零件 的/ - 制定更加合理的加工工艺 , j r,  ̄ 积累
宝贵 的实 践 经验 。
图 Байду номын сангаас 零 件 工 装 图
工装设计 的思路为用零件 18 m的外 圆和 参 考 文 献 : 2 m
两端 面 定 位 , 以左 端 面 为定 位 基 准 , 以右端 面作 为受 力 面 , 样安 排 , 这 受力 得 到 了很 大 的改 善 。 做 工装 1时 , 内 台阶端 面 和 ①18mm 内孔要 其 2
证 总长 。
在 试制 过程 中 , 现 以下 问题 : 发
’
( )由于使用 C 2 车床 , 以钻头直径不能太 1 60 所 大, 采用先钻后镗 的方法 , 这样 车削余量较大 。不锈 钢材料具有本身切削力大 、 切削温度高、 切屑不易折
断、 易粘 刀 、 刀具 易 磨损 的特点 。因刀具 易磨 损 , 以 所 效 率不 高 。 ( )车 内 螺 纹 时 采 用 三 爪 卡 盘 夹 持 18ml 2 2 i l
收稿 日期:0 1 0 — 2 2 1— 5 1
刀具的磨损。
作者 简介 : 淑叶(98 )女 , 鲁 17一 , 讲师 , 学士学位 , 主要从事数控 加工 与数控工 艺研究 。
15 3
E u p n Ma u a t n e h oo y No8, 01 q i me t n f e r gT c n lg . 2 i 1
图 1 薄壁螺母零件
的外圆 , 以工件 的左端面定位在卡爪的台阶面上 , 由 于 车螺 纹 切 削力 较 大 , 如果 在 卡 盘 上夹 紧 过 大 , 零件 就会产生变形 ,从而影响工件 的尺寸精度和形状精 度。如果在卡盘上夹得不紧 , 在车削时有可能使零件 松 动而 无法 完成 车 削 。
不锈钢车削加工特点及加工工艺

304 不锈钢车削加工特点及加工工艺304 不锈钢广泛应用与各行各业,你确定对其车削加工特点及相关的加工工艺很感兴趣。
下面就由我为你带来 304 不锈钢车削加工特点及加工工艺,期望你宠爱。
304 不锈钢车削加工特点(1)切削力大AISI 304 奥氏体不锈钢的硬度不高(硬度≤187HBS),由于其含大量的 Cr、Ni、Mn 等元素,塑性较好(断后伸长率δ5≥40%,断面收缩率ψ≥60%)。
切削加工时塑性变形大,尤其在较高温度时仍可保持较高的强度(一般钢在切削温度上升时强度下降明显),导致 AISI304 奥氏体不锈钢的切削力较大。
常规切削条件下,AISI 304 不锈钢的单位切削力达 2450MPa,比 45 钢高 25%以上。
(2)加工硬化严峻AISI 304 不锈钢在切削加工时伴有较为明显的塑性变形,材料晶格会产生严峻的歪扭;同时,由于奥氏体组织在稳定性方面的缺陷,一小局部奥氏体在此过程中变成了马氏体;此外,奥氏体中存在的杂质化合物会随着切削过程的进展因受热而分解,弥散分布的杂质在外表产生了硬化层,使加工硬化现象格外明显,硬化后的强度σb达1500MPa 以上,硬化层深度 0.1-0.3mm。
(3)切削区局部温度高由于AISI304 不锈钢所需切削力大,且切屑不易切离,使得分别切屑所消耗的功也较大。
常规条件下切削AISI 304 不锈钢比低碳钢高约50%,产生的切削热多。
奥氏体不锈钢的导热性差,AISI304 不锈钢的热导率为 16.3-21.5W/m·K,仅为 45 钢热导率的三分之一,因而使得切削区域的温度较高(通常切削加工时切屑所带走的热量应占切削热量的70%以上),大量切削热集中在切削区和“刀—屑”接触面上,传入刀具中的热量达20%(切削一般碳素钢时该数值仅为9%),使得在同等切削条件下,AISI304 不锈钢切削温度比 45 钢高约 200-300℃。
(4)刀具易产生粘附磨损由于奥氏体不锈钢的高温强度高,加工硬化倾向大,因此,切削负荷重,奥氏体不锈钢与刀具和切屑之间会由于切削过程中其与刀具之间的亲合趋势显著增加,从而不行避开地产生粘结、集中等现象,并生成“切屑瘤”,造成刀具粘附磨损。
关于不锈钢的工艺

关于不锈钢的工艺不锈钢是一种具有抗腐蚀性能的合金材料,被广泛应用于工业制造、建筑装饰和家居用品等领域。
不锈钢的工艺是指在不锈钢制造过程中所采用的加工方法和工艺技术。
本文将介绍不锈钢的常见工艺及其特点。
1. 冷拔工艺冷拔是不锈钢加工中常用的一种工艺方法。
它是通过将不锈钢坯料加热至一定温度后,利用冷拔机将坯料拉伸成所需的形状和尺寸。
冷拔工艺可以提高不锈钢的硬度和强度,同时改善其表面光洁度和机械性能。
2. 热处理工艺热处理是指将不锈钢加热至一定温度,经过一定时间的保温后进行冷却的工艺方法。
热处理可以改善不锈钢的晶体结构,消除内部应力,提高材料的强度和韧性。
常见的热处理工艺包括退火、淬火、回火等。
3. 焊接工艺不锈钢的焊接是不锈钢加工中的重要环节。
常见的不锈钢焊接方法包括TIG焊、MIG焊、电弧焊等。
不锈钢的焊接工艺要求严格,需要控制焊接温度、焊接速度和焊接气氛等参数,以确保焊接接头的质量和性能。
4. 表面处理工艺不锈钢的表面处理可以改善其外观和耐腐蚀性能。
常见的表面处理方法包括抛光、酸洗、电镀等。
抛光可以提高不锈钢的光洁度和亮度,使其具有更好的装饰效果;酸洗可以去除不锈钢表面的氧化物和污染物,提高其耐腐蚀性能;电镀可以在不锈钢表面形成一层保护性的金属涂层,提高其耐磨性和耐腐蚀性。
5. 冷轧工艺冷轧是指将不锈钢坯料在常温下进行轧制的工艺方法。
冷轧可以使不锈钢材料变薄,同时提高其硬度和强度。
冷轧工艺可以生产出尺寸精度高、表面光洁度好的不锈钢板材和钢带,广泛应用于建筑装饰和汽车制造等领域。
6. 铸造工艺不锈钢的铸造是指将熔融的不锈钢注入铸型,经冷却凝固后得到所需形状的工艺方法。
不锈钢的铸造工艺可以生产出复杂形状的零件和构件,具有设计自由度高、成本低的优点。
常见的不锈钢铸造方法包括砂型铸造、失重铸造和压力铸造等。
不锈钢的工艺是不锈钢制造过程中的关键环节,直接影响着不锈钢材料的性能和质量。
通过合理选择和控制不锈钢的工艺方法,可以获得满足不同需求的不锈钢产品。
大批量生产不锈钢的合金钢等精密小零件的成型工艺方法

大批量生产不锈钢的合金钢等精密小零件的成型工艺方法1.弯曲成型工艺:
在不锈钢制品加工中,弯曲成形是将板料、棒料、管料或型材等弯成一定形状和角度零件的成形方法。
一般430不锈钢厚钢板弯曲成形时容易开裂,而的304不锈钢板则不会有这个现象。
2.拉深成型工艺:
拉深是利用专用模具将冲裁或剪裁后所获得的平板坯料制成开口的空心件的一种冲压工艺方法。
其特点是板料在凸模的带动下,可以向凹模内流动,即依靠材料的流动性和延伸率成形。
3.翻边成型工艺:
翻边成型工艺是济南不锈钢制品加工中,很常用的一种加工方法,翻边是利用模具把坯料上的孔缘或者外缘翻成竖边的冲压加工方法。
在生产不锈钢岗亭的时候,都是采用这种工艺将不锈钢进行成型加工的。
4.胀形成型工艺:
胀形成型工艺是利用模具强迫坯料厚度减薄和表面积增大,以获取零件几何形状的冲压不锈钢制品加工方法。
特点是坯料被压边圈压死,不能向凹模内流动,完全依靠材料本身的延伸成形。
简述不锈钢的加工工艺

简述不锈钢的加工工艺
不锈钢是一种耐腐蚀、抗氧化的金属材料,常用于制造各种产品,包括厨具、建筑材料、化工设备等。
不锈钢的加工工艺通常包括以下几个步骤:
1.切割:针对不同的产品需求,不锈钢通常需要进行切割,以获得所需的形状和尺寸。
常用的切割方法包括机械切割、火焰切割、等离子切割等。
2.弯曲和成形:在制造过程中,需要将不锈钢板材弯曲成特定的形状。
这可以通过机械弯曲、滚轮弯曲或液压弯曲等方法实现。
3.焊接:不锈钢制品通常需要通过焊接来连接零部件。
电弧焊、氩弧焊和激光焊等是常用的不锈钢焊接方法。
焊接后可能需要进行表面处理,以保持不锈钢的耐腐蚀性。
4.表面处理:不锈钢的表面处理可以包括抛光、酸洗、电镀等步骤,以提高其表面光洁度、耐腐蚀性和美观度。
抛光可以使不锈钢表面更光滑,酸洗可以去除氧化层,电镀则可以改变不锈钢的表面颜色和质感。
5.机械加工:不锈钢零部件通常需要进行机械加工,例如车削、铣削、钻孔等,以获得精确的尺寸和表面质量。
6.装配:在加工完成后,不锈钢零部件可能需要进行组装,形成最终的产品。
这可能涉及到螺栓连接、焊接、胶合等方式。
06cr18ni11ti奥氏体不锈钢 加工工艺

题目:06Cr18Ni11Ti奥氏体不锈钢的加工工艺探讨06Cr18Ni11Ti奥氏体不锈钢是一种常见的不锈钢材料,具有良好的耐腐蚀性和加工性能,因此在工业生产中得到广泛应用。
本文将从深度和广度两个方面探讨06Cr18Ni11Ti奥氏体不锈钢的加工工艺,以帮助读者更全面地了解这一主题。
一、06Cr18Ni11Ti奥氏体不锈钢简介06Cr18Ni11Ti奥氏体不锈钢是一种含钛不锈钢,具有良好的耐腐蚀性和热强度。
其化学成分中含有18%的铬、8-11%的镍、和约1%的钛等元素,使其具有优异的耐腐蚀性和耐热性。
由于这些特性,06Cr18Ni11Ti奥氏体不锈钢常被用于化工、石油、航空航天等领域的设备制造。
二、06Cr18Ni11Ti奥氏体不锈钢的加工工艺1. 切削加工06Cr18Ni11Ti奥氏体不锈钢具有一定的硬度和延展性,适合进行切削加工。
常用的切削工艺包括车削、铣削、钻削等,对于不同形状和尺寸的工件,可以选择不同的切削加工方式。
在切削加工过程中,应选择合适的刀具和切削参数,以确保工件加工质量和刀具耐用性。
2. 焊接加工由于06Cr18Ni11Ti奥氏体不锈钢的耐热性和耐腐蚀性,适合进行焊接加工。
常用的焊接工艺包括氩弧焊、氩气保护焊、电阻焊等,其中氩弧焊是最常用的一种。
在焊接过程中,需要注意控制焊接电流和电压,以避免产生氧化皮和焊缝不良。
3. 热处理工艺06Cr18Ni11Ti奥氏体不锈钢的热处理工艺包括固溶处理和时效处理。
固溶处理可以改善材料的塑性和韧性,时效处理则可以提高材料的硬度和强度。
在热处理过程中,需要控制加热温度和保温时间,以确保材料的组织结构和性能达到设计要求。
4. 表面处理工艺06Cr18Ni11Ti奥氏体不锈钢的表面处理工艺包括抛光、喷丸、酸洗等。
这些工艺可以改善材料表面的光洁度和耐腐蚀性,同时也可以提高涂层的附着力和耐磨性。
在表面处理过程中,应根据具体要求选择合适的工艺流程和化学药剂,以确保材料表面的质量和性能。
不锈钢材料常见成型工艺

不锈钢材料常见成型工艺不锈钢是一种常见的金属材料,具有耐腐蚀、耐高温、强度高等优点,因此在工业生产中得到广泛应用。
不锈钢的成型工艺也是非常重要的,下面将介绍几种常见的不锈钢成型工艺。
一、冷镦成型冷镦成型是一种常见的不锈钢成型工艺,主要用于制造螺栓、螺母等紧固件。
冷镦成型是利用冷镦机将不锈钢棒材强行压制成型,通过镦头和模具的作用,将不锈钢材料冷变形成型。
冷镦成型工艺具有高效、低成本的特点,能够大批量生产符合规格要求的产品。
二、冷拔成型冷拔成型是一种通过拉伸不锈钢材料来实现成型的工艺。
在冷拔过程中,不锈钢材料被放入到冷拔机中,通过连续拉伸的方式,逐渐把材料拉长成所需的形状。
冷拔成型工艺可以制造出形状复杂、尺寸精确的产品,广泛应用于制造轴类零件、弹簧等。
三、冲压成型冲压成型是一种常见的不锈钢成型工艺,通过冲压机将不锈钢板材加工成各种形状的零件。
冲压成型工艺具有生产效率高、成本低的优点,能够批量生产符合要求的产品。
冲压成型工艺广泛应用于汽车、航空航天、电子等行业,制造出各种不锈钢零件。
四、热压成型热压成型是一种通过将不锈钢材料加热至一定温度,然后放入模具中进行压制成型的工艺。
热压成型工艺可以制造出尺寸精确、表面光滑的产品,适用于制造各种不锈钢零件,如阀门、管道等。
五、焊接成型焊接是一种将不锈钢材料通过加热至熔化状态,然后通过焊接电弧或者激光束将材料连接在一起的工艺。
焊接成型可以制造出形状复杂的不锈钢零件,广泛应用于建筑、船舶、化工等领域。
六、铸造成型铸造成型是一种通过将熔化的不锈钢注入模具中,冷却后得到所需形状的工艺。
铸造成型具有制造尺寸大、形状复杂的不锈钢零件的优点,广泛应用于制造船舶、汽车、机械等行业。
以上是几种常见的不锈钢成型工艺,每种工艺都有其特点和适用范围。
在实际生产中,根据不同的产品要求和工艺条件,选择合适的成型工艺可以提高生产效率、降低成本,并保证产品质量。
不锈钢轴承生产工艺

不锈钢轴承生产工艺
不锈钢轴承是一种重要的机械零件,广泛应用于机械设备、汽车、电子产品等领域。
其生产工艺是十分繁琐和复杂的,下面我们来了解一下关于不锈钢轴承的生产工艺。
1. 原材料的准备:不锈钢是制造轴承的常用材料之一,所以首先需要准备好不锈钢原材料。
通过熔炼和冶炼等工艺,将不锈钢制成合适的形态和尺寸。
2. 钢材加工:将原材料切割成合适的尺寸,然后利用高速钢切削刀具进行车削。
这个过程需要严格控制尺寸和形状的精度,确保轴承的质量。
3. 理化处理:经过切割和车削后的轴承需要进行理化处理,进一步提高不锈钢的硬度和耐磨性。
常见的处理方法有热处理、冷处理等。
4. 精加工:精加工是指对轴承进行细微的加工和修整。
通过磨床、车床等设备进行研磨和打磨,使轴承表面更加光滑,减少摩擦。
5. 组装:在精加工后,将各个部件按照规定的顺序和方式进行组装。
组装过程需要注意每个部件的配合度和精度,确保轴承的正常运转。
6. 检测和质量控制:对组装完成的轴承进行检测,包括尺寸、硬度、摩擦等方面的检测。
必要时还需要进行质量控制,排除
不合格产品。
7. 表面处理:轴承经过一段时间使用后,表面可能会出现氧化和生锈等问题。
因此需要进行表面处理,包括抛光、镀铬等工艺,使轴承表面更加光滑和耐腐蚀。
通过以上工艺,不锈钢轴承的生产得以完成。
整个过程需要严格按照标准操作,确保产品的质量和性能。
不锈钢轴承的生产工艺虽然繁琐,但却是确保产品质量的关键所在,这也决定了不锈钢轴承的可靠性和持久性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不锈钢零件机加工工艺
1不锈钢材料加工难点
1.1切削力大,切削温度高
该类型材料强度大,切削时切向应力大、塑性变形大,因而切削力大。
此外材料导热性极差,造成切削温度升高,且高温往往集中在刀具刃口附近的狭长区域内,从而加快了刀具的磨损。
1.2加工硬化严重
奥氏体不锈钢以及一些高温合金不锈钢均为奥氏体组织,切削时加工硬化倾向大,通常是普通碳素钢的数倍,刀具在加工硬化区域内切削,使刀具寿命缩短。
1.3容易粘刀
论是奥氏体不锈钢还是马氏体不锈钢均存在加工时切屑强韧、切削温度很高的特点。
当强韧的切屑流经前刀面时,将产生粘结、熔焊等粘刀现象,影响加工零件表面粗糙度。
1.4刀具磨损加快
上述材料一般含高熔点元素、塑性大,切削温度高,使刀具磨损加快,磨刀、换刀频繁,从而影响了生产效率,提高了刀具使用成本。
2不锈钢零件加工工艺
通过上述加工难点分析,不锈钢的加工工艺及相关刀具参数设计与普通结构钢材料应具有较大的不同,其具体加工工艺如下:
2.1钻孔加工
在钻孔加工时,由于不锈钢材料导热性能差,弹性模量小,孔加工起来也比较困难。
解决此类材料的孔加工难题,主要是选用合适的刀具材料,确定合理的刀具的几何参数以及刀具的切削用量。
钻削上述材料时,钻头一般应选用W6Mo5Cr4V2Al、W2Mo9Cr4Co8等材质的钻头,这些材质钻头缺点是价格比较昂贵,而且难以采购。
而采用常用的W18Cr4V普通标准高速钢钻头钻孔时,由于存在顶角较小、切屑太宽而不能及时排出孔外、切削液不能及时冷却钻头等缺点,再加上不锈钢材料导热性差,造成集中在刀刃上的切削温度升高,容易导致两个后刀面和主刃烧伤及崩刃,使钻头的使用寿命降低。
(1)刀具几何参数设计在采用W18Cr4V普通高速钢钻头钻孔时,切削力及切削温度均集中在钻尖上,为提高钻头切削部位的耐用度,可以适当增大顶角角度,顶角一般选135°~140°,顶角增大也将使外缘前角减小,钻屑变窄,以利于排屑。
但是加大顶角后,钻头的横刃变宽,造成切削阻力增大,因而必须对钻头横刃进行修磨,修磨后横刃的斜角为47°~55°,横刃前角为3°~5°,修磨横刃时,应将切削刃与圆柱面转角处修磨成圆角,以增加横刃强度。
由于不锈钢材料弹性模量较小,切屑层下的金属弹性恢复大,加之加工过程中加工硬化严重,后角太小会加快钻头后刀面的磨损,而且增加了切削温度,降低钻头的寿命。
因此须适当加大后角,但后角太大,将使钻头的主刃变得单薄,减小了主刃的刚性,所以后角应以12°~15°为宜。
为使钻屑变窄,利于排屑,还需要在钻头两个后刀面上开交错分布的分屑槽。
(2)切削用量选择钻削时,切削用量的选择应从降低切削温度的基本点出发,因为高速切削将会使切削温度升高,而高的切削温度将加剧刀具磨损,因而切削用量中最重要的是选择切削速度。
一般情况下,切削速度以12~15m/min较为合适。
进给量对刀具寿命影响较小,但进给量选择太小将会使刀具在硬化层内切削,加剧磨损;而进给量如果太大,又会使表面粗糙度变差。
综合上述两个因素,进给量选择为0.32~0.50mm/r为宜。
(3)切削液选择钻削时,为降低切削温度,可采用乳化液作为冷却介质。
2.2铰孔加工
(1)刀具几何参数设计不锈钢材料的铰削加工大部分使用硬质合金铰刀。
铰刀的结构和几何参数与普通铰刀有所不同。
为增强刀齿强度并防止铰削时产生切屑堵塞现象,铰刀齿数一般比较少。
铰刀前角一般为8°~12°,但在某些特定情况,为了实现高速铰削,也可采用0°~
5°前角;后角一般为8°~12°;主偏角的选择视孔的不同而异,一般情况下通孔为15°~30°,不通孔为45°;铰孔时为了使切屑向前排出,也可适当增加刃倾角角度,刃倾角角度一般为10°~20°;刃带宽度为0.1~0.15mm;铰刀上倒锥应较普通铰刀大,硬质合金铰刀一般为0.25~0.5mm/100mm,高速钢铰刀为0.1~0.25mm/100mm;铰刀校正部分长度一般为普通铰刀的65%~80%,其中圆柱部分长度为普通铰刀的40%~50%。
(2)切削用量选择铰孔时进给量为0.08~0.4mm/r,切削速度为10~20m/min,粗铰余量一般为0.2~0.3mm,精铰余量为0.1~0.2mm。
粗铰时应采用硬质合金刀具,精铰时可采用高速钢刀具。
(3)切削液选择不锈钢材料铰孔时,可采用全损耗系统用油或二硫化钼作为冷却介质。
2.3镗孔加工
(1)刀具材料选择因加工不锈钢零件时切削力大、切削温度高,刀具材料应尽量选择强度高、导热性好的YW或YG类硬质合金。
精加工时也可使用YT14及YT15硬质合金刀片。
批量加工上述材料零件时,可采用陶瓷材料刀具,由于此类材料的特点主要是韧性大,加工硬化严重,切削这些材料的切屑以单元切屑形式产生,将使刀具产生振动,容易造成刀刃产生微崩现象,因此选择陶瓷刀具切削此类材料零件时首先应考虑的是微观韧性。
目前Sialon是一种比较好的选择,特别是α/βSialon材料,因其优异的抗高温变形的性能以及扩散磨损的性能而引人注目,并成功应用于切削镍基合金,其寿命远远超过Al2O3基陶瓷。
此外,SiC晶须加强陶瓷也是切削不锈钢或镍基合金的一种很有效的刀具材料。
对于此类材料淬火零件的加工,可以采用CBN(立方氮化硼)刀片,CBN硬度仅次于金刚石,硬度可达7000~8000HV,因此耐磨性很高,与金刚石相比,CBN突出优点是耐热性比金刚石高得多,可达1200℃,可承受很高的切削温度。
此外其化学惰性很大,与铁族金属在1200~1300℃时也不起化学作用,因此非常适合加工不锈钢材料。
其刀具寿命是硬质合金或陶瓷刀具的几十倍。
(2)刀具几何参数设计刀具几何参数对其切削性能起重要的作用,为使切削轻快、顺利,硬质合金刀具宜采用较大的前角,以提高刀具寿命。
一般粗加工时,前角取10°~20°,半精加工时取15°~20°;精加工时取20°~30°。
主偏角的选择依据是,当工艺系统刚性良好时,可取30°~45°;如工艺系统刚性差时,则取60~75°,当工件长度与直径之比超过10倍时,可取90°。
用陶瓷刀具镗削不锈钢材料时,绝大多数情况下,陶瓷刀具均采用负前角进行切削。
前角大小一般选应-5°~-12°。
这样有利于加强刀刃,充分发挥陶瓷刀具抗压强度较高的优越性。
后角大小直接影响刀具磨损,对刀刃强度也有影响,一般选用5°~12°。
主偏角的改变会影响径向切削分力与轴向切削分力的变化以及切削宽度和切削厚度的大小。
因为工艺系统的振动对陶瓷刀具极为不利,所以主偏角的选择要有利于减少这种振动,一般选取30°~75°。
选用CBN作为刀具材料时,刀具几何参数为前角0°~10°,后角12°~20°,主偏角45°~90°。
(3)前刀面刃磨时粗糙度值要小为避免出现切屑粘刀现象,刀具的前、后刀面应仔细刃磨以保证具有较小的粗糙度值,从而减少切屑流出阻力,避免切屑粘刀。
(4)刀具刃口应保持锋利刀具刃口应保持锋利,以减少加工硬化,进给量和背吃刀量不宜过小,以防止刀具在硬化层中切削,影响刀具使用寿命。
(5)注意断屑槽的磨削由于不锈钢切屑具有强韧的特点,刀具前刀面上断屑槽修磨应合适,从而使切削过程中断屑、容屑、排屑方便。
(6)切削用量的选择根据不锈钢材料特点,加工时宜选用低速和较大进给量进行切削。
采用陶瓷刀具进行镗削时,切削用量的合理选择是充分发挥陶瓷刀具性能的关键之一。
陶瓷刀具连续切削时可以按照磨损耐用度与切削用量之间的关系选择切削用量;断续切削则应按照刀具破损规律确定合理切削用量。
由于陶瓷刀具有优越的耐热性和耐磨性,切削用量对刀具磨损寿命的影响比硬质合金刀具要小。
一般情况下,用陶瓷刀具加工时,进给量对刀具的破损影响最为敏感。
因而,根据工件材料的性质,在机床功率、工艺系统刚度和刀片强度
许可的前提下,在镗削不锈钢零件时,尽可能选择高的切削速度、较大的背吃刀量和比较小的进给量。
(7)切削液选择要合适由于不锈钢具有极易产生粘结和散热性差的特点,因此在镗削中选用抗粘结和散热性好的切削液相当重要,如选用含氯较高的切削液,以及具有良好冷却、清洗、防锈和润滑作用的不含矿物油、不含亚酸盐的水溶液,如H1L-2合成切削液。
采用上述工艺方法,可以克服不锈钢的加工难点,使不锈钢在进行钻、铰、镗孔时刀具寿命得到极大的提高,减少操作中磨刀、换刀次数,在提高生产效率和孔加工质量、降低工人劳动强度和生产成本方面,能取得令人满意的效果。