2.4 Z变换与拉氏变换和傅氏变换的关系

合集下载

Z变换与F、L变换的关系

Z变换与F、L变换的关系

Ω= 0,S平面的实轴, ω= 0,Z平面正实轴;
Ω=Ω0(常数),S:平行实轴的直线, ω= Ω0T,Z:始于
原点的射线;
Ω ( , ), S:宽 2的水平条带, ω ( , ) 整个z平面.
TT
T
j 3
jIm[Z]
Tபைடு நூலகம்
T
T
3
T
ω
0
Re[Z]
S平面到Z平面的映射是多值映射,不是单一映射。
总结:z 变 换 的 本 质 是 理 想 冲 激 抽 样 的 拉 普 拉 斯 变
二.Z变换和傅氏变换的关系
连续信号经理想取样后,其频谱产生周期延拓,

Xˆ a (
j)
1 T
k
Xa(
j
jk
2
T
)
我们知道,傅氏变换是拉氏变换在虚轴S=jΩ
的特例,因而映射到Z平面上为单位圆。因此,
X (z)ze jT X (e jT ) Xˆ a ( j)
这就是说,(取样)序列在单位圆上的Z变换,就等
σ 0, s jΩ
H jΩ H s s jΩ
4. z平面单位圆上的z变换即为序列的傅氏 变换(DTFT)
z 1, z ejω
X e jω X z zejω
四.序列的傅氏变换
1.正变换:
F[x(n)] x(e j ) X (z)ze j x(n)e jn , n
收敛条件为: x(n) n
即X (z) zesT X (esT ) Xˆ a (s)
2.Z变换与拉氏变换的关系( S、Z平面映射关系)
S平面用直角坐标表示为:s j
Z平面用极坐标表示为: z re j
又由于 z esT

§6.10 傅里叶变换、拉普拉斯变换、z变换之间的关系

§6.10 傅里叶变换、拉普拉斯变换、z变换之间的关系



X
二.z变换与拉普拉斯变换的关系
Ai ˆ t L x s p i 1 i ˆ ( nT ) 也 ˆ ( t ) 进行理想抽样,得到的离散时间序列 x 对x 由N 项指数序列相加组合而成。 ˆ nT x ˆ 1 nT x ˆ 2 nT x ˆ N nT x

n

子 工
X z
n x n z


程 学

逆变换 x n

2 j 1 2 j 1
1
z 1
X z z
n 1
dz
第 5 页


1 IDTFT X e x n 2

n


x n e jn
j K2 K 2
* 1

程 学
K1 K2 ω0 解: xt sinω0 t ut X s 2 2 s j ω0 s j ω0 s ω0 两个一阶极点分别为 p1 j ω0,p2 j ω0 。

大 学

子 工
序列sinω0 nT unT 的z变换。
第 7 页
大 学

i 1
i 1
其拉式变换为
N


邮 电
Ai ˆ t L x s p i 1 i



子 工
程 学

ˆ i t Ai e pi t u t x

N

子 工

学 院
N
匀抽样 x t 均 x n ,

DSP第二章Z变换与拉氏变换傅氏变换的关系.

DSP第二章Z变换与拉氏变换傅氏变换的关系.


n
nT )e
nsT
st
dt
理想抽样后的信号的 Z变换与L变换的关系
令抽样序列为:
其z变换为:
x(n) xa (nT )
X ( z)
sT
n
x ( n) z

n
由此看出:当z e 时,抽样序列的z变换 等于其理想抽样信号的拉氏变换。
引言

上节我们讨论了连续信号的理想抽样, 这节我们利用它来讨论离散信号的z变换 与连续信号的拉普拉斯变换、付里叶变 换的关系。
理想抽样后的信号的拉氏变换
ˆa (t ), 设连续信号xa (t ), 理想抽样后的抽样信号x 它们的拉氏变换为:
st ˆ ˆ a (t )e dt X a (s) x a
ˆ ( s) X ( z ) z e sT X (e ) X a
sT
Z平面与S平面的映射关系
z平面与s平面的映射关系 z e z平面用极坐标表示:
sT
s平面用直角坐标表示: s j
z re
T
jw
则可得 因而
z re e e e T re w T
1 jw
n
x ( n )e
jw

jwn



X (e )e dw
jwn
单位圆上的序列的z变换即为序 列的付里叶变换
X ( z ) z e jw 1 w 2k X (e ) X a ( j ) T k T
jw jw
序列的付里叶变换(即离散序列的频谱)为:
DTFT [ x(n)] X (e )
1 DTFT [ X (e )] x(n) 2

拉普拉斯变换傅里叶变换和Z变换的意义

拉普拉斯变换傅里叶变换和Z变换的意义

拉普拉斯变换傅里叶变换和Z变换的意义L{f(t)} = F(s) = ∫[0,∞] e^(-st) f(t) dt其中,L表示拉普拉斯变换算子,f(t)是定义在[0,∞]上的函数,s是复变量。

拉普拉斯变换的意义在于,它可以将时间域中的函数转换为复平面上的函数,从而方便地进行频域分析和求解微分方程。

通过拉普拉斯变换,我们可以得到函数的频谱特性、系统的稳定性和传递函数等重要信息。

在信号处理中,拉普拉斯变换可以用于信号的滤波、系统的响应和控制系统的设计等。

傅里叶变换是一种将函数从时域转换到频域的方法,它将一个连续函数分解为不同频率的正弦和余弦函数的叠加。

在实际应用中,傅里叶变换通常分为离散傅里叶变换(DFT)和连续傅里叶变换(FFT)两种形式。

傅里叶变换的定义如下:F(ω) = ∫[-∞,+∞] e^(-jωt) f(t) dt其中,F表示傅里叶变换算子,f(t)是定义在整个实数轴上的函数,ω是频率变量。

傅里叶变换的意义在于,它可以将时域中的函数分解为不同频率的正弦和余弦函数的叠加。

通过傅里叶变换,我们可以分析信号的频谱分布、信号的周期性和对信号进行滤波等。

在图像处理、语音处理和通信系统中,傅里叶变换广泛应用于信号分析、滤波和信息传输等方面。

Z变换是一种将离散函数转换为复变函数的方法,它将离散序列表示为复平面上的复数函数。

Z变换在数字信号处理和控制系统中广泛使用。

Z变换的定义如下:Z{f[n]}=F(z)=∑[-∞,+∞]f[n]z^(-n)其中,Z表示Z变换算子,f[n]是一个定义在整个整数轴上的离散序列,z是复变量。

Z变换的意义在于,它可以将离散序列转换为复平面上的函数,从而方便地进行频域分析和系统建模。

通过Z变换,我们可以得到离散序列的频谱特性、系统的稳定性和传递函数等信息。

在数字滤波器设计、控制系统分析和离散信号处理中,Z变换是一种重要的工具。

综上所述,拉普拉斯变换、傅里叶变换和Z变换是信号处理和系统分析中常用的工具。

§6.10傅里叶变换、拉普拉斯变换、z变换之间的关系

§6.10傅里叶变换、拉普拉斯变换、z变换之间的关系
院 学 程 工
§6.10 傅里叶变学电换子 、拉普拉斯变换、 北z京变邮电换大 之间的关系工程学院
子 电 学 大 电 邮 北京邮电大学北电京子工程学院

2 页
主要内容
院 学
序列的傅里叶变换工程
z变换与拉普拉电斯子变换的关系
傅氏变换、大拉学氏变换、z 变换之间的联系和区别
重点:序z变北列换京的邮与电傅拉里普叶拉变斯换变换的关系工程学院
xt
院x n

s
j
程 工
z
e sT
T

频率类型 及单位
模拟:弧度/秒 数字:弧度
电 模拟:弧大度学/秒

数字:弧度



X

三.傅氏变换、拉氏变换、z变换的关系
14 页
3.3 s平面虚轴上的拉氏变学换院 即为傅氏变换
σ 0, s jΩ
程 工
H

H
s
子 sjΩ学电
3(.D4 TzF平z T面)1,单z北位京e邮jω圆电大上的z变换即为序子列工程的学傅院 氏变换
inω0t
ut
的拉式院变
学 程

为 s2
ω0 ω0
2




序列sinω0nT unT 的z变子换工。
解: xt sinω0tut学电X s

s2
ω0 ω02
K1 s jω0
s
K2 jω0
两个一阶极点邮分电别为
K1
北ω京0
s jω0
|s jω0
p1
j 2
,
j ω0,p2
K2 K1*
jω学0 。院 子工2j程

傅里叶变换拉普拉斯变换z变换关系

傅里叶变换拉普拉斯变换z变换关系

傅里叶变换拉普拉斯变换z变换关系
傅里叶变换、拉普拉斯变换和z变换是三种不同的信号分析方法。

它们之间的关系如下:
1. 傅里叶变换和拉普拉斯变换
傅里叶变换用于分析连续时间信号,而拉普拉斯变换用于分析连续时间线性时不变系统(LTI系统)。

当对LTI系统的输入信号进行傅里叶变换时,得到的结果是系统的频率响应,即系统在不同频率下的增益和相位差。

当使用拉普拉斯变换对LTI系统的输入信号进行变换时,得到的结果是系统的传递函数,即输入信号和输出信号之间的关系。

2. 傅里叶变换和z变换
傅里叶变换和z变换都用于分析离散时间信号。

傅里叶变换将信号从时域转换到频域,而z变换将信号从时域转换到z域。

z变换可以将连续时间信号离散化,这使得它在数字信号处理中非常有用。

当对离散时间信号进行傅里叶变换时,得到的结果是信号的离散频谱,即信号在不同频率下的幅度和相位信息。

当使用z 变换对离散时间信号进行变换时,得到的结果是离散时间系统的传递函数,即输入信号和输出信号之间的关系。

3. 拉普拉斯变换和z变换
拉普拉斯变换和z变换类似,都用于分析离散时间线性时不变系统。

当使用拉普拉斯变换对离散时间LTI系统的输入信号进行变换时,得到的结果是系统的离散时间传递函数。

当使用z变换对连续时间LTI系统的输入信号进行变换时,得到的结果是系统的z域传递函数。

这些函数可以用于分析系统的稳定性、带宽和抗差性等性质。

对傅里叶变换、拉氏变换、z变换详细剖析

对傅里叶变换、拉氏变换、z变换详细剖析

对傅里叶变换、拉氏变换、z变换详细剖析变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的。

所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。

对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。

已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。

这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。

所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。

傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。

我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。

我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。

傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。

但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。

建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。

(另一种说法)对于周期函数f,傅立叶变换就是把这个函数分解成很多个正弦函数fn的和,每个fn的频率是f的n倍。

傅里叶变换,拉普拉斯变换和z变换

傅里叶变换,拉普拉斯变换和z变换

傅里叶变换,拉普拉斯变换和z变换傅里叶变换、拉普拉斯变换和z变换是信号与系统领域中常用的数学工具,它们在信号分析和处理、控制系统设计等方面发挥着重要作用。

本文将分别介绍这三种变换的基本概念和应用。

傅里叶变换是一种将时域信号转换为频域信号的数学工具。

它通过对信号进行分解,将信号分解为一系列不同频率的正弦和余弦函数的叠加。

傅里叶变换可以将信号的时域特性转换为频域特性,使得我们可以更加清晰地了解信号的频域特点,如频率成分、振幅等。

这对于音频、图像、视频等信号的处理和分析非常重要。

傅里叶变换可以用于滤波、频谱分析、信号压缩等方面。

拉普拉斯变换是一种将时域信号转换为复频域信号的数学工具。

它是傅里叶变换在复平面上的推广,可以更加全面地描述信号在频域上的特性。

拉普拉斯变换可以将时域信号转换为复频域函数,从而可以更方便地进行信号的频域分析和系统的频域特性描述。

拉普拉斯变换在电路分析、控制系统设计、信号处理等方面有广泛的应用。

它可以用于系统的稳定性分析、频域响应计算、滤波器设计等。

z变换是一种将离散时间域信号转换为复频域信号的数学工具。

它是傅里叶变换和拉普拉斯变换在离散领域的推广,用于描述离散时间系统的频域特性。

z变换可以将离散时间信号转换为复平面上的函数,从而可以更方便地进行频域分析和系统特性描述。

z变换在数字滤波器设计、离散时间控制系统设计等方面有广泛的应用。

它可以用于系统的稳定性分析、频域响应计算、滤波器设计等。

傅里叶变换、拉普拉斯变换和z变换是信号与系统领域中不可或缺的数学工具。

它们通过将信号从时域转换为频域或复频域,使得我们可以更加清晰地了解信号的特性和系统的行为。

这三种变换在信号处理、控制系统设计、通信等领域都有广泛的应用。

熟练掌握这些变换的基本原理和应用方法,对于深入理解信号与系统的特性和进行相关工程设计具有重要意义。

总结起来,傅里叶变换、拉普拉斯变换和z变换是信号与系统领域中的重要数学工具。

它们分别用于时域信号到频域信号、时域信号到复频域信号、离散时间信号到复频域信号的转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单位圆上序列的z变换 单位圆上序列的 变换 X (e jω ) = X (z) z=e ω 数字域频率:ω = ΩT
j
ˆ = X (e jΩT ) = Xa ( jΩ)
1 ∞ = ∑ Xa ( jΩ− jkΩs ) T k=−∞
1 ∞ ω − 2πk = ∑ Xa j T k=−∞ T
——电子信息工程 电子信息工程
§2.5 z变换与拉氏变换和傅氏变换的关系
本小节通过对Z变换和拉氏变换的分析找出Z 本小节通过对Z变换和拉氏变换的分析找出Z变换和拉 氏变换、 氏变换、傅氏变换之间的关系 ∧ 设连续信号 xa (t ) ,理想抽样信号为 x a (t ) , 其拉氏变换为
X a (s) = =
ˆ 当z = e 时,X (z) = Xa (s)
sT
1 ∞ 而 ˆ a (s) = ∑ Xa (s − jkΩs ) X T k=−∞
X (z) z=esT
1 ∞ 1 ∞ 2π = ∑ Xa (s − jkΩs ) = ∑ Xa s − j k T k=−∞ T k=−∞ T
——电子信息工程 电子信息工程 4、序列 序列x(n)的z变换与 a(t)的傅里叶变换的关系 变换与x 的傅里叶变换的关系 序列 的 变换与 Fourier变换是 变换是Laplace变换在虚轴上的特例。 变换是 变换在虚轴上的特例
即: s=j z = e jΩT 映射到z平面为单位圆
X (z)
z=e jΩT
令 s = σ + jΩ ∴ r = e σT z = re jω
T → re jω = e (σ + jΩ)
ω = ΩT
表示在 s平面上变量和 z平面上变量之间的关系
——电子信息工程 电子信息工程
1 . r 与 σ 的关系
r=e
σT
jΩ s平面 j Im(z ) z平面
σ <0
σ >0 σ
-1 • 1
ˆ = X (e jΩT ) = Xa ( jΩ)
ˆ = Xa (s) s= jΩ
抽样序列在单位圆上的z变换 抽样序列在单位圆上的 变换 =其理想抽样信号的 其理想抽样信号的Fourier变换 其理想抽样信号的 变换
序列的Fourier变换 序列的 变换
2π Ωs = 为 周期 T
f ω = ΩT = = 2π fs fs

——电子信息工程 电子信息工程 对于抽样序列 x ( n ) = xa (nT ) 其Z变换为
X ( z) =
n = −∞
x ( n) z − n ∑
+∞
如果有 z
=e
sT
ˆ 则 X ( z ) | sT = X (e sT ) = X a ( s ) z =e
映射关系为 z =e
sT
1 s = ln z T
= =




−∞
ˆ x a ( t ) e − st dt x a ( nT )δ (t − nT ) e − st dt
x a ( nT ) δ ( t − nT ) e − st dt
∫ ∑
−∞
n = −∞
+∞
∑ ∫ ∑
+∞
n = −∞ +∞ +∞
−∞
n = −∞
x a ( nT ) e − snT

Re(z )
——电子信息工程 电子信息工程
2 . ω 与 Ω 的关系
ω = ΩT
s平面 jΩ 3π T j Im(z ) z平面
π
T

π
T
σ
-1 •
1

Re(z )

3π T
——电子信息工程 电子信息工程
3、抽样序列 抽样序列x(n)的z变换与连续信号 a(t)的拉氏变 变换与连续信号x 的拉氏变 抽样序列 的 变换与连续信号 换Xa(s)的关系 的关系
相关文档
最新文档