九年级数学三角函数习题

合集下载

九年级中考数学专题练习锐角三角函数的增减性(含解析)

九年级中考数学专题练习锐角三角函数的增减性(含解析)

九年级中考数学专题练习锐角三角函数的增减性(含解析)中考数学专题练习-锐角三角函数的增减性(含解析)一、单选题1.已知sinα<0.5,那么锐角α的取值范围是()A. 60°<α<90°B. 30°<α<90°C. 0°<α<60°D. 0°<α<30°2.如图,是半径为1的半圆弧,△AOC为等边三角形,D是上的一动点,则△COD的面积S 的最大值是()A. s=B. s=()A. <cosα<B. <cosα< C.<cosα<D. <cosα<6.梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越大,梯子越陡B. co sA的值越大,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关7.若0<α<30°,则sinα,cosα,tanα的大小关系是()A. sinα<cosα<tanα B. sinα<tanα<cosα C. tanα<sinα<cosα D. tanα<cosα<sinα8.已知甲、乙两坡的坡角分别为α、β,若甲坡比乙坡更陡些,则下列结论正确的是()A. tanα<t anβB. sinα<sinβC. cosα<cosβD. cosα>cosβ9.α是锐角,且cosα=,则()A. 0°<α<30°B. 30°<α<45°C. 45°<α<60°D. 60°<α<90°10.如图,梯子跟地面的夹角为∠A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越小,梯子越陡B. co sA的值越小,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关11.在Rt△ABC中,∠C=90°,下列结论:(1)sinA<1;(2)若A>60°,则cosA>;(3)若A>45°,则sinA>cosA.其中正确的有()A. 0个B. 1个C. 2个D. 3个12.三角函数sin30°、cos16°、cos43°之间的大小关系是()A. cos43°>cos16°>sin30°B.cos16°>sin30°>cos43°C. cos16°>cos43°>sin30°D.cos43°>sin30°>cos16°13.在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A. 都扩大2倍B. 都扩大4倍C. 没有变化D. 都缩小一半14.如图,△ABC是锐角三角形,sinC= ,则sinA的取值范围是()A.0B.C.D.15.α是锐角,且sinα>,则α()A. 小于30°B. 大于30°C. 小于60°D. 大于60°二、填空题16.比较大小:sin44°________cos44°(填>、<或=).17.若∠A是锐角,cosA>,则∠A的取值范围是________ .18.若α是锐角,且sinα=1﹣3m,则m的取值范围是________ ;将cos21°,cos37°,sin41°,cos46°的值,按由小到大的顺序排列是________ .19.若∠A是锐角,cosA>,则∠A应满足________ .三、解答题20.用“<”符号连接下列各三角函数cos15°、cos30°、cos45°、cos60°、cos75°.21.已知:在Rt△ABC中,∠C=90°,sinA、sinB 是方程x2+px+q=0的两个根.(1)求实数p、q应满足的条件(2)若p、q满足(1)的条件,方程x2+px+q=0的两个根是否等于Rt△ABC中两锐角A、B的正弦?22.设a、b、c是直角三角形的三边,c为斜边,n为正整数,试判断a n+b n与c n的关系,并证明你的结论.四、综合题23.如图①②,锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化.试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(1)根据你探索到的规律,试比较18°,34°,50°,62°,88°这些锐角的正弦值的大小和余弦值的大小.(2)比较大小(在横线上填写“<”“>”或“=”):若α=45°,则sin α________cos α;若α<45°,则sin α________cos α;若α>45°,则sin α________cos α.(3)利用互为余角的两个角的正弦和余弦的关系,试比较下列正弦值和余弦值的大小:sin 10°,cos 30°,sin 50°,cos 70°.24.如图(1)如图中①、②,锐角的正弦值和余弦值都是随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值及余弦值的变化规律;(2)根据你探索到的规律,试分别比较18°、34°、50°、62°、88°这些锐角的正弦值的大小和余弦值的大小.答案解析部分一、单选题1.已知sinα<0.5,那么锐角α的取值范围是()A. 60°<α<90°B. 30°<α<90°C. 0°<α<60°D. 0°<α<30°【答案】D【考点】锐角三角函数的增减性【解析】【解答】解:由sinα=0.5,得α=30°,由锐角函数的正弦值随锐角的增大而增大,得0°<α<30°,故选:D.【分析】根据锐角函数的正弦值随锐角的增大而增大,可得答案.2.如图,是半径为1的半圆弧,△AOC为等边三角形,D是上的一动点,则△COD的面积S 的最大值是()A. s=B. s=C. s=D. s=【答案】D【考点】锐角三角函数的增减性【解析】【解答】解:S=CO•ODsin∠COD,△COD∵CO=OD=1,=sin∠COD,∴S△COD∵△AOC为等边三角形,∴∠COB=120°,∴0°<∠COD<120°,∴当∠COD=90°时,sin∠COD最大,最大值是1,∴△COD的面积S的最大值是.故选D.=【分析】根据三角形的面积公式S△COD CO•ODsin∠COD,因为ab都是圆的半径1,所以sin∠COD的值越大,面积越大进行解答.3.若sinA=,则A的取值范围是()A. 0°<∠A<30° B. 30°<∠A<45° C. 45°<∠A<60° D. 60°<∠A<90°【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:∵sin30°=,sin45°=.又<<,正弦值随着角的增大而增大,∴30°<∠A<45.故选B.【分析】首先明确sin30°=,sin45°=;再根据正弦值随着角的增大而增大,进行分析.4.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A的余切值()A. 扩大为原来的两倍B. 缩小为原来的C. 不变D. 不能确定【答案】C【考点】锐角三角函数的增减性【解析】【解答】因为△ABC三边的长度都扩大为原来的2倍所得的三角形与原三角形相似,所以锐角A的大小没改变,所以锐角A的余切值也不变.故答案为:C.【分析】根据相似三角形的性质可知三角形的边长扩大,角度不会发生改变,即锐角A的大小没改变,所以锐角A的余切值也不变.5.已知30°<α<60°,下列各式正确的是()A. <cosα<B. <cosα< C.<cosα<D. <cosα<【答案】C【考点】锐角三角函数的增减性【解析】【解答】解:∵cos30°=,cos60°=,余弦函数是减函数,∴<cosα<.故选C.【分析】根据特殊角的三角函数值及余弦函数随角增大而减小解答.6.梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越大,梯子越陡B. co sA的值越大,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关【答案】A【考点】锐角三角函数的增减性【解析】【解答】解:根据锐角三角函数值的变化规律,知sinA的值越大,∠A越大,梯子越陡.故选A.【分析】锐角三角函数值的变化规律:正弦值和正切值都是随着角的增大而增大,余弦值和余切值都是随着角的增大而减小.7.若0<α<30°,则sinα,cosα,tanα的大小关系是()A. sinα<cosα<tanα B. sinα<tanα<cosα C. tanα<sinα<cosα D. tanα<cosα<sinα【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:∵0<α<30°,∴0<sinα<, 0<tanα<,<cosα<1,∴sinα<cosα,tanα<cosα,又∵<cosα<1,∴tanα=,∴sinα<tanα<cosα.故选:B.【分析】首先根据0<α<30°,可得0<sinα<, 0<tanα<,<cosα<1,据此判断出sinα<cosα,tanα<cosα;然后判断出sinα<tanα,即可判断出sinα,cosα,tanα的大小关系.8.已知甲、乙两坡的坡角分别为α、β,若甲坡比乙坡更陡些,则下列结论正确的是()A. tanα<tanβB. sinα<sinβC. cosα<cosβD. cosα>cosβ【答案】C【考点】锐角三角函数的增减性【解析】解:根据题意,得α>β.根据锐角三角函数的变化规律,只有C正确.故选C.【分析】若甲坡比乙坡更陡些,则α>β;再根据锐角三角函数的变化规律解答:正弦和正切都是随着角的增大而增大,余弦和余切都是随着角的增大而减小.9.α是锐角,且cosα=,则()A. 0°<α<30°B. 30°<α<45°C. 45°<α<60°D. 60°<α<90°【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:∵在锐角三角函数中,余切值都是随着角的增大而减小,又知cos30°=,cos45°=,故30°<α<45°,故选B.【分析】在锐角三角函数中,余切值都是随着角的增大而减小.cos30°=,cos45°=,故知α的范围.10.如图,梯子跟地面的夹角为∠A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越小,梯子越陡B. co sA的值越小,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:sinA的值越小,∠A越小,梯子越平缓;cosA的值越小,∠A就越大,梯子越陡;tanA的值越小,∠A越小,梯子越平缓,所以B正确.故答案为:B.【分析】根据锐角三角函数的增减性可判断正误。

初三数学三角函数(含答案)

初三数学三角函数(含答案)

初中数学三角函数1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边c 的平方。

a 2b 2c 24、任意锐角的正切值等于它的余角的余切值; 任意锐角的余切值等于它的余角的正切值。

tan A cot B cot A tan Bcot-1 ~3~6、 正弦、余弦的增减性:当0°w < 90°时,sin 随 的增大而增大,cos 随 的增大而减小7、 正切、余切的增减性:当0° < <90°时,tan 随 的增大而增大,cot 随 的增大而减小。

1、解直角三角形的定义:已知边和角(两个,其中必有一边)一所有未知的 边和角。

依据:①边的关系: a 2b 2c 2;②角的关系:A+B=90 °;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角; 俯角:视线在水平线下方的角(2)坡面的铅直高度 h 和水平宽度I 的比叫做坡度(坡比)。

用字母i 表示,即i y 。

坡度一 般写成1: m 的形式,如i 1:5等。

把坡面与水平面的夹角记作 (叫做坡角),那么h + i tan 。

l3、 从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图 3, OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、 指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30° (东北方向), 南 偏东45° (东南方向),南偏西60° (西南方向), 北偏西60° (西北方向)。

铅垂线*视线 ‘ 仰角水平线俯角1*视线初三数学三角函数综合试题一、填空题: 1、在 Rt △ ABC 中/C = 90°, a = 2, b = 3,则 cosA =_, sinB =_ , tanB = ___ 2、直角三角形 3、已知tan ABC 的面积为24cm 2,直角边AB 为6cm , / A 是锐角,则sinA = =—, 是锐角,贝U sin 12 + ) + cos 2(40 ° 4、 cos 2(50° — _______ ? 5、 如图1,机器人从A 点,沿着西南方向,行了个4,:2单位,至U 达 60°的方向上,贝U 原来 )—tan(30)tan(60 ° + 到原点O 在它的南偏东 保留根号).A 的坐标为B 点后观察 _ (结果 NMNC 0(2)10cm 周长为36cm 则一底角的正切值为_、3的山坡走了 50米,则他离地面 米高。

九年级数学下册《30°,45°,60°角的三角函数值》综合练习2(含答案)

九年级数学下册《30°,45°,60°角的三角函数值》综合练习2(含答案)

30°,45°,60°角的三角函数值一、请准确填空(每小题3分,共24分)1.如图1,在平面直角坐标系中,P 是∠α的边OA 上一点,且P 点坐标为(4,3)则sin α=______,cos α=______.2.已知α是锐角,且2cos α=1,则α=______;若tan(α+15°)=1,则tan α=______.3.如图2,B 、C 是河岸边两点,A 是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60 m ,则点A 到对岸BC 的距离是_____m.ABC30ABC o图1图2 图34.要把5米长的梯子上端放在距地面3米高的阳台边沿上,猜想一下梯子摆放坡度最小为______.5.已知tan α·tan30°=1,且α为锐角,则α=______.6.设β为锐角,且x 2+2x+sin β=0的两根之差为2,则β=______.7.在△ABC 中,∠C=90°.若3AC=3BC ,则∠A 的度数是______,cosB 的值是______.8.如图3,某建筑物BC 直立于水平地面,AC=9米,要建造阶梯AB ,使每阶高不超过20 cm ,则此阶梯最少要建_____阶.(最后一阶的高度不足20 cm 时,按一阶算,3取1.732)二、相信你的选择(每小题3分,共24分)9.在△ABC 中,AB=AC=4,BC=2,则4cosB 等于( ) A.1B.2C.15D.41510.△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=23,则△ABC 的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定11.令a=sin60°,b=cos45°,c=tan30°,则它们之间的大小关系是( ) A.c<b<a B.b<c<a C.b<a<cD.a<c<b12.在Rt △ABC 中,∠C=90°,下列式子中不一定成立的是( ) A.tanA=AAcos sin B.sin 2A+sin 2B=1 C.sin 2A+cos 2A=1D.sinA=sinB13.在△ABC 中,若|sinA -23|+(1-tanB)2=0,则∠C 的度数是( ) A.45°B.60°C.75°D.105°14.已知△ABC 中,∠C=90°,∠A=60°,BC+AC=3+3,则BC 等于( ) A.3B.3C.23D. 3+115.若等腰三角形腰长为4,面积是4,则这个等腰三角形顶角的度数为( ) A.30° B.30°或150° C.60° D.60°或120°16.某人沿着坡度为1∶3的山坡前进了1000 m ,则这个人所在的位置升高了( )A.1000 mB.500 mC.5003 mD.331000 m 三、考查你的基本功(共24分) 17.(16分)计算或化简: (1)sin45°·cos60°-cos45°·sin30°; (2)5tan30°-2(cos60°-sin60°). (3)(23tan30°)2005·(22sin45°)2004; (4)2(2cos45°-tan45°)-(tan60°+sin30°)0-(2sin45°-1)-1.18.(8分)已知△ABC 中,∠C=90°,AC=m ,∠BAC=α(如图4),求△ABC 的面积.(用α的三角函数及m 表示)ABCm图4图5四、生活中的数学(共18分)19.(9分)“郑集中学”有一块三角形形状的花圃ABC ,现可直接测量到∠A=30°,AC= 40 m ,BC=25 m ,请求出这块花圃的面积.20.(9分)如图5,某货船以20海里/小时的速度将一批重要的物资由A 处运往正西方向的B 处,经16小时的航行到达,到达后便接到气象部门通知,一台风中心正由A 向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.在B 处的货船是否会受到台风的侵袭?说明理由.五、探究拓展与应用(共10分)21.(10分)(1)如图6中①、②,锐角的正弦值和余弦值都是随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值及余弦值的变化规律.123(注:AB 1 =AB 2=AB 3 )① B 1B 2B 3 AC②图6(2)根据你探索到的规律,试分别比较18°、34°、50°、62°、88°这些锐角的正弦值的大小和余弦值的大小.参考答案一、1.53 54 2.60° 33 3.30 4.435.60°6.30°7.60° 238.26二、9.A 10.B 11.A 12.D 13.C 14.B 15.B 16.B 三、17.(1)0;(2)3338-;(3)21;(4)-22. 18.解:∵tan α=ACBC , ∴BC=AC·tan α=m·tan α.S △ABC =21AC·BC=21m 2tan α.四、19.解:作CD ⊥AB. ∵∠A=30°,∴CD=21AC=21×40=20(m),AD=22CD AC -=203(m), BD=22CD BC -=15(m).(1)当∠ACB 为钝角时,AB=AD+BD=203+15,∴S △ABC =21AB·CD=21(203+15)×20=(2003+150)(m 2).(2)当∠ACB 为锐角时,AB=AD -BD=203-15.∴S △ABC =21AB·CD=21(203-15)×20=(2003-150)(m 2).20.解:AB=16×20=320(海里), 作BD ⊥AC 垂足为D. ∵∠BAC=30°,∴sin30°=ABBD,BD=AB·sin30°=160. ∵160<200,∴B 处的货船会受到影响. 五、21.(1)由图①知 sinB 1AC 1=111AB C B ,sinB 2AC 2=222AB CB ,sinB 3AC 3=333AB C B . ∵AB 1=AB 2=AB 3且B 1C 1>B 2C 2>B 3C 3, ∴111AB C B >222AB C B >333AB C B . ∴sinB 1AC 1>sinB 2AC 2>sinB 3AC 3. 而∠B 1AC 1>∠B 2AC 2>∠B 3AC 3, 而对于cosB 1AC 1=11AB AC , cosB 2AC 2=22AB AC , cosB 3AC 3=33AB AC . ∵AC 1<AC 2<AC 3,∴cosB 1AC 1<cosB 2AC 2<cosB 3AC 3. 而∠B 1AC 1>∠B 2AC 2>∠B 3AC 3. 由图②知sinB 3AC=33AB CB , ∴sin 2B 3AC=2323AB C B . ∴1-sin 2B 3AC=1-2323AB C B =232323AB C B AB =232AB AC . 同理,sinB 2AC=22AB C B ,1-sin 2B 2AC=222AB AC , sinB 1AC=21AB C B ,1-sin 2B 1AC=212AB AC . ∵AB 3>AB 2>AB 1,∴232AB AC <222AB AC <212AB AC .∴1-sin 2B 3AC<1-sin 2B 2AC<1-sin 2B 1AC. ∴sin 2B 3AC>sin 2B 2AC>sin 2B 1AC. ∵∠B 3AC ,∠B 2AC ,∠B 1AC 均为锐角, ∴sinB 3AC>sinB 2AC>sinB 1AC. 而∠B 3AC>∠B 2AC>∠B 1AC. 而对于cosB 3AC=3AB AC, cosB 2AC=2AB AC, cosB 1AC=1AB AC. ∵AB 3>AB 2>AB 1,∴3AB AC <2AB AC <1AB AC. ∴cosB 3AC<cosB 2AC<cosB 1AC. 而∠B 3AC>∠B 2AC>∠B 1AC.结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)知sin18°<sin34°<sin50°<sin62°<sin88°, cos18°>cos34°>cos50°>cos62°>cos88°.。

九年级数学三角函数习题

九年级数学三角函数习题

九年级数学《直角三角形的边角关系》测试题(一)班级:_______ 姓名:_________组名_________审核人_______ 1.如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =___ ___.2.支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5 那么旗杆的有为 米(用含α的三角比表示).3.甲、乙、丙三个梯子斜靠在一堵墙上(梯子顶端靠墙), 小明测得 甲与地面的夹角为603米,且顶端距离墙脚3米;丙的坡31。

那么,这三张梯子的倾斜程度( )A.甲较陡 B .乙较陡 C .丙较陡 D .一样陡4.如图,沿AC 方向开山修路,为了加快施工进度,要在山的另一边同时施工,现在从AC 上取一点B ,使得∠ABD =145°,BD =500米,∠D =55°,要使A 、C 、E 在一条直线上,那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500tan55°米;D .o55tan 500米5.如图,北部湾海面上,一艘解放军军舰正在基地A 的正东方向且距A 地40海里的B 地训练.突然接到基地命令,要该军舰前往C 岛,接送一名病危的渔民到基地医院救治.已知C 岛在A 的北偏东60°方向,且在B 的北偏西45°方向,军舰从B 处出发,平均每小时行驶20海里,需要多少时间才能把患病渔民送到基地医院?(精确到0.1小时)αP oy34第4题图︒60︒45A B北北6.(2012•陕西)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与湖岸上凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A、B、C在同一平面上),请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.5563,cos65°≈0.4226,tan65°≈2.1445)7.如图是使用测角仪测量一幅壁画高度的示意图,已知壁画AB的底端距离地面的高度BC=1m,在壁画的正前方点D处测得壁画底端的俯角∠BDF=30°,且点距离地面的高度DE=2m,求壁画AB的高度.九年级数学《直角三角形的边角关系》测试题(二)班级:_______ 姓名:_________组名_________审核人_______一、选择题1.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 所对的两条直角边,c 是斜边,则有( )。

初三数学锐角三角函数试题答案及解析

初三数学锐角三角函数试题答案及解析

初三数学锐角三角函数试题答案及解析1.(2014山东德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1︰2,则斜坡AB的长为()A.米B.米C.米D.24米【答案】B【解析】∵斜面坡度为1︰2,∴在Rt△ABC中,BC︰AC=1︰2,∴米,由勾股定理得米,故选B.2.(2013湖北十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A,B两点间的距离为________米.【答案】【解析】如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°-30°=45°,AC =30×25=750(米),∴米.在Rt△ABD中,易知∠B=30°,∴米.3.如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米的速度收绳.问:(1)未开始收绳子的时候,图中绳子BC的长度是多少米?(2)收绳8秒后船向岸边移动了多少米?(结果保留根号)【答案】见解析【解析】(1)在Rt△ABC中,,∴(米),∴绳子BC的长度是10米.(2)未收绳时,(米),收绳8秒后,绳子BC缩短了4米,只剩6米,这时,船与河岸的距离为(米),∴船向岸边移动的距离为米.4. (2014江苏无锡)如图,在□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于________.【答案】【解析】如图,在直角△AOE中,,∴.又∵四边形ABCD是平行四边形,∴.5. (2014四川宜宾)规定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=sinx·cosy+cosx·siny.据此判断下列等式中成立的是________(写出所有正确的序号).①;②;③sin2x=2sinx·cosx;④sin(x-y)=sinx·cosy-cosx·siny.【答案】②③④【解析】①,故①错误;②sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°,故②正确;③sin2x=sinx·cosx+cosx·sinx=2sinx·cosx,故③正确;④sin(x-y)=sinx·cos(-y)+cosx·sin(-y)=sinx·cosy-cosx·siny,故④正确.6. (2014浙江绍兴)某校九(1)班的同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图①,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求α的度数.(2)如图②,第二小组用皮尺量得EF的长为16米(E为护墙上的端点),EF的中点距离地面FB的高度为1.9米,请你求出E点距离地面FB的高度.(3)如图③,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P处测得旗杆顶端A的仰角为45°,向前走4米到达点Q处,测得A的仰角为60°,求旗杆的高度AE(精确到0.1米.参考数据:tan60°≈1.732,tan30°≈0.577,,).【解析】(1)∵BD=BC,∴∠CDB=∠DCB,∴α=2∠CDB=2×38°=76°.(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,如图①.∴MN∥EH,又M为EF的中点,∴MN为△EFH的中位线,又∵MN=1.9米,∴EH=2MN=3.8米,∴E点距离地面FB的高度是3.8米.(3)延长AE,交PB于点C,如图②.设AE=x米,则AC=(x+3.8)米.∵∠APB=45°,∴PC=AC=(x+3.8)米.∵PQ=4米,∴CQ=x+3.8-4=(x-0.2)米.∵,∴,解得x≈5.7,即AE≈5.7米.答:旗杆的高度AE约为5.7米.7.(2014黑龙江大庆)如图,矩形ABCD中,,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=________.【答案】【解析】∵∠GAF=∠F=20°,∴∠AGC=∠ACG=40°,∴∠CAG=100°,∴∠DAC=60°,∴,∵,∴.8.如图所示,在△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,DC=6,求AB的长.【答案】15【解析】先解直角三角形BCD,求得BC=DC=6,再解直角三角形ABC,由正弦的定义可得,从而得.所以在较复杂的图形中求线段的长度时,有时要通过两次或更多次解直角三角形才能达到目的.因为∠C=90°,∠BDC=45°,所以∠DBC=45°,所以BC=DC=6.在Rt△ABC中,,所以,即AB的长为15.9. (2014江西抚州)如图①所示的晾衣架,支架的基本图形是菱形,其示意图如图②,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均为20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C,D两点间的距离.(2)当∠CED由60°变为120°时,点A向左移动了多少厘米?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据:,可使用科学计算器)【答案】(1)20cm(2)43.9cm(3)20≤x≤34.6【解析】(1)连接CD(如图①).∵CE=DE,∠CED=60°,∴△CED是等边三角形,∴CD=DE=20cm.(2)连接CD,根据题意得AB=BC=CD,当∠CED=60°时,AD=3CD=60cm.当∠CED=120°时,过点E作EH⊥CD于H(如图②),则∠CEH=60°,CH=HD.在Rt△CHE中,.∴(cm),∴cm,∴(cm).∴点A向左大约移动了103.9-60=43.9(cm).(3)连接CD,当∠CED=120°时,∠DEG=60°.又∵DE=EG,∴△DEG是等边三角形,∴DG=DE=20cm当∠CED=60°时(如图③),∠DEG=120°,过点E作EI⊥DG于点I.∵DE=EG.∴∠DEI=∠GEI=60°,DI=IG.在Rt△DIE中,,∴(cm).∴(cm).故x的取值范围是20≤x≤34.6.10. (2014贵州黔东南)某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校旗杆的高,小明站在点B处测得旗杆顶端E点的仰角为45°,小军站在点D处测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF.(结果精确到0.1米,参考数据:,)【答案】10.3米【解析】过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25米.∵∠EAM=45°,∴AM=ME.设AM=ME=x米,则CN=(x+6)米,EN=(x-0.25)米.∵∠ECN=30°,∴,解得x≈8.8,则EF=EM+MF≈8.8+1.5=10.3(米).∴旗杆的高EF约为10.3米.11.(2014四川广安)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB的长为米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为,求休闲平台DE的长.(2)一座建筑物距离A点33米远(即AG=33米),小亮在D点处测得建筑物顶部H的仰角(即∠HDM)为30°.点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG⊥CG.问:建筑物的高GH为多少米?【答案】(1)米(2)米【解析】(1)∵FM∥CG,∴∠BDF=∠BAC=45°,∴BF=DF.∵斜坡AB的长为米,D是AB的中点,∴米,∴(米),∴BF=DF=30米.∵斜坡BE的坡比为,∴,∴(米),∴米.(2)由题意及(1)知CF=BF=AP=30米,又四边形MGCF为矩形,∴GM=FC=30米.设GH=x米,则MH=GH-GM=(x-30)米,DM=AG+AP=33+30=63(米).在Rt△DMH中,,即,解得.∴建筑物的高GH为米.12.(2014江苏镇江)如图,小明从点A出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,,然后又沿着坡度为i=1︰4的斜坡向上走了1千米到达点C.问小明从A点到C点上升的高度CD是多少千米(结果保留根号)?【答案】【解析】如图,作BE⊥AD于E,BF⊥CD于F,则,∴.∵,∴设CF=x,则BF=4x,∴,∴.∵BE⊥AD,BF⊥CD,CD⊥AD,∴四边形BEDF是矩形,∴BE=DF.∴.答:小明从A点到C点上升的高度CD是千米.13.如图,在Rt△ABC中,∠C=90°,BC=8,,点D在BC上,且BD=AD.求AC 的长和cos∠ADC的值.【答案】4;【解析】在Rt△ABC中,∵BC=8,,∴AC=4.设AD=x,则BD=x,CD=8-x,由勾股定理,得(8-x)2+42=x2.解得x=5.∴.14.计算:(1);(2).【答案】(1)(2)1【解析】准确地掌握30°,45°,60°角的正弦、余弦、正切值是解题的关键.解:(1)(2).15.根据下列条件,求α的度数.(1)0°<α<90°,;(2)0°<α<90°,tan2α+2tanα-3=0.【答案】(1)60°(2)45°【解析】(1)因为,所以.又0°<α<90°,所以α=60°.(2)因为tan2α+2tanα-3=0,所以(tanα+3)·(tanα-1)=0,即tanα=-3或tanα=1,因为0°<α<90°,所以tanα>0,所以tanα=1,所以α=45°.16. (2014福建厦门)sin30°的值是( )A.B.C.D.1【答案】A【解析】直接根据特殊角的三角函数值进行计算即可..故选A.17. (2014贵州贵阳)在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值为( ) A.B.C.D.【答案】D【解析】如图所示,∵∠C=90°,AC=12,BC=5,∴,∴.18. (2014内蒙古包头)计算sin245°+cos30°·tan60°的结果是( )A.2B.1C.D.【答案】A【解析】原式.19.计算:(1).(2)cos245°+tan30°·sin60°=________.【答案】(1)2 (2)1【解析】(1).(2).20.用计算器求下列各式的值(结果保留小数点后四位):(1)sin89°;(2)cos45.32°;(3)tan60°25′41″;(4)sin67°28′35″.【答案】(1)0.9998 (2)0.7031 (3)1.7623 (4)0.9237【解析】(1)按键顺序为,显示结果为0.999847695,∴sin89°≈0.9998.(2)按键顺序为,显示结果为0.703146544,∴cos45.32°≈0.7031.(3)按键顺序为,显示结果为1.762327064,∴tan60°25′41″≈1.7623.(4)按键顺序为,显示结果为0.923721753,∴sin67°28′35″≈0.9237.。

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析一、单选题(共10题;共30分)1.(3分)tan30°的值等于()A.√3B.√33C.√22D.12.(3分)如图,PA、PB分别切⊙O于A,B,⊙APB=60°,⊙O半径为2,则PB的长为()A.3B.4C.2√3D.2√23.(3分)已知Rt⊙ABC中,⊙C=90°,⊙A=50°,AB=2,则AC=()A.2sin50°B.2sin40°C.2tan50°D.2tan40°4.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,tanA=34.以点C为圆心,CB长为半径的圆交AB于点D,则AD的长是()A.1B.75C.32D.25.(3分)如图,在扇形AOB中,⊙AOB=90°,以点A为圆心,OA的长为半径作OC⌢交AB⌢于点C,若OA=2,则阴影部分的面积为()A.23π−√3B.√3−13πC.13πD.√3+13π6.(3分)如图,一艘轮船在小岛A的西北方向距小岛40√2海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东60°的B处,则该船行驶的路程为()A.80海里B.120海里C.(40+40√2)海里D.(40+40√3)海里7.(3分)如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则sin⊙ABC的值()A.√22B.1C.√33D.√28.(3分)在⊙ABC中,(2cosA-√2)2+| √3-tanB|=0,则⊙ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形9.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin⊙OBD=()A.12B.34C.45D.3510.(10分)如图(1)所示,E为矩形ABCD的边AD上一边,动点P,Q同时从点B出发,点P 沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,⊙BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分)则下列结论正确的是()A.AB:AD=3:4B.当⊙BPQ是等边三角形时,t=5秒C.当⊙ABE⊙⊙QBP时,t=7秒D.当⊙BPQ的面积为4cm2时,t的值是√10或475秒二、填空题(共5题;共15分)11.(3分)cos245∘−tan30∘⋅sin60∘=.12.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠ABC的值为.13.(3分)如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是cm.14.(3分)如图,在Rt⊙ABC中,⊙ACB=90°,CD是高,如果⊙A=α,AC=4,那么BD=.(用锐角α的三角比表示)15.(3分)如图,Rt⊙AOB中,⊙OAB=90°,⊙OBA=30°,顶点A在反比例函数y=−4x图象上,若Rt⊙AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三、解答题(共8题;共78分)16.(8分)先化简,再求代数式(aa2−1−1a+1)⋅(a−1)的值,其中a=tan60°−2sin30°.17.(9分)居庸关位于距北京市区50余公里外的昌平区境内,是京北长城沿线上的著名古关城,有“天下第一雄关”的美誉某校数学社团的同学们使用皮尺和测角仪等工具,测量南关主城门上城楼顶端距地面的高度,下表是小强填写的实践活动报告的部分内容:请你帮他计算出城楼的高度AD(结果精确到0.1m,sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)18.(9分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20 √2海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:√2≈1.41,√3≈1.73)19.(9分)如图,从甲楼AB的楼顶A,看乙楼CD的楼顶C,仰角为30°,看乙楼(CD)的楼底D,俯角为60°;已知甲楼的高AB=40m.求乙楼CD的高度,(结果精确到1m)20.(10分)如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)21.(10分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊙AB于E,设⊙ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得⊙EFD=k⊙AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan⊙DCF的值.22.(11分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)(5分)求楼间距AB;(2)(6分)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)23.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣4,0)和点B(2,0),与y轴交于点C.(1)(4分)求该抛物线的表达式及点C的坐标;(2)(4分)如果点D的坐标为(﹣8,0),联结AC、DC,求⊙ACD的正切值;(3)(4分)在(2)的条件下,点P为抛物线上一点,当⊙OCD=⊙CAP时,求点P的坐标.答案解析部分1.【答案】B【解析】【解答】解:tan30°=√33. 故答案为:B【分析】利用特殊角的三角函数值直接求解即可。

人教版九年级下册数学第二十八章 锐角三角函数含答案解析

人教版九年级下册数学第二十八章 锐角三角函数含答案解析

人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、如图,在⊙O中,E是直径AB延长线上一点,CE切⊙O于点E,若CE=2BE,则∠E的余弦值为()A. B. C. D.2、如图,在Rt△ABC中,CD是斜边AB上的高,则下列线段的比中不等于sinA 的是( )A. B. C. D.3、如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30C.30D.404、如图所示,已知:点A(0,0),B(,0),C(0,1).在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于()A. B. C. D.5、已知Rt△ABC中,∠A=90°,则是∠B的()A.正切;B.余切;C.正弦;D.余弦6、如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为().A. B. C. D.7、如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()A. B. C. D.8、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cosB•sadA=()A.1B.C.D.10、Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且a:b=3:4,斜边c=15,则b的值是()A.12B.9C.4D.311、已知tanα=0.3249,则α约为()A.17°B.18°C.19°D.20°12、如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE=2 ,则AC=( )A.1B.2C.3D.413、如图,在一块矩形ABCD区域内,正好划出5个全等的矩形停车位,其中EF=a米,FG=b米,∠AEF=30°,则AD等于()A.(a+ b)米B.(a+ b)米C.(a+ b)米D.(a+ b)米14、如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A.(,2)B.(,1)C.(,2)D.(,1)15、如图,已知A,B,C,D是⊙O上的点,AB⊥CD,OA=2,CD=2 ,则∠D 等于()A. B. C. D.二、填空题(共10题,共计30分)16、图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若,则BC长为________cm(结果保留根号).17、在三角形ABC中,AB=2,AC= ,∠B=45°,则BC的长________.18、如图,射线OC与x轴正半轴的夹角为30°,点A是OC上一点,AH⊥x轴于H,将△AOH绕着点O逆时针旋转90°后,到达△DOB的位置,再将△DOB沿着y轴翻折到达△GOB的位置,若点G恰好在抛物线y=x2(x>0)上,则点A 的坐标为________.19、如图,在△ABC中,∠C=90°,∠A=30°,BC=3,点D、E分别在AB、AC 上,将△ABC沿DE折叠,点A落在AC边的点F处.若F为CE的中点,则DF 的长为________.20、如图,在Rt△ABC中,∠C=90°,BC=4 ,AC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若∠AB′F为直角,则AE的长为________.21、小华从斜坡底端沿斜坡走了100米后,他的垂直高度升高了50米,那么该斜坡的坡角为________度22、在Rt△ABC中,∠C=90°,sinA=,则cosA=________.23、如图,ABCD中,E是AD边上一点,AD=4 ,CD=3,ED= ,∠A=45.点P,Q分别是BC,CD边上的动点,且始终保持∠EPQ=45°.将CPQ沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,线段BP的长为________.24、把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.25、已知:正方形ABCD的边长为3,点P是直线CD上一点,若DP=1,则tan∠BPC的值是________.三、解答题(共5题,共计25分)26、计算:+(tan60﹣1)0+| ﹣1|﹣2cos30°.27、教育部布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度1:,AB=10米,AE=21米,求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,tan53°≈,cos53°≈0.60)28、如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C正西方向. 轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向.这时,E 处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)29、周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)30、每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB (假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:)参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、A5、A6、D7、A8、C9、B10、A11、B12、B13、A14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。

九年级数学 三角函数50道练习题

九年级数学 三角函数50道练习题

九年级数学三角函数50道练习题(以上为标题,不计入800字)1. 已知一个角的补角是60度,求该角的大小。

2. 求解sin45°的值。

3. 已知tanθ = 1/√3,求θ的度数。

4. 求解cos30°的值。

5. 若sinθ = cos(180° - θ),求θ的度数。

6. 求解tan60°的值。

7. 若secθ = 2,求cosθ的值。

8. 若tanθ = 2,求cotθ的值。

9. 求解sin60°的值。

10. 若sinθ = cos90° - θ,求θ的度数。

11. 已知sinθ = 1/2,求θ的度数。

12. 求解tan30°的值。

13. 若cscθ = 4/3,求sinθ的值。

14. 已知cosθ = 1/√2,求θ的度数。

15. 求解cos45°的值。

16. 若secθ = -2,求cosθ的值。

17. 如果tanθ = 4/3,求cotθ的值。

18. 求解sin30°的值。

19. 若sinθ = cos(90° - θ),求θ的度数。

20. 已知cosθ = 1/2,求θ的度数。

21. 求解tan45°的值。

22. 若secθ = -1/2,求cosθ的值。

23. 如果tanθ = 3/4,求cotθ的值。

24. 求解sin120°的值。

25. 若sinθ - cosθ = 0,求θ的度数。

26. 已知tanθ = √3,求θ的度数。

27. 求解cos60°的值。

28. 若secθ = -√2,求cosθ的值。

29. 如果tanθ = -2/3,求cotθ的值。

30. 求解sin150°的值。

31. 若sinθ + cosθ = 1,求θ的度数。

32. 已知cotθ = 4/3,求θ的度数。

33. 求解cos75°的值。

34. 若secθ = -1/√3,求cosθ的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学《直角三角形的边角关系》测试题(一)班级:_______ 姓名:_________组名_________审核人_______ 1.如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =___ ___.2.支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5 那么旗杆的有为 米(用含α的三角比表示).3.甲、乙、丙三个梯子斜靠在一堵墙上(梯子顶端靠墙), 小明测得 甲与地面的夹角为603米,且顶端距离墙脚3米;丙的坡31。

那么,这三张梯子的倾斜程度( )A.甲较陡 B .乙较陡 C .丙较陡 D .一样陡4.如图,沿AC 方向开山修路,为了加快施工进度,要在山的另一边同时施工,现在从AC 上取一点B ,使得∠ABD =145°,BD =500米,∠D =55°,要使A 、C 、E 在一条直线上,那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500tan55°米;D .o55tan 500米5.如图,北部湾海面上,一艘解放军军舰正在基地A 的正东方向且距A 地40海里的B 地训练.突然接到基地命令,要该军舰前往C 岛,接送一名病危的渔民到基地医院救治.已知C 岛在A 的北偏东60°方向,且在B 的北偏西45°方向,军舰从B 处出发,平均每小时行驶20海里,需要多少时间才能把患病渔民送到基地医院?(精确到0.1小时)αP oy34第4题图︒60︒45A B北北6.(2012•陕西)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与湖岸上凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A、B、C在同一平面上),请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.5563,cos65°≈0.4226,tan65°≈2.1445)7.如图是使用测角仪测量一幅壁画高度的示意图,已知壁画AB的底端距离地面的高度BC=1m,在壁画的正前方点D处测得壁画底端的俯角∠BDF=30°,且点距离地面的高度DE=2m,求壁画AB的高度.九年级数学《直角三角形的边角关系》测试题(二)班级:_______ 姓名:_________组名_________审核人_______一、选择题1.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 所对的两条直角边,c 是斜边,则有( )。

A.sinA=a cB.cosB=cb C.tanA=baD.cosB=ab 2.已知在Rt △ABC 中,∠C=90°.若sin A =22,则sinB 等于( )。

A.21 B.22 C.23 D.13.在△ABC 中,若tanA=1,sinB=22,你认为最确切的判断是( )。

A.△ABC 是等腰三角形B.△ABC 是等腰直角三角形C.△ABC 是直角三角形D.△ABC 是一般锐角三角形4.在△ABC 中,若|sin A -23|+(1-tan B )2=0,则∠C 的度数是( )。

A.45° B.60° C.75° D.105° 5.某人沿着坡度为1∶3的山坡前进了1000 m ,则这个人所在的位置升高了( )。

A.1000 mB.500 mC.5003 m D.331000 m6.身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300 m ,250 m ,200 m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝( )。

A.甲的最高 B.乙的最低 C.丙的最低 D.乙的最高7.如图1,两条宽度均为40 m 的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( )。

A.αsin 1600(m 2) B.αcos 1600(m 2) C.1600sin α(m 2) D.1600cos α(m 2)AC图1 图2 图38.如图2,为了测量一河岸相对两电线杆A 、B 间的距离,在距A 点15米的C 处 (AC ⊥AB )测得∠ACB =50°,则A 、B 间的距离应为( )。

A.15sin50°米B.15tan50°米C.15tan40°米D.15cos50°米9.如图3,在离地面高度5 m 处引拉线固定电线杆,拉线和地面成60°角,则拉线AC 的长是( )。

A.10 mB.3310 m C.225 m D.53 m 10.如图4,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8 m ,要在窗子外面上方安装水平挡光板AC ,使午间光线不能直接射入室内,那么挡光板的宽度AC 为( )。

A.1.8tan80°mB.1.8cos80°mC.︒80sin 8.1 mD.︒80tan 8.1 mADE B C图4图5 图611.如图5,小红把梯子AB 斜靠在墙壁上,梯脚B 距墙1.6米,小红上了两节梯子到D 点,此D 点距墙1.4米,BD 长0.55米,则梯子的长为( )。

A.4.50米B.4.40米C.4.00米D.3.85米12.已知如图6,小明在打网球时,要使球恰好能打过网,而且落在离网5 m 的位置上,则球拍击球的高度h 应为( )。

A.2.7 m B.1.8 m C.0.9 m D.6 m 二、填空题1.在△ABC 中,∠C=90°,AC=BC ,则sinA=_____,cosA =______,tanA=_____。

2.Rt △ABC 中,∠C=90°,AB=8,sinA=43,则AC=______。

3.在△ABC 中,∠C=90°.若3AC=3BC ,则∠A 的度数是______。

4.如图7,在平面直角坐标系中,P 是∠α的边OA 上一点,且P 点坐标为(4,3)则sin α=____ __。

A BC30ABC o图7 图8图95.如图8.B 、C 是河岸边两点,A 是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60 m ,则点A 到对岸BC 的距离是_____m.。

6.如图9,某建筑物BC 直立于水平地面,AC=9米,要建造阶梯AB ,使每阶高不超过20 cm ,则此阶梯最少要建_____阶 (最后一阶的高度不足20 cm时,按一阶算,3取1.732)。

7.升国旗时,某同学站在离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆的高度为___ ___米(用含根号的式子表示)。

8.如图10,小刚在一山坡上依次插了三根木杆,第一根木杆与第二根木杆插在倾斜角为30°,且坡面距离是6米的坡面上,而第二根与第三根又在倾斜角为45°,且坡面距离是8米的坡面上,则第一根与第三根木杆的水平距离是_ _____ (精确到0.01米)。

9.如图11,从楼顶A点测得电视塔CD的仰角为α,俯角为β,若楼房与电视塔之间的水平距离为m,则电视塔的高度=____ _____。

10.如图12,水库大坝的横断面是梯形,坝顶宽5 m,坝高20 m,斜坡AB的坡度为1∶2.5,斜坡CD 的坡度为1∶2,则坝底宽AD等于___ ___。

AB CDE图10 图11 图1211.某展厅为迎接科技展览,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2 m,其侧面如图13所示,则购买地毯至少需要______元。

图1312.城关中学要修建一座餐厅楼,为改善安全性能,把楼梯的倾斜角由原来设计的改为(图14).已知原来设计的楼梯长为,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________(精确到0.1m)。

三、解答题。

1.九(一)班课题学习小组,为了了解大树生长状况,去年在学校门前点A处测得一棵大树顶点C的仰角为30°,树高5m;今年他们仍在原点A处测得大树D的仰角为37°,问这棵树一年生长了多少m?图142.如图1是安装在房间墙壁上的壁挂式空调,图2是安装该空调的侧面示意图,空调风叶AF是绕点A 由上往下旋转扫风的,安装时要求:当风叶恰好吹到床的外边沿,此时风叶与竖直线的夹角α为48°,空调底部BC垂直于墙面CD,AB=0.02米,BC=0.1米,床铺长DE米,求安装的空调底部位置距离床的高度CD是多少米?(结果精确到0.1米)3.如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.(1)求一楼与二楼之间的高度BC(精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米?(精确到0.01米,备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.)。

相关文档
最新文档