傅里叶级数收敛定理及其推论

合集下载

傅里叶级数收敛定理及其推论

傅里叶级数收敛定理及其推论
傅里叶级数由正弦和余弦函数构成,通过将原始函数展开成一系列正弦 和余弦函数的线性组合,可以表示任意周期函数。
傅里叶级数的形式为:$f(x) = a_0 + sum_{n=1}^{infty} (a_n cos(nx) + b_n sin(nx))$,其中 $a_0, a_n, b_n$ 是常数,取决于原始函数。
傅里叶级数可以用于分析物体的振动模式,通过分析振动信号的频率成分,可以推断物体的振动 性质。
热传导分析
在热传导分析中,傅里叶级数可以用于分析温度场的变化,通过分析温度信号的频率成分,可以 推断热传导的规律。
电磁场分析
在电磁场分析中,傅里叶级数可以用于分析电磁波的传播和散射,通过分析电磁波信号的频率成 分,可以推断电磁场的性质。
02
通过傅里叶级数,可以分析信号的频率成分、进行图像滤波 和增强等操作。
03
在物理学中,该定理用于研究波动方程、热传导方程等偏微 分方程的解的性质。
03 傅里叶级数的收敛性质
收敛速度的讨论
快速收敛
对于具有快速衰减的函数,傅里叶级数可能 以相对较快的速度收敛。
慢速收敛
对于具有振荡或缓慢衰减的函数,傅里叶级 数可能以较慢的速度收敛。
在信号处理中的应用
1 2
信号的频谱分析
傅里叶级数可以将一个复杂的信号分解为多个正 弦波和余弦波的组合,从而分析信号的频率成分 和强度。
信号滤波
通过傅里叶级数,可以将信号中的特定频率成分 进行增强或抑制,实现信号的滤波。
3
信号压缩
傅里叶级数可以用于信号压缩,通过对信号进行 频域变换,去除冗余信息,实现信号的压缩。
傅里叶变换的推论
傅里叶变换的线性
性质
若 $f(t)$ 和 $g(t)$ 是两个函数, 且 $a, b$ 是常数,则有 $a f(t) + b g(t) rightarrow a F(omega) + b G(omega)$。

第三讲 收敛定理

第三讲 收敛定理

数学分析第十五章傅里叶级数收敛定理第三讲若以数学分析第十五章傅里叶级数注尽管傅里叶级数的收敛性质不如幂级数, 函数的要求却比幂级数要低得多, 所以应用更广. 而且即将看到函数周期性的要求也可以去掉.概念解释1. 若f 的导函数在[,]a b 上连续, 则称f 在[a ,b ]上光滑.2. 如果定义在[,]a b 上函数f 至多有有限个第一类间断点, 在且连续, 极限存在, 但它对其导函数在[a , b ]上除了至多有限个点外都存f 的左、右并且在这有限个点上导函数[,]a b 上按段光滑.则称f 在数学分析第十五章傅里叶级数f '[,]a b (iii) 在补充定义在上那些至多有限个不存在f 'f '导数的点上的值后( 仍记为), 在[a ,b ]上可积.从几何图形上讲, 在区间[a ,b ] 上按段光滑函数, 多有有限个第一类间断点(图15-1).光滑弧段所组成,151-图O x ()y f x =1x 2x 3x 4x b a y 是由有限个它至若数学分析第十五章傅里叶级数表达式,(),(π,π],ˆ()(2π),((21)π,(21)π],1,2,.f x x f x f x k x k k k ∈-⎧=⎨-∈-+⎩=±± 解为它是定义在整个数轴上以2π为周期的函数,但我们认为它是周期函数. 注2在具体讨论函数的傅里叶级数展开式时, 经常只(π,π]-[π,π)-给出函数在(或)上的解析式, (π,π]-上的解析如f 为但应理即函数本身不一定是定义在整个数轴上的周期函数,那么周期延拓后的函数为数学分析第十五章傅里叶级数ˆ152()y fx -=图实线与虚线的全体表示O x()y f x =π3π-π-3π5πy如图15-2所示.ˆf的傅里叶级数.因此当笼统地说函数的傅里叶级数时就是指函数。

傅里叶级数的收敛性

傅里叶级数的收敛性

傅里叶级数的收敛性傅里叶级数是数学中一个重要的概念,它在信号处理、图像处理、物理学等众多领域都有着广泛的应用。

本文将讨论傅里叶级数的收敛性及相关的数学证明。

一、傅里叶级数的定义与基本概念傅里叶级数是一种用三角函数进行函数展开的方法。

对于周期为2π的函数f(x),其傅里叶级数表示为:f(x) = a₀/2 + ∑[aₙcos(nx) + bₙsin(nx)]其中,a₀、aₙ和bₙ是常数,n为正整数。

这里的a₀/2表示常数项,∑表示对所有正整数n的求和。

二、傅里叶级数的收敛性问题在讨论傅里叶级数的收敛性之前,我们首先引入一个重要的定义——可积函数的概念。

对于一个周期为2π的函数f(x),如果在一个周期内,f(x)的绝对值的积分存在有限值,则称f(x)为可积函数。

定理1:如果可积函数f(x)在一个周期内连续或几乎处处连续,则其傅里叶级数在其周期内收敛于f(x)。

这一定理说明了可积函数在其周期内的连续性与傅里叶级数的收敛性之间的关系。

根据这一定理,我们可以推导出如下结论:推论1:如果可积函数f(x)在一个周期内有有限个第一类间断点,那么其傅里叶级数在其周期内收敛于f(x)。

上述定理和推论描述了傅里叶级数的一般收敛性。

然而,对于某些特殊函数,傅里叶级数的收敛性可能不够明确。

下面我们将介绍一个经典的例子。

三、傅里叶级数的收敛性举例我们考虑以下方波函数f(x),在区间[-π, π]内的定义如下:f(x) = 1, -π < x < 0f(x) = -1, 0 < x < π这个方波函数是一个周期为2π的函数,其图像是一个在[-π, π]内以0为中心的方波。

根据前面的定理,我们可以推断傅里叶级数应该在其周期内收敛于该方波函数。

但是值得注意的是,傅里叶级数的收敛性是点点收敛而不是均匀收敛的。

具体来说,傅里叶级数在方波的间断点(即x=0和x=π)处的收敛速度较慢,其收敛到的函数是使用傅里叶级数逼近的方波的取值的平均值。

傅里叶级数逐点收敛性1

傅里叶级数逐点收敛性1
i =1 n
xi
xi −1 xi
f ( x ) − f * ( x ) dx = ∑ ∫
i =1 n
xi
xi −1
f ( x ) − mi dx
≤ ∑ ∫ ωi dx = ∑ ωi Δxi < ε
i =1 xi −1 i =1
由此,我们可得:
∫ f ( x ) sin pxdx ≤ ∫ f ( x ) − f ( x ) dx + ∫
∫ f ( x ) sin pxdx
a
b
的积分当 p → ∞ 时的性质,为此,先引入一个引理:
Riemann-Lebesgue 引理:设 f ( x ) 在 [ a, b ] 上可积或广义绝对可积,则有:
b ⎧sin px ⎫ lim ∫ f ( x ) ⎨ ⎬ dx = 0 ,其中 p ∈ R 。 a p →∞ ⎩cos px ⎭
证明: 证明思路是分为如下三个步骤进行: ① 对 f ( x ) 为阶梯函数证明结论; ② 对 f ( x ) 为 Riemann 可积函数证明结论; ③ 对 f ( x ) 为广义绝对可积函数证明结论。 ① 假设 f ( x ) 为一阶梯函数,即:
f ( x ) = ci , xi ≤ x < xi +1 , i = 0,1," , n − 1 , a = x0 < x1 < " < xn = b ,
因而 S n f ( x0 ) 之收敛性只与
(
)
1
π

δ
0
⎡ ⎣ f ( x0 + u ) + f ( x0 − u ) ⎤ ⎦
sin ( n + 1 2 )u 2sin 1 2u

数学分析153傅里叶级数收敛定理的证明doc

数学分析153傅里叶级数收敛定理的证明doc

数学分析15.3傅里叶级数收敛定理的证明.doc傅里叶级数收敛定理是数学分析中的重要定理之一,它可以用于研究周期函数的展开。

下面给出傅里叶级数收敛定理的证明。

设f(x)是一个周期为2π的函数,它在一个周期内可积,即∫[0,2π]|f(x)|dx < ∞。

我们要证明f(x)的傅里叶级数收敛于f(x)。

设f(x)的傅里叶级数为:f(x) = a0 + ∑[n=1,∞] (an cos(nx) + bn sin(nx))其中a0, an, bn分别为f(x)的傅里叶系数。

我们要证明f(x)的傅里叶级数收敛于f(x),即要证明对于任意的x,有f(x) = lim[N→∞] (a0 + ∑[n=1,N] (an cos(nx) + bn sin(nx)))为了证明这个结论,我们需要用到以下两个引理:引理1:若f(x)是一个周期为2π的函数,它在一个周期内可积,则对于任意的实数x和整数N,有∫[0,2π] f(x)sin(Nx)dx = bn其中bn为f(x)的傅里叶系数。

引理2:若f(x)是一个周期为2π的函数,它在一个周期内可积,则对于任意的实数x和整数N,有∫[0,2π] f(x)cos(Nx)dx = a0 + ∑[n=1,N] an其中a0, an为f(x)的傅里叶系数。

现在我们来证明傅里叶级数收敛定理。

首先,我们使用引理1和引理2,将f(x)的傅里叶级数展开,并对其进行部分和的计算:∫[0,2π] f(x)sin(Nx)dx = bn = ∫[0,2π] f(x)sin(Nx)dx = ∫[0,2π] (a0 + ∑[n=1,N] an)sin(Nx)dx根据正弦函数的正交性质,我们知道∫[0,2π] sin(Nx)sin(Mx)dx = 0,其中N≠M。

因此,上式中的交叉项∫[0,2π] ansin(Nx)sin(Mx)dx = 0。

所以,我们可以得到:∫[0,2π] f(x)sin(Nx)dx = ∫[0,2π] (a0 + ∑[n=1,N] an)sin(Nx)dx = ∫[0,2π] a0sin(Nx)dx + ∑[n=1,N] ∫[0,2π] ansin(Nx)dx同理,我们可以得到:∫[0,2π] f(x)cos(Nx)dx = a0 + ∑[n=1,N] an现在,我们来证明f(x) = lim[N→∞] (a0 + ∑[n=1,N] (an cos(nx) + bn sin(nx)))。

傅里叶级数课程及习题讲解

傅里叶级数课程及习题讲解

第15章 傅里叶级数§15.1 傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系21, , , , , n x x x L L线性表出而得.不妨称2{1,,,,,}nx x x L L 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1 三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx L L 称为三角函数系.其有下面两个重要性质.(1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:L ,定义两个函数的内积为(),()()()d bn m n m au x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:L 为正交系. 由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数()01cos sin 2n n n a a nx b nx ∞=++∑称为三角级数,其中011,,,,,,n n a a b a b L L 为常数2 以2π为周期的傅里叶级数定义1 设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰0,1,2,k =L ;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰1,2,k =L ,称为函数()f x 的傅里叶系数,而三角级数()01cos sin 2n n n a a nx b nx ∞=++∑称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2n n n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1 若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,n n a b 为()f x 的傅里叶系数.定义2 如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个 第一类间断点与角点.推论 如果()f x 是以2π]上按 段光滑,则x R ∀∈,有 ()01()cos sin 2n n n a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数() (,]ˆ()(2) (2,2],1,2,f x x f x f x k x k k k πππππππ∈-⎧=⎨-∈-+=±±⎩L称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数 (1) (),(i) , (ii) 02f x x x x πππ=-<<<<; 解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰,所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求. (ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,22011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰220011sin sin d 0|x nx nx x n n ππππ=-=⎰,22011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2) 2()(i) (ii) 02f x =x , -π<x <π,<x <π; 解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,2211cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰211sin 2sin d |x nx x nx xn n ππππππ--=-⎰22d(cos )x nx n πππ-=⎰ 222224cos cos d (1)|nx nx nx x n n n ππππππ--=-=-⎰,2211sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰212cos cos d |x nx x nx xn n ππππππ---=+⎰22d(sin )x nx n πππ-=⎰ 2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)()2f x =x (0,2)x π∈其按段光滑,故可展开为傅里叶级数.由系数公式得222200118()d d 3a f x x x x πππππ===⎰⎰.当1n ≥时,2222011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰2220011sin 2sin d |x nx x nx xn n ππππ=-⎰2202d(cos )x nx n ππ=⎰ 2222200224cos cos d |x nx nx x n n n ππππ=-=⎰,22220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2220012cos cos d |x nx x nx x n n ππππ-=+⎰22042d(sin )x nx n n πππ=-+⎰ 2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰,所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求. (3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰.当1n ≥时,02011cos d cos d n a ax nx x bx nx xππππ-=+⎰⎰2[1(1)]n a bn π-=--0011sin d sin d n b ax nx x bx nx xππππ-=+⎰⎰1(1)n a b n ++=-所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n ca f x nx x f x nx x n πππππ+-===⎰⎰L, 2 11()sin d ()sin d ,1,2,c n cb f x nx x f x nx x n πππππ+-===⎰⎰L.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有211()cos d (2)cos (2)d(2)cc f x nx x f t n t t ππππππππ-+=---⎰⎰ c+2 c+2 11()cos d ()cos d f t nt t f x nx x ππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰2 11()cos d ()cos d c n cca f x nx x f x nx xππππ+-==⎰⎰c+211()cos d ()cos d f x nx x f x nx xππππππ-++⎰⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+L ;(2) 111111357111317π=+--+-+L;(3)11111157111317=-+-+-+L.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,11cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11sin d sin d 44n b nx x nx xππππππ--=+⎰⎰11211[1(1)]202n n k nn n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑U 为所求.(1) 取2x π=,则11114357π=-+-+L;(2) 由11114357π=-+-+L得111112391521π=-+-+L ,于是111111341257111317πππ=+=+--+-+L ;(3) 取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭L ,11111157111317=-+-+-+L.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x x πππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xππππππ=+++⎰⎰101(1)()cos d n f x nx x ππ++-=⎰ 02()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x x πππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰112()d ()d ()d f t t f x x f x xπππππππ=++=⎰⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx x ππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xπππππ=++⎰⎰1(1)()cos d nf x nx xππ+-=⎰02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =L 和sin , 1,2,nx n =L 都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx L L , 因为n ∀,1,1d x ππ==⎰,201cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又1,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,cos ,cos cos cos d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx L L 在[0, ]π上是正交系. 就函数系{sin ,sin 2,,sin ,}x x nx L L , 因为n ∀,2001sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,sin ,sin sin sin d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx L L 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx L L 不是 [0, ]π上的正交系. 实因:01,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式(1)(),022xf x xππ-=<<;解:(),02xf x xππ-=<<其按段光滑,故可展开为傅里叶级数.由系数公式得2200011()d d02xa f xx xπππππ-===⎰⎰.当1n≥时,220011cos d d(sin)22nx xa nx x nxnππππππ--==⎰⎰22001sin sin d022|xnx nx xn nπππππ-=+=⎰,220011sin d d(cos)22nx xb nx x nxnππππππ---==⎰⎰220011cos cos d22|xnx nx xn n nπππππ-=--=⎰,所以1sin()nnxf xn∞==∑,(0,2)xπ∈为所求.(2) ()f x xππ-≤≤;解:()f x xππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为2()2xxf xxxππ-≤< ==⎨⎪≤≤⎪⎩,所以由系数公式得1()da f x xπππ-=⎰sin d sin d22x xx xππ-=.当1n≥时,0sin cos d sin cos d 22n x x a nx x nx x ππ-=+sin cos d 2x nx x π=.0sin sin d sin sin d 022n x xb nx x nx x ππππ-=+=⎰.所以211()cos 41n f x nxn∞==-,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+==±,故211()cos 41n f x nxnππ∞==--,[,]x ππ∈-为所求.(3) 2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<;解:(i)由系数公式得2001()d a f x xππ=⎰22218()d 223aax bx c x b cππππ=++=++⎰.当1n ≥时,2201()cos d n a ax bx c nx xππ=++⎰2220011()sin (2)sin d |ax bx c nx ax b nx xn n ππππ=++++⎰24an =,2201()sin d n b ax bx c nx xππ=++⎰2220011()cos (2)cos d |ax bx c nx ax b nx xn n ππππ=-++-+⎰42a n n ππ=--,故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23aax bx c x cππππ-=++=+⎰.当1n ≥时,21()cos d n a ax bx c nx xπππ-=++⎰211()sin (2)sin d |ax bx c nx ax b nx xn n ππππππ--=++++⎰24(1)n an =-,21()sin d n b ax bx c nx xπππ-=++⎰211()cos (2)cos d |ax bx c nx ax b nx xn n ππππππ--=-++-+⎰12(1)n bn -=-,故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a b nx nx x n n ππ∞=+---∈-∑为所求.(4) ()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,1ch cos d n a x nx xπππ-=⎰11ch sin sh sin d |x nx x nx x n n ππππππ--=-⎰ 21sh d(cos )x nx n πππ-=⎰ 2211sh cos ch cos d |x nx x nx xn n ππππππ--=-⎰222sh 1(1)n na n n ππ=--,所以22sh (1)(1)nn a n ππ=-+.11ch sin d ch d(cos )n b x nx x x nx ππππππ---==⎰⎰11ch cos sh cos d |x nx x nx xn n ππππππ--=-+⎰21sh d(sin )x nx n πππ-=⎰2211sh sin ch sin d |x nx x nx xn n ππππππ--=-+⎰2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5) ()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰. 当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.11sh sin d sh d(cos )n b x nx x x nx ππππππ---==⎰⎰11sh cos ch cos d |x nx x nx x n n ππππππ--=-+⎰ 121(1)sh ch d(sin )n x nx n n πππππ+-=-+⎰122211(1)sh ch sin sh sin d |n x nx x nx xn n n ππππππππ+--=-+-⎰1221(1)sh n nb n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+,故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑.解:由224()3af x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑得221()(362)12f x x x ππ=-+222326πππ=-+211cos n nx n ∞=+∑211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-=L .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积. 由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =L .则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos n n n u x n a nx n b nx '≤+n n n a n b ≤+22M n ≤.而22Mn∑收敛,所以()()cos sin nn n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则11()(cos sin )()n n nn n s x na nx nb nx u x ∞∞==''=-+=∑∑且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积. 于是 ()01()cos sin 2n n n a F t a nt b nt ∞=++∑:,其中 1()cos d ,n a F t nt t πππ-=⎰1()sin d n b F t nt tπππ-=⎰.令xt l π=得()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑:. 其中1()cos ,l n l n x a f x dx l l π-=⎰ 1()sin l n l n x b f x dx l l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑.其只含余弦项,故称为余弦级数. 同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是1()cos d 0l n l n xa f x x l l π-==⎰,012()sin d ()sin d l l n l n x n x b f x x f x xl l l l ππ-==⎰⎰. 从而01()sin2n n a n x f x a l π∞=+∑:其只含正弦项,故称为由此可知,函数(),(0,)f x x l ∈要展开为余弦级数必须作偶延拓. 偶延拓() (0,) ()() (,0)f xx l f x f x x l ∈⎧=⎨-∈-⎩%函数(),(0,)f x x l ∈要展开为正弦级数必须作奇延拓. 奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩%.二 习题解答1 求下列周期函数的傅里叶级数展开式 (1) ()cos f x x =(周期π);解:函数 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,222cos cos 2d n a x nx x πππ-=⎰204cos cos 2d x nx xππ=⎰202[cos(21)cos(21)]d n x n x xππ=++-⎰2222220011sin(21)sin(21)(21)(21)||n x n x n n ππππ=++-+-1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--. 222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2) ()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数. 因12l =,所以由系数公式得()()1112100022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,()()1121022[]cos 2d 2[]cos 2d n a x x n x x x x n x xππ-=-=-⎰⎰110012cos2d d(sin 2)x n x x x n x n πππ==⎰⎰110011sin 2sin 2d 0|x n x n x x n n ππππ=-=⎰. ()1121022[]sin 2d 2sin 2d n b x x n x x x n x xππ-=-=⎰⎰101d(cos2)x n x n ππ-=⎰110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=.故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求.(3) 4()sin f x x =(周期π);解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 442200224sin d sin d a x x x x πππππ-==⎰⎰22041cos 2d 2x x ππ-⎛⎫= ⎪⎝⎭⎰204311cos 2cos 4d 828x x x ππ⎛⎫=-+ ⎪⎝⎭⎰34=.当1n ≥时,204311cos2cos4cos2d 828n a x x nx xππ⎛⎫=-+ ⎪⎝⎭⎰11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩. 222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.(4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,2sgn(cos )cos d n a x nx x ππ=⎰202224cos d cos d sin 2n nx x nx x n πππππππ=-=⎰⎰22224sin 2n n ππ=024(1)21(21)kn k n k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞.2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时, 12012222cos d cos d 3333n n x n xa x x x ππ=+⎰⎰3222(3)cos d 33n x x x π+-⎰21011212d sin sin 33n x n x x n n ππππ⎛⎫=+ ⎪⎝⎭⎰3212(3)d sin 3n x x n ππ⎛⎫+- ⎪⎝⎭⎰ 10121214sin sin d sin 333n n x n x n n n ππππππ=-+⎰3322121212sin (3)sin sind 333n n x n xx x n n n ππππππ-+-+⎰12201432sin cos 323n n xn n ππππ=+32221432sin cos 323n n xn n ππππ--2222323cos 232n n n πππ=-2222334cos2cos 223n n n n ππππ-+2222323cos 3n n n πππ=-.2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n xf x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求.3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭⎰.当1n ≥时,2cos d 2n a x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d 2x nx nx x n n πππππ⎛⎫=-+ ⎪⎝⎭⎰202cos nxn ππ=-242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4 将函数()cos2xf x =在[0,]π上展开成正弦级数.解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==L .02cos sin d 2n x b nx x ππ=⎰ 0111sin sin d 22n x n x x ππ⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰11cos cos 1221122n x n x n n ππ⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=-+⎢⎥+-⎢⎥⎣⎦28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n xa f x x π=⎰240211(1)cos d (3)cos d 2424n x n xx x x x ππ=-+-⎰⎰220022(1)sin sin d 44n x n x x x n n ππππ=-+⎰442222(3)sin sind 44n xn xx x n n ππππ--⎰22208cos 4n xn ππ=42228cos 4n xn ππ+ 2282cos 1(1)2n n n ππ⎛⎫=-+- ⎪⎝⎭220421642n k n k n π≠-⎧⎪=⎨=-⎪⎩ 所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n x n ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++ ⎪⎝⎭L .解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰1120022(1)sin (1)sin d x n x x n x xn n ππππ=---⎰11222222(1)cos cos d x n x n x xn n ππππ=--⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑.7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==L .2arcsin(sin )sin d n b x nx x ππ=⎰20222sin d ()sin d x nx x x nx x ππππππ=+-⎰⎰22022cos cos d x nx nx xn n ππππ-=+⎰2222()cos cos d x nx nx x n n πππππππ--+-+⎰204cos d nx x n ππ=⎰24sin2n n ππ=2024(1)21k n kn k n π=⎧⎪=⎨-=-⎪⎩所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2) ()arcsin(cos )f x x =.解:()arcsin(cos )f x x =2π 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,2arcsin(cos )cos d n a x nx x ππ=⎰2cos d 2x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d nx nx xn n ππππ=+⎰202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==L .所以2141()arcsin(cos )cos(21)(21)n f x x n xn π∞===--∑,x R ∈.8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑; (2)211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.2()cos d n a f x nx xππ=⎰20222()cos d ()cos d f x nx x f x nx xπππππ=+⎰⎰202()[cos cos()]d f x nx n nx xπππ=--⎰204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2) 先把()f x 延拓到[0,]π上,方法如下. ()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.由于按段光滑,所以可展开为傅里叶级数,又)x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰2()sin d n b f x nx xππ=⎰20222()sin d ()sin d f x nx x f x nx xπππππ=+⎰⎰202()[sin sin()]d f x nx n nx xπππ=+-⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数.推论1 设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2 设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则()1()cos sin 2nn k k k a S x a kx b kx ==++∑1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)lim ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5 如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑, 故01()(cos sin )2n n n a f x a nx b nx ∞==++∑,1()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()n nn a b ∞=''+∑收敛,又211n n∞=∑收敛,从而()12n nn a a b ∞=++∑收敛,故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而(),()(),()2(),,m m m m m f x S f x S f x f x f x S S S --=-+()()22 2222200 11()d 222m m n n n n n n a a f x x a b a b ππππππ-==⎡⎤=-+++++⎢⎥⎣⎦∑∑⎰。

01-收敛定理

01-收敛定理

f ( x 0) f ( x 0) a0
2
2

(an cos nx bn sin nx),
n1
其中 an ,bn 为f 的傅里叶系数.
定理的证明将在§3中进行.
数学分析 第十五章 傅里叶级数
高等教育出版社
§1 傅里叶级数 三角级数 • 正交函数系 以2π为周期的函数的傅里叶级数
收敛定理
注 尽管傅里叶级数的收敛性质不如幂级数, 但它对 函数的要求却比幂级数要低得多, 所以应用更广. 而且即将看到函数周期性的要求也可以去掉.
§1 傅里叶级数 三角级数 • 正交函数系 以2π为周期的函数的傅里叶级数
收敛定理
第三讲 收敛定理
数学分析 第十五章 傅里叶级数
高等教育出版社
§1 傅里叶级数 三角级数 • 正交函数系
收敛定理
以2π为周期的函数的傅里叶级数
收敛定理
定理15.3(傅里叶级数收敛定理)
若以 2π 为周期的函数 f 在 [π, π]上按段光滑, 则在每一点 x [π, π], f 的傅里叶级数(12)收敛 于f 在点 x 的左、右极限的算术平均值, 即
高等教育出版社
§1 傅里叶级数 三角级数 • 正交函数系
如图15-2所示.
y
以2π为周期的函数的傅里叶级数
y f(x)
收敛定理
3π πO π 3π 5π x
图15 2 实线与虚线的全体表示 y fˆ(x)
因此当笼统地说函数的傅里叶级数时就是指函数 fˆ 的傅里叶级数.
数学分析 第十五章 傅里叶级数
高等教育出版社
概念解释
1.若f 的导函数在[a, b]上连续, 则称f 在[a, b]上光滑.
2.如果定义在[a, b]上函数 f 至多有有限个第一类间 断点, 其导函数在[a, b]上除了至多有限个点外都存

傅里叶级数的定理

傅里叶级数的定理

傅里叶级数的定理傅里叶级数是一种将周期函数表示为三角函数的级数展开形式的数学工具。

它是由法国数学家傅里叶在18世纪提出的,被广泛应用于物理学、工程学和信号处理等领域。

傅里叶级数的定理提供了一种将任意周期函数分解为正弦和余弦函数的方法,使得我们可以更好地理解和分析周期性的现象。

傅里叶级数的定理可以简单地表述为:任意一个周期为T的函数f(x)可以表示为一系列正弦和余弦函数的线性组合,即f(x) = a0 + Σ(an*cos(nωx) + bn*sin(nωx))其中an和bn是傅里叶系数,表示了函数f(x)中各个频率分量的振幅,ω=2π/T是角频率。

a0是直流分量,对应于频率为0的分量。

傅里叶级数的定理是基于正交函数的思想而来。

正交函数是指在某个区间上两两内积为0的函数。

在傅里叶级数中,正弦和余弦函数是互相正交的,因此可以通过内积运算来确定各个傅里叶系数的值。

傅里叶级数的定理在实际应用中具有重要意义。

首先,它可以将复杂的周期函数分解为一系列简单的正弦和余弦函数,使得我们能够更好地理解函数的频域特性。

其次,傅里叶级数的定理为信号处理提供了一种便捷的方法,可以对信号进行频谱分析和滤波处理。

此外,傅里叶级数还被广泛应用于图像处理、音频处理和通信系统等领域。

傅里叶级数的定理具有一些重要的性质。

首先,对于一个具有奇对称性或偶对称性的函数,其傅里叶级数只包含正弦函数或余弦函数。

其次,傅里叶级数的收敛性得到了严格的数学证明,即对于一个光滑的函数,其傅里叶级数可以收敛到原函数。

此外,傅里叶级数还满足线性性质,即两个函数的傅里叶级数之和等于它们的傅里叶级数之和。

傅里叶级数的定理虽然强大,但也有一些限制。

首先,傅里叶级数只适用于周期函数,对于非周期函数需要进行适当的处理才能使用傅里叶级数展开。

其次,傅里叶级数的展开系数需要通过积分计算,对于一些复杂的函数可能无法得到解析解,需要使用数值方法进行近似计算。

傅里叶级数的定理为我们理解和分析周期函数提供了一种有效的工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
π

n−1
返回
致 谢
敬请指正!
傅里叶级数收敛定理及其推论
论文选题背景
论文基本框架
论文主要内容
论文选题背景
十九世纪初,法国数学家傅里叶开创了“傅里 叶分析”这一重要分支,而傅里叶级数是在研究偏 微分方程的边值问题提出来的.在傅里叶分析的发 展史上,一开始就对傅里叶收敛问题有极大的争 议.而对此问题,在国际上先后有杜布瓦—雷蒙、 费耶尔等人做出了巨大的贡献.
返回
论文基本框架
1 引言 2 预备知识 3 傅里叶级数收敛定理及其推论 4 傅里叶级数收敛定理的应用 结束语 致谢
返回
论文主要内容
结合数学分析教材以及参考资料,对傅里叶级 数收敛定理及其推论和应用进行了系统地归纳、总 结.首先,介绍了傅里叶级数,广义左导数、广义 右导数的定义,接着给出了傅里叶级数收敛定理, 并利用贝塞耳不等式和黎曼-勒贝格定理证明了傅 里叶级数收敛定理.
返回
论文主要内容
讨论了傅里叶级数收敛定理的条件,将傅 里叶级数收敛定理的条件中的“f ( x)在[−π , π ]上 按段光滑”减弱为“函数f ( x)在[−π , π ]上可积, 并且它每一点x ∈[−π , π ]处的广义左、右导数 皆存在”,得到了傅里叶级数收敛定理的推 广形∑(−1) . 3 (2n −1) n=1
例2 设 f ( x )为[ −π , π ]上可积函数.证明: 若 f ( x )的傅里叶级数在[ −π , π ]上一致收敛于 f ( x ),则成立帕赛瓦尔(parseval)等式: a0 2 ∞ f 2 ( x ) dx = + ∑ ( an 2 + bn 2 ) π ∫− π 2 n =1 这里 an , bn为 f ( x )的傅里叶系数. 1
返回
论文选题背景
傅里叶级数是级数理论的重要内容,傅里叶级数 收敛定理是傅里叶级数的一个基本定理.傅里叶分析 的主体研究部分是对三角级数的研究.而在自然界中, 许多现象都具有周期性.如:机械运动、天体运动、 交流电变化等等.因此,傅里叶级数理论在数学物理 以及工程中都具有重要的应用,而且它也是学习调和 分析、小波分析等课程的理论基础.
相关文档
最新文档