线性规划与数学建模简介
数学建模线性规划与整数规划

数学建模线性规划与整数规划数学建模是一门将实际问题转化为数学问题,并利用数学方法解决的学科。
线性规划和整数规划是数学建模中常用的两种模型,它们在实际问题中有着广泛的应用。
本文将重点介绍线性规划和整数规划的概念、模型形式以及求解方法。
一、线性规划(Linear Programming)线性规划是一种在约束条件下求解线性目标函数最优解的数学模型,它的基本形式可以表示为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0在上述模型中,C₁,C₂,...,Cₙ为目标函数的系数,Aᵢₙ为不等式约束条件的系数,bᵢ为不等式约束条件的右端常数,X₁,X₂,...,Xₙ为决策变量。
线性规划的求解可以通过单纯形法或内点法等算法实现。
通过逐步优化决策变量的取值,可以得到满足约束条件并使目标函数达到最优的解。
二、整数规划(Integer Programming)整数规划是在线性规划基础上增加了决策变量必须取整的要求,其模型形式为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0X₁,X₂,...,Xₙ为整数整数规划在实际问题中常用于需要求解离散决策问题的情况,如装配线平衡、旅行商问题等。
然而,由于整数规划问题的整数约束,其求解难度大大增加。
求解整数规划问题的方法主要有分支定界法、割平面法、遗传算法等。
在数学建模中常用的方法

在数学建模中常用的方法数学建模是一种利用数学模型来描述和解决实际问题的方法。
它在科学研究、工程技术和经济管理等领域具有广泛的应用。
在数学建模中,常用的方法包括线性规划、非线性规划、动态规划、离散事件模拟、蒙特卡洛方法等。
下面将对这些方法进行详细介绍。
1.线性规划:线性规划是一种在给定的约束条件下最大化或最小化线性目标函数的方法。
它适用于有着线性关系的问题,包括生产计划、资源分配、运输问题等。
线性规划的主要方法是使用线性规划模型将问题转化为数学形式,并通过线性规划算法求解最优解。
2.非线性规划:非线性规划是一种在给定的约束条件下最大化或最小化非线性目标函数的方法。
它适用于有着非线性关系的问题,包括优化设计、模式识别、经济决策等。
非线性规划的主要方法是使用非线性规划模型将问题转化为数学形式,并通过非线性规划算法求解最优解。
3.动态规划:动态规划是一种通过将复杂问题分解为子问题,并利用最优子结构的性质求解问题的方法。
它适用于有着重叠子问题的问题,包括最短路径问题、背包问题、机器调度问题等。
动态规划的主要方法是建立递推关系,通过填表或递归的方式求解最优解。
4.离散事件模拟:离散事件模拟是一种通过模拟系统状态的变化,以评估系统性能的方法。
它适用于有着离散事件发生和连续状态变化的问题,包括排队论、制造过程优化、金融风险评估等。
离散事件模拟的主要方法是建立事件驱动的模拟模型,并通过统计分析得到系统性能的估计。
5.蒙特卡洛方法:蒙特卡洛方法是一种基于概率统计的模拟方法,通过生成随机样本来估计问题的解。
它适用于有着随机性质的问题,包括随机优化、风险分析、可靠性评估等。
蒙特卡洛方法的主要思想是基于大数定律,通过大量的随机模拟次数来逼近问题的解。
除了上述方法外,在数学建模中还可以使用图论、拟合分析、概率论和统计方法等。
图论可用于描述网络结构和路径问题;拟合分析可用于对实际数据进行曲线或曲面拟合;概率论和统计方法可用于建立概率模型和对数据进行统计分析。
优化模型一:线性规划模型数学建模课件

混合整数线性规划问题求解
要点一
混合整数线性规划问题的复杂性
混合整数线性规划问题是指包含整数变量的线性规划问题 。由于整数变量的存在,混合整数线性规划问题的求解变 得更加困难,需要采用特殊的算法和技术来处理。
要点二
混合整数线性规划模型的求解方 法
为了解决混合整数线性规划问题,可以采用一些特殊的算 法和技术,如分支定界法、割平面法等。这些方法能够将 问题分解为多个子问题,并逐步逼近最优解,从而提高求 解效率。
目标函数的类型
常见的目标函数类型包括最小化、最大化等。
确定约束条件
约束条件
01
约束条件是限制决策变量取值的条件,通常表示为数学不等式
或等式。
确定约束条件的原则
02
根据问题的实际情况,选择能够反映问题约束条件的条件作为
约束条件。
约束条件的类型
03
常见的约束条件类型包括等式约束、不等式约束等。
线性规划模型的建立
也可以表示为
maximize (c^T x) subject to (A x geq b) and (x leq 0)。
线性规划的应用场景
生产计划
物流优化
在制造业中,线性规划可以用于优化生产 计划,确定最佳的生产组合和数量,以满 足市场需求并降低成本。
在物流和运输行业中,线性规划可以用于 优化运输路线、车辆调度和仓储管理,降 低运输成本和提高效率。
初始基本可行解
在线性规划问题中,一个解被称为基 本可行解,如果它满足所有的约束条 件。
在寻找初始基本可行解时,可以采用 一些启发式算法或随机搜索方法,以 快速找到一个可行的解作为起点。
初始基本可行解是线性规划问题的一 个起始点,通过迭代和优化,可以逐 渐逼近最优解。
线性规划问题及其数学模型

第一章线性规划问题及其数学模型一、问题旳提出在生产管理和经营活动中常常提出一类问题,即怎样合理地运用有限旳人力、物力、财力等资源,以便得到最佳旳经济效果。
例1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需旳设备台时及A、B两种原材料旳消耗,如表1-1所示。
表1-1该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应怎样安排计划使该工厂获利最多?这问题可以用如下旳数学模型来描述,设x1、x2分别表达在计划期内产品I、II旳产量。
由于设备旳有效台时是8,这是一种限制产量旳条件,因此在确定产品I、II旳产量时,要考虑不超过设备旳有效台时数,即可用不等式表达为:x1+2x2≤8同理,因原材料A、B旳限量,可以得到如下不等式4x1≤164x2≤12该工厂旳目旳是在不超过所有资源限量旳条件下,怎样确定产量x1、x2以得到最大旳利润。
若用z表达利润,这时z=2x1+3x2。
综合上述,该计划问题可用数学模型表达为:目旳函数 max z =2x 1+3x 2 满足约束条件 x 1+2x 2≤84x 1≤16 4x 2≤12 x 1、x 2≥0例2 某铁路制冰厂每年1至4季度必须给冷藏车提供冰各为15,20,25,10kt 。
已知该厂各季度冰旳生产能力及冰旳单位成本如表6-26所示。
假如生产出来旳冰不在当季度使用,每千吨冰存贮一种季度需存贮费4千元。
又设该制冰厂每年第3季度末对贮冰库进行清库维修。
问应怎样安排冰旳生产,可使该厂整年生产费用至少?解:由于每个季度生产出来旳冰不一定当季度使用,设x ij 为第i 季度生产旳用于第j 季度旳冰旳数量。
按照各季度冷藏车对冰旳需要量,必须满足:⎪⎪⎩⎪⎪⎨⎧++++++33231343221242114144x x x x x x x x x x 。
,,,25201510==== 又每个季度生产旳用于当季度和后来各季度旳冰旳数量不也许超过该季度旳生产能力,故又有⎪⎪⎩⎪⎪⎨⎧++++++33232213121143424144x x x x x x x x x x 。
1、线性规划(数学建模)

⎧2 x1 + x2 ≤ 10 ⎪x + x ≤ 8 ⎪ 1 2 s.t.(约束条件) ⎨ ⎪ x2 ≤ 7 ⎪ ⎩ x1 , x2 ≥ 0
(2)
(1)式被称为问题的目标函数, (2)中的几个不等式 这里变量 x1 , x 2 称之为决策变量, 是问题的约束条件,记为 s.t.(即 subject to)。由于上面的目标函数及约束条件均为线性 函数,故被称为线性规划问题。 总之, 线性规划问题是在一组线性约束条件的限制下, 求一线性目标函数最大或最 小的问题。 在解决实际问题时, 把问题归结成一个线性规划数学模型是很重要的一步, 但往往 也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我 们建立有效模型的关键之一。 1.2 线性规划的 Matlab 标准形式 线性规划的目标函数可以是求最大值, 也可以是求最小值, 约束条件的不等号可以 是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性 规划的标准形式为
max z = 2 x1 + 3x2 − 5 x3 s.t. x1 + x2 + x3 = 7 2 x1 − 5 x2 + x3 ≥ 10 x1 + 3 x2 + x3 ≤ 12 x1 , x2 , x3 ≥ 0
-3-
解 (i)编写 M 文件 c=[2;3;-5]; a=[-2,5,-1;1,3,1]; b=[-10;12]; aeq=[1,1,1]; beq=7; x=linprog(-c,a,b,aeq,beq,zeros(3,1)) value=c'*x (ii)将M文件存盘,并命名为example1.m。 (iii)在Matlab指令窗运行example1即可得所求结果。 例3 求解线性规划问题
数学建模线性规划

线性规划1.简介:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。
在优化模型中,如果目标函数f(x)和约束条件中的gi(x)都是线性函数,则该模型称为线性规划。
2.线性规划的3个基本要素(1)决策变量(2)目标函数f(x)(3)约束条件(gi(x)≤0称为约束条件)3.建立线性规划的模型(1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。
(2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。
(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。
以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。
生产计划问题某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表试拟订生产计划,使该厂获得利润最大解答:根据解题的三个基本步骤(1)找出未知变量,用符号表示:设甲乙两种产品的生产量分别为x1与x2吨,利润为z万元。
(2)确定约束条件:在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制钢材:9x 1+5 x 2≤360,电力:4x 1+5 x 2≤200,工作日:3x 1+10 x 2≤300,x 1 ≥0 ,x 2 ≥0,(3)确定目标函数:Z=7x 1+12 x 2所以综合上面这三步可知,这个生产组合问题的线性规划的数学模型为:max Z=7x 1+12 x 2s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+00300103200543605921212121x x x x x x x x4.使用MATLAB 解决线性规划问题依旧是以上题为例,将其用MATLAB 来表示出来1.将目标函数用矩阵的乘法来表示max Z=(7 12)⎪⎪⎭⎫ ⎝⎛21x x 2.将约束条件也用矩阵的乘法表示s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛2121003002003601035459x x x x 编写MATLAB 的程序如下:c=[-7 -12]; (由于是max 函数,因此将目标函数的系数全部变为负数)A=[9,5;4,5;3,10];b=[360;200;300];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)其运行结果显示如下:x =20.000024.0000fval =-428.00005.MATLAB 求解线性规划的语句(1)c=[ ] 表示目标函数的各个决策变量的系数(2)A=[ ] 表示约束条件中≥或≤的式子中的各个决策变量的系数。
线性规划数学模型

七、生产计划问题的数学模型
一、决策变量
设xj为第j种产品的计划产量
二、约束条件 ⑴ 指标约束 ⑵ 需求约束 ⑶ 资源约束
三、目标函数 ⑴ 总产值 ⑵ 总成本
xj ≥ ej ,
xj ≤ dj ,
n
∑a x j=1 ij j
≤
bi,
j = 1,2,… ,n j = 1,2,… ,n i = 1,2,…,m
它的适用领域非常广泛,从工业、农业、商业、交通 运输业、军事的计划和管理及决策到整个国民经济计 划的最优方案的提出,都有它的用武之地,是现代管 理科学的重要基础和手段之一。
3
第一节 线性规划问题的提出
线性规划研究的问题主要有以下两类。
(1) 给出一定量的人力、物力、财力等资源,如何统筹 规划这些有限资源完成最大任务。(如资金、设备、原标 材料、人工、时间等) (2) 给定一项任务,如何运筹规划,合理安排,以最少 资源来完成它。(如产品量最多 、利润最大.)
原料D不少于25% 原料P不超过50%
单价(元/kg)
50 35
原料
最大供量 (kg/天)
单价 (元/kg)
A 100
65
B 100
25
Z
不限
25
C 60
35
应如合配制,才能使利润达到最大?
二、配料问题的数学模型
一、决策变量
设以 xij 表示每天生产的 第i 种产品中所含第j 种原料 的数量(kg,右表)。
配料问题
原料 化学成分
成分含量(%)
甲
乙
产品成分 最低含量(%)
A
12
3
4
B
2
3
数学建模常用方法

数学建模常用方法数学建模是利用数学工具和方法来研究实际问题,并找到解决问题的最佳方法。
常用的数学建模方法包括线性规划、非线性规划、动态规划、整数规划、图论、最优化理论等。
1. 线性规划(Linear Programming, LP): 线性规划是一种在一定约束条件下寻找一组线性目标函数的最佳解的方法。
常见的线性规划问题包括生产调度问题、资源分配问题等。
2. 非线性规划(Nonlinear Programming, NLP): 非线性规划是指当目标函数或约束条件存在非线性关系时的最优化问题。
非线性规划方法包括梯度方法、牛顿法、拟牛顿法等。
3. 动态规划(Dynamic Programming, DP): 动态规划方法是一种通过将复杂的问题分解成多个子问题来求解最优解的方法。
动态规划广泛应用于计划调度、资源配置、路径优化等领域。
4. 整数规划(Integer Programming, IP): 整数规划是一种在线性规划的基础上,将变量限制为整数的最优化方法。
整数规划常用于离散变量的问题,如设备配置、路径优化等。
5. 图论(Graph Theory): 图论方法研究图结构和图运算的数学理论,常用于解决网络优化、路径规划等问题。
常见的图论方法包括最短路径算法、最小生成树算法等。
6. 最优化理论(Optimization Theory): 最优化理论是研究寻找最优解的数学方法和理论,包括凸优化、非凸优化、多目标优化等。
最优化理论在优化问题建模中起到了重要的作用。
7. 离散数学方法(Discrete Mathematics): 离散数学方法包括组合数学、图论、概率论等,常用于解决离散变量或离散状态的问题。
离散数学方法在计算机科学、工程管理等领域应用广泛。
8. 概率统计方法(Probability and Statistics): 概率统计方法通过对已有数据进行分析和建模,提供了一种推断和预测的数学方法。
概率统计方法在决策分析、风险评估等领域起到了重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章线性规划与数学建模简介【授课对象】理工类专业学生【授课时数】6学时【授课方法】课堂讲授与提问相结合【基本要求】1、了解数学模型的基本概念、方法、步骤;2、了解线性规划问题及其数学模型;3、了解线性规划问题解的性质及图解法.【本章重点】线性规划问题.【本章难点】线性规划问题、线性规划问题解的性质、图解法.【授课内容】本章简要介绍数学建模的基本概念、方法、步骤,并以几个典型线性规划问题为例,介绍构建数学模型的方法及其解的性质。
§1 数学建模概述一、数学建模数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。
运用这种科学方法,必须从实际问题出发,遵循从实践到认识再实践的认识规律,围绕建模的目的,运用观察力、想象力的抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。
因此,数学建模是一种定量解决实际问题的创新过程。
二、数学模型的概念模型是人们对所研究的客观事物有关属性的模拟。
例如在力学中描述力、量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。
一般地,可以给数学模型下这样的定义:数学模型是磁于以部分现实世界为一定目的而做的抽象、简化的数学结构。
通俗而言,数学模型是为了一定目的对原型所作的一种抽象模拟,它用数学式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。
三建立数学模型的方法和步骤建立数学模型没有固定模式。
下面介绍一下建立模型的大体过程:1.建模准备建模准备是确立建模课题的过程。
这类课题是人们在生产和科研中为了使认识和实践过一步发展必须解决的问题。
因此,我们首先要发现这类需要解决的实际问题。
其次要弄清所解决问题的目的要求并着手收集数据。
进行建模筹划,组织必要的人力、物力等,确立建模课题。
2.模型假设作为建模课题的实际问题都是错综复杂的、具体的。
如果不对这些实际问题进行抽象简化,人们就无法准确把握它的本质属性,而模型假设就是根据建模的目的对原型进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的次要因素。
有了这些假设,就可以在相对简单的条件下,弄清各因素之间的关系,建立相应的模型。
合理的假设是建立理想模型的必要条件和基本保证。
如果假设是合理的,则模型切合实际,能解决实际问题;如果假设不合理中或过于简化,则模型与实际情况不符或部分相符,就解决不了问题,就要修改假设,修改模型。
3.构造模型在模型假设的基础上,开始构建数学模型。
首先分析变量类型,恰当使用数学工具。
一般而言,如果实际问题中的变量是确定型变量,数学工具可采用微积分、微分方程、线性或非线性规划、投入产出、确定性库存论等。
如果变量是随机变量,数学工具可采用概率与统计、排队论、对策论、决策论、随机微分方程、随机性库存论等。
其次,抓住问题本质,简化变量之间的关系。
可以说,数学的任一分支在构造模型时都可能有用,而同一实际问题也可以构造不同的数学模型。
一般而言,在能够达到建模目的前提下,所用的数学工具应力求简单、易解,但要保证模型的解的精确在允许的范围内。
4.模型求解不同的模型要选择或设计不同的数学方法和算法求解,许多模型还可以通过编写计算机程序软件包,借助计算机快速完成对模型的求解。
5.模型分析对模型的求解结果进行分析,主要包括稳定性分析,参数的灵敏度分析,误差分析等。
通过分析,若发现不符合建模要求,就要修改或增减建模假设条款,重新构造模型,直到符合要求。
若模型符合要求,则可以对模型进行评价是、预测民、优化等方面的探析,力争得到最优模型。
6.模型检验对于经过分析后符合要求的模型,还要把它放回到实际对象中去进行检验,看它是否符合实际,能否解决相应的实际问题。
若不符合实际,就要修改前提假设,重新建模,重新分析,直到获得符合实际的模型。
7.模型应用建模最终目的,是用模型来分析、研究和解决实际问题。
因此,一个成功和数学模型必须能够在实践中得到成功的应用,甚至形成一套科学和理论。
图13――1是上述各步骤的直观图:图13――1数学建模步骤示意图一、数学模型的分类数学模型按照不同的分类标准有许多种类:1.按照模型的数学方法分,有几何模型、代数模型、图论模型、微分方程模型概率模型、最优控制模型、随机模型等等。
2.按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等。
3.按模型的应用领域分,有人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。
4。
按建模的目的分,有预测模型、优化模型、决策模型、控制模型等。
5.按夺模型结构的了解程度分,有白箱模型、灰箱模型、黑箱模型等。
§2线性规划问题及其数学模型线性规划作为运筹学的一人重要分支,是研究较早,理论较完善,应用最广泛的一门科学。
它所研究的问题主要包括两个方面:一是在一项任务确定后,如何以最低限度和成本(如人力、物力、资金和时间等)去完成这一任务;二是如何在现有条件下进行组织和安排,以完成更多的工作。
因此,线性规划就是求一组变量的值,使它满足一组线性式子,并使一个线性函数的值最大(或最小)的数学方法。
一、运输问题例1 设有A1,A2两个香蕉基地,产量分别为60吨和80吨,联合供应B1,B2,B3三个销地的销售量经预测分别为50吨、50吨和40吨。
两个产地到三个销地的单位运价如下表所示:表13――1运价表(单位:元/吨)问每个产地向每个销地各发货多少,才能使总的运费最少?解 (1)在该问题中,所要确定的量是各产地运往各销地的香蕉数量,即决策变量是运输量。
设X ij (i =1,2; j =1,2,3)分别表示由产地A i 运往销地B i 的数量。
(2)在解决问题的过程中,要受到如下条件限制,即约束条件: 各产地运出的数量应等于其产量,即8060232221131211=++=++xxxx x x②各销地运进的数量应等于其当地预测的销售量,即405050231322122111=+=+=+x xx xx x③从各产地运往各销地的数量不能为负值,即)3,2,1;2,1(0==≥j i xij(3)该问题的目的是运价最低,所以运价是目标函数,即x x x x x x S 232221121211300700400400300600+++++=因此,该问题的数学模型为:求x x x x x x S 232221131211300700400400300600min +++++=结束条件4050508060231322122111232221131211=+=+=+=++=++x xx x x x x x x x x x例1的一般形式是:设某种物资有m 个产地A A A m⋯⋯,,21产量分别为aa a m⋯⋯,,21,有n 个销地B B B n ,,,21 ,销量分别为。
吨,)(,,321b b b ⋯⋯如果由产地A i 运往销地B j 的单位运价为C ij (元/吨),在产销平衡的情况下,应如何调运才能使运费最省?解 设x ij 表示由产地A i 运往销地B j 的数是(i=1,……,m ;j=1,2,……,n) 则该问题数学模型为:求变量x ij 的一组值,使它们满足),...,2,1;,...,2,1(0........................................................... (212)222121121112111211n j m i xb x x x b x xx b x x x a x x x a x xx ijnmn n n m m mmn m m n ==≥=+++=+++=+++=+++⋯++1=+并使目标函数x C x C x C mn mn S +++=...12121111的值最小。
二、生产组织与计划问题 例2 设某用AA A m,...,,21种原料,生产B B B m ,...,21 种产品,其中B j 种产品每单位需要A A A m ,...,21原粉分别为;而该厂现有原料a a a mj ,...,,21;的数量分别为BB B b b b nm,...,,,,...,,2121各种产品每单位可是利润分别为C C C n ,...,2,1 。
在该厂产品全部能销售情况下,应如何组织生产,才能使该企业获得最大? 解 设生产产B j 中数量为),...,2,1(n j x j =,则此问题的数学模型为: 求一组变量 的值,使满足结束条件 ),...,1(0.................................................. (2)2112222212111212111n j x b x a x a x a bx a x a x a b x a x a x a jmnmnm m nnnn=≥≤+++≤+++≤+++并使目标函数x C x C x C n n S +++=...2211的值最大。
三、配料问题例 设有AA m,...,1种原料,配制含有几种成分B B B n ,...,,21的产品,要求产品中各种成分的含量不低于a a a n ,...,21;不高于b b b n ,...,,21;B j 种成分在A i 种原料中的单位含量为,各种原料的单位价格依次为.,...,21d d d m 问如何调配原料,才能使产品符合要求,又使成本最低?解 设x i 表示每单位产品中原料A i 的使用量(即决策变量),,,...,2,1m i =则数学模型为:求一组变量的值,使其满足约束条件),...,1(,01............ (2)12211222221122112211111m i x x x x b x C x C x C a bx C x C x C a b x C x C x C a imn n mn n n n mm mm =≥=+++≤+++≤≤++≤≤+++≤并使目标函数x d x d m m S ++=...11 最小。
二、线性规划问题数学模型的一般形式和标准形式上面我们建立了经济领域中常见的实际问题的数学模型,尽管这些实际问题本身是多种多样的,但是它们的数学模型却具有相同的特征:要确定某些变量(决策变量)的一组值,使得在确定的确定的约束条件下,目标函数是取得最大值或最小值。
其中,约束条件是决策变量的线性方程或线性不等式。
目标函数是决策变量的线性函数。
因此,我们把这种规划问题称为线性规划问题。
同时,我们可以得到对于一个线性规划问题,其数学模型应具有如下形式:求x C x C x C n n S ++=2211min)max(或),...,2,1(0),(...........................................)(...)(...x i22221122222221211111212111n i b b b x a x a x a b b b x a x a x a b b b x a x a x a mnmnm m nnnn=≥=≥≤+++=≥≤+++=≥≤+++或或,或或,或或我们称这种形式的线性规划模型为一般形式。