2013届高考物理二轮复习训练:专题3 第7讲 带电粒子在电场、磁场中的基本运动

合集下载

2013年高考物理二轮典型例题讲解(知识点归纳+例题)专题8磁场课件

2013年高考物理二轮典型例题讲解(知识点归纳+例题)专题8磁场课件

沿电场强度E方向发生的位移为sy=(SN-R)cos53° +R= 32cm 1 qE 2 2 而sx=v1t,sy= at = t ,联立并代入数值得v1= 2 2m 8.0×105m/s 所以α粒子从金箔上穿出时损失的动能为 1 2 1 2 ΔEk= mv - mv1=3.19×10-14 J. 2 2
πL A.电子在磁场中运动的时间为 v0 2πL B.电子在磁场中运动的时间为 3v0 L L C.磁场区域的圆心坐标为( , ) 2 2 D.电子在磁场中做圆周运动的圆心坐标为(0,-L)
[解析] 对于带电粒子在磁场中的运动情况分析如图甲所 示,电子离开磁场的速度方向与x轴正向夹角为60° ,则弧ab所 对应的圆心角为60° ,弦ab与x轴夹角为30° ,由几何关系得Ob 长为 3 L,且ab与x轴夹角为30° ,则OO′=L,D对;在图乙
力的方向
名称 项目
安培力 改变导体棒的运动状
洛伦兹力
作用效果
态,对导体棒做功,实 现电能和其他形式的能 的相互转化
只改变速度的方向,不 改变速度的大小;洛伦 兹力永远不对电荷做功
本质联系
安培力实际上是在导线中定向移动的电荷所受到的 洛伦兹力的宏观表现
(三)电偏转和磁偏转
垂直进入匀强电场 (不计重力) 受力情况 F=qE大小、方向均不变 运动规律 类平抛运动 偏转角 偏转程度 vy π θ=arctan < vx 2 动能增加 运动的合成与分解,类平抛运动 的规律 偏转角不受限制 垂直进入匀强磁场 (不计重力) 洛伦兹力F=qvB,大小不变、方向 始终与v垂直 匀速圆周运动
动能变化 处理方法
动能不变 结合圆的几何关系及圆周运动规律
长效热点例证
细研热点让你有的放矢

高考物理带电粒子在磁场中的运动基础练习题及解析

高考物理带电粒子在磁场中的运动基础练习题及解析

高考物理带电粒子在磁场中的运动基础练习题及解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

2013届高中新课标二轮物理总复习(湖南用)专题4_第2讲_带电粒子在匀强磁场中的运动(一)

2013届高中新课标二轮物理总复习(湖南用)专题4_第2讲_带电粒子在匀强磁场中的运动(一)

2013届高中新课标二轮物理总复习(湖南用)专题4 第2讲带电粒子在匀强磁场中的运动班级:__________ 姓名:__________ 学号:__________1。

(2012·北京卷)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( )A.与粒子电荷量成正比B.与粒子速率成正比C.与粒子质量成正比D.与磁感应强度成正比2.(2012·广东卷)质量和电量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹如图1中虚线所示,下列表述正确的是()图1A.M带负电、N带正电B.M的速率小于N的速率C.洛伦兹力对M、N做正功D.M的运行时间大于N的运行时间图23。

半径为r的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A点以速度v0垂直于磁场方向射入磁场中,并从B点射出.∠AOB=120°,如图2所示,则该带电粒子在磁场中运动的时间为( )A。

错误!B。

错误!C。

错误!D。

错误!4。

(2011·全国卷)为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的.在下列四个图中,正确表示安培假设中环形电流方向的是()图35.(2011·海南卷)空间存在方向垂直于纸面向里的匀强磁场,图3中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是()A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大图46。

(2011·浙江卷)利用如图4所示装置可以选择一定速度范围内的带电粒子.图中板MN上方的磁感应强度大小为B、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d和d的缝,两缝近端相距为L。

高考物理二轮复习 专题三 第7讲 电场和磁场的基本性质

高考物理二轮复习 专题三 第7讲 电场和磁场的基本性质
第7讲 电场和磁场的基本性质
1.(2015浙江理综·16)如图1所示为静电力演示仪, 两金属极板分别固定于绝缘支架上,且正对平 行放置。工作时两板分别接高压直流电源的正 负极,表面镀铝的乒乓球用绝缘细线悬挂在两 金属பைடு நூலகம்中间,则( )
图1
A.乒乓球的左侧感应出负电荷 B.乒乓球受到扰动后,会被吸在左极板上 C.乒乓球共受到电场力、重力和库仑力三个力的作用 D.用绝缘棒将乒乓球拨到与右极板接触,放开后乒乓球会在两极 板间来回碰撞 解析 两极板间电场由正极板指向负极板,镀铝乒乓球内电子向 正极板一侧聚集,故乒乓球的右侧感应出负电荷,A错误;乒乓 球不可能吸在左极板上,B错误;库仑力就是电场力,C错误; 乒乓球与右极板接触后带正电,在电场力作用下向负极运动,碰 到负极板正电荷与负极板上的负电荷中和后带负电,在电场力作 用下又向正极板运动,这样会在两极板间来回碰撞,D正确。 答案 D
1.(2015·宁波市高三十校联考)一带电粒子仅在电
4.(多选)(2014·新课标全国卷Ⅰ,21)如图2所示,在正点电荷Q的 电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶 点,F为MN 的中点,∠M=30°。M、N、P、F四点处的电势 分别用φM、φN、φP、φF表示,已知φM=φN ,φP=φF,点电荷Q 在M、N、P三点所在平面内,则( )
图2
A.点电荷Q一定在MP的连线上 B.连接PF的线段一定在同一等势面上 C.将正试探电荷从P点搬运到N点,电场力做负功 D.φP大于φM
解析 作∠MNP的角平分线交MP于G,如图所示,则MG=GN, 又因φM=φN,所以点电荷Q应放在G点,选项A正确;点电荷的 等势面为球面,所以选项B错误;沿电场线的方向电势降低,所 以φP>φM,φP>φN,故将正电荷从P点搬运到N点,电场力做正功, 选项D正确,C错误。

2023届高考物理二轮复习专题分层突破练7电场带电粒子在电场中的运动含解析

2023届高考物理二轮复习专题分层突破练7电场带电粒子在电场中的运动含解析

高考物理二轮复习:专题分层突破练7 电场带电粒子在电场中的运动A组1.只要空气中的电场足够强,空气就可以被“击穿”,成为导体。

某次实验中,电压为3×104 V的直流电源的两极连在一对平行的金属板上,当金属板间的距离减小到1 cm,板之间就会放电,则此次实验中空气被“击穿”时的电场强度大小为()A.3×102 V/mB.3×104 V/mC.3×106 V/mD.3×108 V/m2.如图所示,Q1、Q2为两个带等量正电荷的点电荷,在两者的电场中有M、N和O三点,其中M和O在Q1、Q2的连线上(O为连线的中点),N为过O点的垂线上的一点。

则下列说法正确的是()A.在Q1、Q2连线的中垂线位置可以画出一条电场线B.若将一个带正电的点电荷分别放在M、N和O三点,则该点电荷在M点时的电势能最大C.若将一个带电荷量为-q的点电荷从M点移到O点,则电势能减少D.若将一个带电荷量为-q的点电荷从N点移到O点,则电势能增加3.(2021上海高三二模)如图所示,四根彼此绝缘的带电导体棒围成一个正方形线框(导体棒很细),线框在正方形中心O点产生的电场强度大小为E0,方向竖直向下;若仅撤去导体棒C,则O点电场强度大小变为E1,方向竖直向上,则若将导体棒C叠于A棒处,则O点电场强度大小变为()A.E1-E0B.E1-2E0C.2E1+E0D.2E14.(2021江苏南京高三二模)某电子透镜的电场分布如图所示,虚线为等差等势面,一电子在其中运动的轨迹如图中实线所示,a、b是轨迹上的两点,则()A.a点的电场强度大于b点的电场强度B.b点电场强度的方向水平向右C.a点的电势高于b点的电势D.电子在a点的电势能大于在b点的电势能5.(2021广东揭阳高三调考)电容式传感器可以将非电学量的微小变化转换成电容变化。

如图是一种利用电容式传感器测量油箱中油量的装置。

开关S闭合后,下列说法正确的是()A.油量减少时,电容器的电容增大B.油量减少时,电容器的带电荷量减小C.油量减少时,电流向上经过电流表GD.电流表G示数为零时,油箱中油量为零6.(2022天津蓟州第一中学)如图所示,虚线a、b、c代表电场中的三个等势面,相邻等势面之间的电势差相等,即U ab=U bc,实线为一带负电的质点仅在电场力的作用下通过该区域时的运动轨迹,P、Q是这条轨迹上的两点,据此可知()A.三个等势面中,c的电势最高B.带电质点通过P点的电势能比Q点大C.带电质点通过P点的动能比Q点大D.带电质点通过P点时的加速度比Q点小7.(多选)(2021福建高三二模)空间中有水平方向上的匀强电场,一质量为m,带电荷量为q的微粒在某竖直平面内运动,其电势能和重力势能随时间的变化如图所示,则该微粒()A.一定带正电B.0~3 s内电场力做功为-9 JC.运动过程中动能不变D.0~3 s内除电场力和重力外所受其他力对微粒做功为12 J8.(2021上海高三二模)如图所示,质量为m=2 g的小球a穿在光滑的水平绝缘细杆上,杆长为1 m,小球a带正电,电荷量为q=2×10-7 C,在杆上B点处固定一个电荷量为Q=2×10-6 C的带正电小球b。

2023届高考物理二轮复习学案:带电粒子在电场中的运动

2023届高考物理二轮复习学案:带电粒子在电场中的运动

(2023届高三物理二轮学案)专题三电场和磁场第二讲带电粒子在电磁场中的运动第一课时带电粒子在电场中的运动(一)带电粒子在电场中做直线运动的解题思路(二)利用“两个分运动”求解带电粒子在电场中的偏转问题1.把偏转运动分解为两个独立的直线运动——平行于极板的匀速直线运动,L=v0t;垂直于极板的匀加速直线运动,a=qUmd,vy=at,偏转距离y=12at2,速度偏转角tan θ=vyv0。

2.根据动能定理,带电粒子的动能变化量ΔEk =ydUq。

(三)分时分段处理带电粒子在交变电场中的运动当粒子平行电场方向射入时,粒子可做周期性的直线运动,当粒子垂直于电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动可能具有周期性。

典型例题1.(多选)如图所示,一带电荷量为q的带电粒子以一定的初速度由P点射入匀强电场,入射方向与电场线垂直。

粒子从Q点射出电场时,其速度方向与电场线成30°角。

已知匀强电场的宽度为d,P、Q两点的电势差为U,不计重力作用,设P点的电势为零。

则下列说法正确的是( )A.带电粒子带负电B.带电粒子在Q点的电势能为-UqC.此匀强电场的电场强度大小为E=23U 3dD.此匀强电场的电场强度大小为E=3U 3d2.(多选)如图所示,板长为L的平行板电容器与一直流电源相连接,其极板与水平面成30°角;若带电粒子甲、乙由图中的P点射入电容器,分别沿着虚线1和2运动(虚线1为水平线,虚线2为平行且靠近上极板的直线)。

下列关于带电粒子的说法正确的是( )A.两粒子均做匀减速直线运动B.两粒子电势能均逐渐增加C.两粒子机械能均守恒D.若两粒子质量相同,则甲的电荷量一定比乙的电荷量大3.(多选)如图所示,质子(11H)、氘核(12H)和α粒子(24He)都沿平行板电容器的中线OO′方向,垂直于电场线射入两极板间的匀强电场中,射出后都能打在同一个与中线垂直的荧光屏上,使荧光屏上出现亮点。

高考高考物理二轮复习专题训练:电场与磁场的理解

电场与磁场的理解一、选择题1.某平面区域内一静电场的等势线分布如图中虚线所示,相邻的等势线电势差相等,一负电荷仅在静电力作用下由a 运动至b ,设粒子在a 、b 两点的加速度分别为a a 、b a ,电势分别为a ϕ、b ϕ,该电荷在a 、b 两点的速度分别为a v 、b v ,电势能分别为p a E 、p b E ,则( )A .a b a a >B .b a v v >C .p p a b E E >D .a b ϕϕ>2.某静电场方向平行于x 轴,x 轴上各点电场强度随位置的变化关系如图所示,规定x 轴正方向为电场强度正方向。

若取x 0处为电势零点,则x 轴上各点电势随位置的变化关系可能为( )A .B .C .D .3.一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10V 、17V 、26V 。

下列说法正确的是( ) A .电场强度的大小为2.5V/cmB .坐标原点处的电势为2VC .电子在a 点的电势能比在b 点的小7eVD .电子从b 点运动到O 点,电场力做功为16eV4.如图,空间中存在着水平向右的匀强电场,现将一个质量为m ,带电量为q +的小球在A 点以一定的初动能k E 竖直向上抛出,小球运动到竖直方向最高点C 时的沿场强方向位移是0x ,动能变为原来的一半(重力加速度为g ),下列说法正确的是( )A .场强大小为22mgqB .A 、C 竖直方向的距离为0x 的2倍C .小球从C 点再次落回到与A 点等高的B 点时,水平位移是02xD .小球从C 点落回到与A 点等高的B 点时,电场力做功大小为2k E5.如图,圆心为O 的圆处于匀强电场中,电场方向与圆平面平行,ab 和cd 为圆的两条直径,60aOc ∠=︒。

将一电荷量为q 的正点电荷从a 点移到b 点,电场力做功为W (0W >);若将该电荷从d 点移到c 点,电场力做功也为W 。

高考物理带电粒子在磁场中的运动专题训练答案及解析

高考物理带电粒子在磁场中的运动专题训练答案及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围; (2)若离子速率大小02BqRv m=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。

高考物理二轮复习第一部分专题整合专题三电场和磁场第讲磁场及带电粒子在磁场中的运动专项训练.doc

第2讲 磁场及带电粒子在磁场中的运动[真题再现]1.(多选)(2018·全国卷Ⅱ)如图3-2-1所示,纸面内有两条互相垂直的长直绝缘导线L 1、L 2,L 1中的电流方向向左,L 2中的电流方向向上;L 1的正上方有a 、b 两点,它们相对于L 2对称。

整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B 0,方向垂直于纸面向外。

已知a 、b 两点的磁感应强度大小分别为13B 0和12B 0,方向也垂直于纸面向外。

则图3-2-1A .流经L 1的电流在b 点产生的磁感应强度大小为712B 0 B .流经L 1的电流在a 点产生的磁感应强度大小为112B 0C .流经L 2的电流在b 点产生的磁感应强度大小为112B 0 D .流经L 2的电流在a 点产生的磁感应强度大小为712B 0 解析 由对称性可知,流经L 1的电流在a 、b 两点产生的磁感应强度大小相等,设为B 1,流经L 2的电流在a 、b 两点产生的磁感应强度大小相等但方向相反,设其大小为B 2;由磁场叠加原理有B 0-B 1-B 2=13B 0,B 0-B 1+B 2=12B 0,联立解得B 1=712B 0,B 2=112B 0,所以A 、C 正确。

答案 AC2.(多选)(2017·全国卷Ⅱ)某同学自制的简易电动机示意图如图3-2-2所示。

矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴。

将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方。

为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将图3-2-2A .左、右转轴下侧的绝缘漆都刮掉B .左、右转轴上下两侧的绝缘漆都刮掉C .左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D .左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析 如果将左、右转轴下侧的绝缘漆都刮掉,则线圈在安培力作用下转动起来,每转一周安培力驱动一次,可保证线圈不断地转动,A 项正确;如果左、右转轴上下侧的绝缘漆均刮掉,不能保证线圈持续转动下去,B 项错误;如果仅左转轴的上侧绝缘漆刮掉,右转轴的下侧绝缘漆刮掉,则线圈中不可能有电流,因此线圈不可能转动,C 项错误;如果左转轴上下侧的绝缘漆均刮掉,右转轴仅下侧的绝缘漆刮掉效果与A 项相同,因此D 项正确。

2020届高考物理课标版二轮习题:专题三第7讲 带电粒子在电磁场中的运动 含解析

第7讲带电粒子在电磁场中的运动冲刺提分作业A一、单项选择题1.(2019辽宁大连模拟)如图所示为研究某种带电粒子的装置示意图,粒子源射出的粒子束以一定的初速度沿直线射到荧光屏上的O点,出现一个光斑。

在垂直于纸面向里的方向上加一磁感应强度为B的匀强磁场后,粒子束发生偏转,沿半径为r 的圆弧运动,打在荧光屏上的P点,然后在磁场区域再加一竖直向下、电场强度大小为E的匀强电场,光斑从P点又回到O点,关于该粒子束(不计重力),下列说法正确的是( )A.粒子带负电B.初速度v=BEC.比荷qm =B2rED.比荷qm=EB2r答案 D 只存在磁场时,粒子束打在P点,由左手定则知粒子带正电,选项A错误;因为qvB=mv 2r ,所以qm=vBr,加匀强电场后满足Eq=qvB,即v=EB,代入上式得qm=EB2r,选项D正确,B、C错误。

2.如图所示,竖直线MN∥PQ,MN与PQ间距离为a,其间存在垂直纸面向里的匀强磁场,磁感应强度为B,O是MN上一点,O处有一粒子源,某时刻放出大量速率均为v(方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN成θ=60°射入的粒子恰好垂直PQ射出磁场,则粒子在磁场中运动的最长时间为( )A.πa3v B.2√3πa3vC.4πa3vD.2πav答案 C 当θ=60°时,粒子的运动轨迹如图甲所示,则a=R sin 30°,即R=2a 。

设带电粒子在磁场中运动轨迹所对的圆心角为α,则其在磁场中运行的时间t=α2πT,即α越大,粒子在磁场中运行时间越长,α最大时粒子的运行轨迹恰好与磁场的右边界相切,如图乙所示,因R=2a,此时圆心角αm 为120°,即最长运行时间为T3,而T=2πr v =4πa v ,所以粒子在磁场中运动的最长时间为4πa3v,C 正确。

3.美国物理学家劳伦斯于1932年发明的回旋加速器,应用带电粒子在磁场中做圆周运动的特点,能使粒子在较小的空间范围内经过电场的多次加速获得较大的能量,使人类在获得较高能量的带电粒子领域前进了一大步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三 电场与磁场第七讲 带电粒子在电场、磁场中的基本运动一、单项选择题1. (2011年高考重庆卷)如图所示,电量为+q 和-q 的点电荷分别位于正方体的顶点,正方体范围内电场强度为零的点有( )A .体中心、各面中心和各边中点B .体中心和各边中点C .各面中心和各边中点D .体中心和各面中心解析:选D.利用点电荷产生场强的公式E =k Q r2和场强叠加原理,对某边中点处的场强进行分析求合场强可知其大小并不是零,排除选项A 、B 、C ,选项D 正确.2.(2011年高考新课标全国卷)为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的.在下列四个图中,正确表示安培假设中环形电流方向的是( )解析:选B.地磁场的N 极在地球南极附近,地磁场的S 极在地球北极附近,根据安培定则,可判定电流方向为顺时针方向(站在地球的北极向下看),选项B 正确,选项A 、C 、D 错误.3. (2010年高考安徽理综卷)如图所示,在xOy 平面内有一个以O 为圆心、半径R =0.1 m 的圆,P 为圆周上的一点,O 、P 两点连线与x 轴正方向的夹角为θ.若空间存在沿y 轴负方向的匀强电场,电场强度大小E =100 V/m ,则O 、P 两点的电势差可表示为( )A .U OP =-10sin θ(V)B .U OP =10sin θ(V)C .U OP =-10cos θ(V)D .U OP =10cos θ(V) 解析:选A.由于电场强度方向向下,据题意可知U OP <0,则U OP =-ER sin θ=-100×0.1sin θ(V)=-10sin θ(V),故正确答案为A.4.(2011年高考江苏卷改编) 一粒子从A 点射入电场,从B 点射出,电场的等势面和粒子的运动轨迹如图所示,图中左侧前三个等势面彼此平行,不计粒子的重力.下列说法正确的是( )A.粒子带正电荷B.粒子的加速度先不变,后变小C.粒子的速度不断增大D.粒子的电势能先减小,后增大解析:选 B.电场线如图所示,由于受力总指向运动轨迹的凹侧,故粒子带负电荷,A错;由电场线分布知电场力先不变,后越来越小,B对;电场力一直做负功,粒子速度一直减小,电势能一直增加,C、D错.5. (2010年高考四川理综卷改编)如图所示,圆弧虚线表示正点电荷电场的等势面,相邻两等势面间的电势差相等.光滑绝缘直杆沿电场方向水平放置并固定不动,杆上套有一带正电的小滑块(可视为质点),滑块通过绝缘轻弹簧与固定点O相连,并以某一初速度从M点运动到N点,OM<ON.若滑块在M、N时弹簧的弹力大小相等,弹簧始终在弹性限度内,则( )A.滑块从M到N的过程中,速度不可能一直增大B.滑块从位置1到2的过程中,电场力做的功比从位置3到4的小C.在M、N之间的范围内,可能存在滑块速度相同的两个位置D.在M、N之间可能存在只由电场力确定滑块加速度大小的三个位置解析:选C.滑块从M到N的过程中,在水平方向上电场力有可能始终大于弹力在水平方向的分力,A错.滑块在1与2之间和在3与4之间运动时,电势差相等,则电场力做功也相等,B错.在MN之间运动时,由于M、N两处弹簧弹力大小相等,故在M处弹簧被压缩,在N 处弹簧被拉伸,所以弹簧经过某一位置后要被拉伸,弹力在水平方向的分力可能大于电场力而使滑块减速,故可能存在滑块速度相同的两个位置,C项正确.若要确定滑块加速度只由电场力决定,则要求弹力在水平方向没有分力,即滑块在O点正下方和弹簧处于自然长度状态,而MN之间的弹簧处于自然长度状态处应在O点下方右侧一处,故D错.6. (2011年北京海淀区期末测试)有两根长直导线a、b互相平行放置,如图所示为垂直于导线的截面图.在如图所示的平面内,O点为两根导线连线的中点,M、N为两导线附近的两点,它们在两导线连线的中垂线上,且与O点的距离相等.若两导线中通有大小相等、方向相同的恒定电流I,则关于线段MN上各点的磁感应强度,下列说法中正确的是( )A .M 点和N 点的磁感应强度大小相等,方向相同B .M 点和N 点的磁感应强度大小相等,方向相反C .在线段MN 上各点的磁感应强度都不可能为零D .在线段MN 上有两点的磁感应强度为零解析:选B.根据安培定则和磁场的叠加原理,M 点和N 点的磁感应强度大小相等,方向相反,选项A 错B 对;在线段MN 上只有在O 点处,a 、b 两电流形成的磁场的磁感应强度等大反向,即只有O 点处的磁感应强度为零,选项C 、D 错.7. (2011年长春调研)如图所示,圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B ,一带电粒子(不计重力)以某一初速度沿圆的直径方向射入磁场,粒子穿过此区域的时间为t ,粒子飞出此区域时速度方向偏转角为60°,根据上述条件可求下列物理量中的( )A .带电粒子的电荷量B .带电粒子的初速度C .带电粒子在磁场中运动的周期D .带电粒子在磁场中运动的半径 解析:选C.由带电粒子的速度偏转角为60°可知,它在磁场中转过的圆心角度也为60°,则带电粒子在磁场中运动的周期T =6t ,再由T =2πm qB 有q m =2πBT =π3Bt ,根据R =mvqB,因R 、m 、v 均为未知量,且由题中条件无法推出,故只有C 项正确.8. (2011年天津十校联考)如图所示,静止的电子在加速电压为U 1的电场作用下从O 点经P 板的小孔射入平行金属板间的电场,在偏转电压为U 2的电场作用下偏转一段距离.现使U 1加倍,要想使电子的运动轨迹不发生变化,应该( )A .使U 2加倍B .使U 2变为原来的4倍C .使U 2变为原来的2倍D .使U 2变为原来的12倍解析:选A.要使电子的运动轨迹不发生变化,应使电子从电场中穿出时偏转距离不变,而偏转距离y =12·eU 2md ·⎝ ⎛⎭⎪⎫l v 02=eU 2l 22d ·2eU 1=U 2l 24U 1d,故U 1加倍时应使U 2也加倍,A 正确.9.(2011年高考海南卷改编) 空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是( )A .入射速度不同的粒子在磁场中的运动时间一定不同B .入射速度相同的粒子在磁场中的运动轨迹可能不同C .在磁场中运动时间相同的粒子,其运动轨迹一定相同D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大解析:选D.带电粒子进入磁场后,在洛伦兹力的作用下做匀速圆周运动,根据qvB =mv 2r得轨道半径r =mvqB,粒子的比荷相同,故不同速度的粒子在磁场中运动的轨道半径不同,轨迹不同,相同速度的粒子,轨道半径相同,轨迹相同,故B 错误.带电粒子在磁场中做圆周运动的周期T =2πr v =2πmqB,故所有带电粒子的运动周期均相同,若带电粒子从磁场左边界出磁场,则这些粒子在磁场中运动时间是相同的,但不同速度轨迹不同,故A 、C 错误.根据θt =2πT得θ=2πTt ,所以t 越长,θ越大,故D 正确.二、非选择题 10.(2011年湖北八校联考)在某平面上有一半径为R 的圆形区域,区域内外均有垂直于该平面的匀强磁场,圆外磁场范围足够大,已知两部分磁场方向相反且磁感应强度都为B ,方向如图所示.现在圆形区域的边界上的A 点有一个电荷量为q 、质量为m 的带电粒子以沿半径且垂直于磁场方向向圆外的速度经过该圆形边界,已知该粒子只受到磁场对它的作用力.(1)若粒子在其与圆心O 连线旋转一周时恰好能回到A 点,试问粒子运动速度v 的可能值; (2)在粒子恰能回到A 点的情况下,求该粒子回到A 点所需的最短时间. 解析:(1)设粒子运动的半径为rBqv =m v 2rr =mvBq① 如图,O 1为粒子运动的第一段圆弧AB 的圆心,O 2为粒子运动的第二段圆弧BC 的圆心,根据几何关系可知 tan θ=r R②∠AOB =∠BOC =2θ如果粒子回到A 点,则必有 n ·2θ=2π,n 取正整数③由①②③可得v =BqR m tan πn考虑到θ为锐角,即0<θ<π2,根据③可得n ≥3故v =BqR m tan πn(n =3,4,5,…).(2)粒子做圆周运动的周期T =2πmBq因为粒子每次在圆形区域外运动的时间和圆形区域内运动的时间互补为一个周期T ,所以粒子穿越圆形边界的次数越少,所花时间就越短,因此取n =3代入到③可得θ=π3而粒子在圆形区域外运动的圆弧的圆心角为αα=2π-2⎝ ⎛⎭⎪⎫π2-θ=53π故所求的粒子回到A 点的最短运动时间t =T +α2πT =11πm3Bq .答案:(1)BqR m tan πn (n =3,4,5,…) (2)11πm3Bq11.(2011年原创题卷)如图所示,均可视为质点的三个小球A 、B 、C 穿在竖直固定的光滑绝缘细杆上,开始时A 与B 紧靠在一起(A 、B 之间绝缘),C 紧贴着绝缘地板,质量分别为M A =2.32 kg ,M B =0.20 kg ,M C =2.00 kg ,其中A 不带电,B 、C 的带电量分别为q B =+4.0×10-5C ,q C =+7.0×10-5 C ,且电荷量都保持不变,开始时三个小球均静止.现给小球A 施加一个竖直向上的力F ,使它由静止开始向上做加速度为a =4.0 m/s 2的匀加速直线运动,经时间t ,A 与B 分离,F 变为恒力.已知g =10 m/s 2,静电力常量k =9×109 N ·m 2/C 2.求:(1)时间t 为多少?(2)在时间t 内,若力F 做的功W F =53.36 J ,则B 所受的电场力对B 做的功W 为多少? 解析:(1)开始时小球A 、B 处于平衡状态,有(M A +M B )g =kq B q Cr 20所以r 0=kq B q CM A +MB g= 9×109×4×10-5×7×10-52.32+0.2×10m =1 m给A 施加力F 后,A 、B 沿细杆向上做匀加速直线运动,C 对B 的库仑斥力逐渐减小,A 、B 之间的弹力也逐渐减小,经过时间t ,B 、C 间距离设为r ,A 、B 两者间弹力减小到零,此后两者分离,力F 变为恒力.则对小球B 由牛顿第二定律得:kq B q Cr 2-M B g =M B a ,所以r =kq B q CM B g +a = 9×109×4×10-5×7×10-50.2×10+4 m =3 m对小球B 从静止开始匀加速运动时间t ,有:r -r 0=12at 2所以t =2r -r 0a =2×3-14s =1 s.(2)对A 、B 整体由动能定理得:W F +W G +W =12(M A +M B )v 2又W G =-(M A +M B )g (r -r 0)v =at所以W =12(M A +M B )a 2t 2-W F +(M A +M B )g (r -r 0)代入数据得W =17.2 J. 答案:(1)1 s (2)17.2 J12.(2010年高考江苏卷)制备纳米薄膜装置的工作电极可简化为真空中间距为d 的两平行极板,如图甲所示.加在极板A 、B 间的电压U AB 作周期性变化,其正向电压为U 0,反向电压为-kU 0(k >1),电压变化的周期为2T ,如图乙所示.在t =0时,极板B 附近的一个电子,质量为m 、电荷量为e ,受电场作用由静止开始运动.若整个运动过程中,电子未碰到极板A ,且不考虑重力作用.(1)若k =54,电子在0~2T 时间内不能到达极板A ,求d 应满足的条件;(2)若电子在0~200T 时间内未碰到极板B ,求此运动过程中电子速度v 随时间t 变化的关系;(3)若电子在第N 个周期内的位移为零,求k 的值. 解析:(1)电子在0~T 时间内做匀加速运动加速度的大小a 1=eU 0md① 位移s 1=12a 1T2②在T ~2T 时间内先做匀减速运动,后反向做匀加速运动加速度的大小a 2=5eU 04md③初速度的大小v 1=a 1T④ 匀减速运动阶段的位移s 2=v 212a 2⑤ 依据题意d >s 1+s 2 解得 d > 9eU 0T210m⑥ (2)在2nT ~(2n +1)T (n =0,1,2,…,99)时间内 速度增量Δv 1=a 1T⑦在(2n +1)T ~2(n +1)T (n =0,1,2,…,99)时间内 加速度的大小a 2′=ekU 0md速度增量Δv 2=-a 2′T⑧ ① 当0≤t -2nT <T 时电子的运动速度v =n Δv 1+n Δv 2+a 1(t -2nT )⑨解得v =[t -(k +1)nT ]eU 0dm,(n =0,1,2, (99)⑩ ②当0≤t -(2n +1)T <T 时电子的运动速度v =(n +1)Δv 1+n Δv 2-a 2′[t -(2n +1)T]⑪ 解得v =[(n +1)(k +1)T -kt ]eU 0dm,(n =0,1,2,…,99).⑫ (3)电子在2(N -1)T ~(2N -1)T 时间内的位移x 2N -1=v 2N -2T +12a 1T 2电子在(2N -1)T ~2NT 时间内的位移x 2N =v 2N -1T -12a 2′T 2由⑩式可知v 2N -2=(N -1)(1-k )T eU 0dm由⑫式可知v 2N -1=(N -Nk +k )T eU 0dm依据题意x 2N -1+x 2N =0解得k =4N -14N -3.答案:(1)d >9eU 0T 210m (2)见解析 (3)4N -14N -3。

相关文档
最新文档