钻柱浮力分析与计算
钻杆受力分析篇

第三章钻受力分析3.1 作用在钻柱上的基本载荷钻柱的受力状态与所选用的钻井方式有关,不同的位置上作用不同的载荷。
概括起来,作用在钻柱上的基本载荷有以下几种:(1)轴向力。
处于悬挂状态下的钻柱,在自重作用下,由上到下均受拉力。
最下端的拉力为零,井口处的拉力最大。
在钻井液中钻柱将受到浮力的作用,浮力使钻柱受拉减小。
起钻过程中,钻柱与井壁之间的摩擦力以及遇阻、遇卡,均会增大钻柱上的拉伸载荷。
下钻时钻柱的承载情况与起钻时相反。
循环系统在钻柱内及钻头水眼上所耗损的压力,也将使钻柱承受的拉力增大。
钻铤以自重给钻头加钻压,造成钻柱下部处于压缩状态。
(2)径向挤压力。
应用卡瓦进行起下钻作业时,由于卡瓦有一定的锥角,在钻柱上引起一定的挤压力。
中途测试时,钻柱上也要承受管外液柱的挤压力。
(3)弯曲力矩。
弯曲力矩的产生是因钻柱上有弯曲变形存在;引起钻校弯曲变形的主要因素是给定的钻压值超过了钻柱的临界值。
在转盘钻井中,钻柱在离心力的作用下,亦会造成弯曲。
由于钻柱在弯曲井眼内工作,也将产生弯曲。
在弯曲状态,钻柱如绕自身轴线旋转,则会产生交变的弯曲应力。
(4)离心力。
钻柱在钻压的作用下会产生弯曲,在一定的条件下,弯曲钻柱会围绕井眼中心线旋转而产生离心力,促使钻柱更加弯曲。
(5)扭矩。
钻头破碎岩石的功率是由转盘通过方钻杆传递给钻柱的。
出于钻柱与井壁和钻井液有摩擦阻力,因而钻柱所承受的扭矩井口比井底大。
但在使用井底动力钻具(涡轮钻具、迪纳钻具等)时,作用在钻柱上的反扭矩,井底大于井口。
(6)振动载荷。
使钻柱产生振动的干扰力也是作用在钻柱的重要载荷(图 2-1)。
在钻井过程中,用钻柱将钻头送至井眼底部并向钻头传递动力,靠钻头的牙齿、切削刃和射流破碎岩石形成井筒;通过钻柱中心的圆管向井下传递高压钻井液,靠钻井液的流动把岩石碎屑携至地面并从钻井液中除掉岩屑。
为了控制井眼钻进的方向,靠近钻头的一段钻柱外径和抗弯刚度较大,并在一定位置上安放一定规格的稳定器,下部钻柱只有稳定器和钻头接触井壁,钻柱本体则不与井壁接触。
钻杆受力分析篇

第三章钻受力分析3.1 作用在钻柱上的根本载荷钻柱的受力状态与所选用的钻井方式有关,不同的位置上作用不同的载荷。
概括起来,作用在钻柱上的根本载荷有以下几种:〔1〕轴向力。
处于悬挂状态下的钻柱,在自重作用下,由上到下均受拉力。
最下端的拉力为零,井口处的拉力最大。
在钻井液中钻柱将受到浮力的作用,浮力使钻柱受拉减小。
起钻过程中,钻柱与井壁之间的摩擦力以及遇阻、遇卡,均会增大钻柱上的拉伸载荷。
下钻时钻柱的承载情况与起钻时相反。
循环系统在钻柱内及钻头水眼上所耗损的压力,也将使钻柱承受的拉力增大。
钻铤以自重给钻头加钻压,造成钻柱下部处于压缩状态。
〔2〕径向挤压力。
应用卡瓦进展起下钻作业时,由于卡瓦有一定的锥角,在钻柱上引起一定的挤压力。
中途测试时,钻柱上也要承受管外液柱的挤压力。
〔3〕弯曲力矩。
弯曲力矩的产生是因钻柱上有弯曲变形存在;引起钻校弯曲变形的主要因素是给定的钻压值超过了钻柱的临界值。
在转盘钻井中,钻柱在离心力的作用下,亦会造成弯曲。
由于钻柱在弯曲井眼内工作,也将产生弯曲。
在弯曲状态,钻柱如绕自身轴线旋转,那么会产生交变的弯曲应力。
〔4〕离心力。
钻柱在钻压的作用下会产生弯曲,在一定的条件下,弯曲钻柱会围绕井眼中心线旋转而产生离心力,促使钻柱更加弯曲。
〔5〕扭矩。
钻头破碎岩石的功率是由转盘通过方钻杆传递给钻柱的。
出于钻柱与井壁和钻井液有摩擦阻力,因此钻柱所承受的扭矩井口比井底大。
但在使用井底动力钻具〔涡轮钻具、迪纳钻具等〕时,作用在钻柱上的反扭矩,井底大于井口。
〔6〕振动载荷。
使钻柱产生振动的干扰力也是作用在钻柱的重要载荷〔图 2-1〕。
在钻井过程中,用钻柱将钻头送至井眼底部并向钻头传递动力,靠钻头的牙齿、切削刃和射流破碎岩石形成井筒;通过钻柱中心的圆管向井下传递高压钻井液,靠钻井液的流动把岩石碎屑携至地面并从钻井液中除掉岩屑。
为了控制井眼钻进的方向,靠近钻头的一段钻柱外径和抗弯刚度较大,并在一定位置上安放一定规格的稳定器,下部钻柱只有稳定器和钻头接触井壁,钻柱本体那么不与井壁接触。
钻柱受力分析

❖ 方钻杆旋转时,上端始终处于转盘面以上, 下部则处在转盘面以下。方钻杆上端至水龙头 的连接部位的丝扣均为左旋丝扣(反扣),以防 止方钻杆转动时卸扣。方钻杆下端至钻头的所 有连接丝扣均为右旋转扣(正扣),在方钻杆带 动钻柱旋转时,丝扣越上越紧。为减轻方钻杆 下部接头丝扣(经常拆卸部位)的磨损,常在该 部位装保护接头。加上两端方保接头,全长 14~15米。
钻井工程
复习旧课:1、钻头的类型 2、金刚石钻头与 PDC钻头的 组成及区别; 3、 钻头的工作原理。
导入新课:钻头是破碎岩石的主要工具,需 要一定的钻压和转速,钻压和转速是由谁 产生和传递的呢?
第二章 钻柱
一、钻柱的作用与组成 二、钻柱的工作 状态与受力分析 三、钻柱设计
四、本章需要10学时
第二章 钻 柱 §2-1 钻柱的作用与组成
❖ (2)公转。
❖ 钻柱像一个刚体,围绕着井眼轴线旋转并沿着井壁滑动。钻 柱公转时,不受交变弯曲应力的作用,但产生不均匀的单向 磨损(偏磨),从而加快了钻柱的磨损和破坏。
第二章 钻 柱 §2-1 钻柱工作状态及受力分析
(3)公转与自转的结合 钻柱围绕井眼轴线旋转,同时围绕自身轴线转动,即
不是沿着井壁滑动而是滚动。在这种情况下,钻柱磨损均匀 ,但受交变应力的作用,循环次数比自转时低得多。 比较简单。 (4) 纵向振动—钻头振动引起,产生交变应力。
一、钻柱的作用
概念:钻柱是钻头以上,水龙头以下各部分的管柱 的总称。它包括方钻杆、钻杆、钻挺、 各种接头、及 稳定器等井下工具。 (一)、钻柱在钻井过程中的主要作用
1、为钻井液由井口流向钻头提供通道; 2、给钻头施加适当的压力(钻压),使钻头的工作刃 不断吃入岩石; 3、把地面动力(扭矩等)传递给钻头,使钻头不断旋 转破碎岩石; 4、起下钻头; 5、根据钻柱的长度计算井深。
【Selected】石油工程钻井钻柱力学-第二章 钻柱设计与负荷计算1节-遇阻卡受力与卡点深度计算.ppt

mx g k f
101
mx g (1
L s
) 101
0.981Ws
(1
L s
) dx
(2)、再由虎克定律知道 L1:
L1
L1 0
mx g k f 101 Es Ap
dx
积分后得: L1
0.981Ws L12 2 Es
1)、井壁有泥并, 2)、 井内液柱压力大于地层流体孔隙压力。也就是说, 卡点深度处的钻柱除了受上述各种载荷外,还受压差作用 于钻柱横向(径向)压力,大小与卡点深度、钻柱与井壁 接触面积、井斜角等因素有关。
图(2-1a)给出了出现压差卡钻的原理示意图。由图可以 推导出发生压压差卡钻的压差大小:方法如下:
石油工程钻井钻柱力学
第二章 遇阻卡受力与卡点深度
1
第一节、钻柱遇阻卡受力与伸长量计算
一、钻柱遇阻卡受力分析与卡点深度计算
1)、钻柱(杆)伸长量计算
在钻井起、下钻,接单根时,整个 钻柱是悬挂在转盘上的,将定量的原 油打到环空卡点以上一定位置,采用 强行提拉的办法容易造成超载、损坏 备,所以应尽量避免。
(2)、砸用Q = 10 - 20 (吨)的拉力上提,记下标记 2、3、。。。;
(3)、由两次测量拉力差可确定
上提力 FT。
F1
2)、卡点深度计算方法
(1)、由虎克定律
1
F2
F3
1
1
L1
2
L
L
2
3
L FT Lp 或
Ap Es
Lp
Ap
Es FT
L
1 105
(卡点深度), m;
第二节 钻柱

第二节钻柱一、钻柱的作用与组成二、钻柱的工作状态与受力分析三、钻柱设计一、钻柱的组成与作用(一)钻柱的组成钻柱(Drilling String)是水龙头以下、钻头以上钢管柱的总称。
它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。
(一)钻柱组成(一)钻柱的组成钻柱是钻头以上,水龙头以下部分的钢管柱的总称.它包括方钻杆、钻杆、钻挺、各种接头(Joint)及稳定器等井下工具。
(二)钻柱的作用(见动画)(1)提供钻井液流动通道;(2)给钻头提供钻压;(3)传递扭矩;(4)起下钻头;(5)计量井深;(6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况);(7)进行其它特殊作业(取芯、挤水泥、打捞等);(8)钻杆测试(Drill-Stem Testing),又称中途测试。
1. 钻杆(1)作用:传递扭矩和输送钻井液,延长钻柱。
(2)结构:管体+接头,由无缝钢管制成。
1. 钻杆(3)连接方式及现状:a.细丝扣连接,对应钻杆为有细扣钻杆。
b.对焊连接,对应钻杆为对焊钻杆。
1. 钻杆(4)管体两端加厚方式:常用的加厚形式有内加厚(a)、外加厚(b)、内外加厚(c)三种.(a) (b) (c)(5)规范壁厚:9 ~11mm 外径:长度:根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类:"21,"21 ,"21,"87 ,835139.70 ,500.127 430.1144101.60390.88 273.00 230.60第一类 5.486~6.706米(18~22英尺);第二类8.230~9.144米(27~30英尺); 第三类11.582~13.716米(38~45英尺)。
常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12(6)钢级与强度钻 杆 钢 级物 理 性 能D E95(X)105(G)135(S)MPa379.21517.11655.00723.95930.70最小屈服强度lb/in2550007500095000105000135000 MPa586.05723.95861.85930.791137.64最大屈服强度lb/in285000105000125000135000165000 MPa655.00689.48723.95792.90999.74最小抗拉强度lb/in295000100000105000115000145000钢级:钻杆钢材等级,由钻杆最小屈服强度决定。
钻柱工作状态及受力分析

钻柱工作状态及受力分析一、钻柱的工作状态在钻井过程中,钻柱主要是在起下钻和正常钻进这两种条件下工作。
在起下钻时,整个钻柱被悬挂起来,在自重力的作用下,钻柱处于受拉伸的直线稳定状态。
实际上,井眼并非是完全竖直的,钻柱将随井眼倾斜和弯曲。
在正常钻进时,部分钻柱(主要是钻铤)的重力作为钻压施加在钻头上,使得上部钻柱受拉伸而下部钻柱受压缩。
在钻压小和直井条大钻压,则会出现钻柱的第一次弯曲或更多次弯曲(图1)。
目前,旋转钻井所用钻压一般都超过了常用钻铤的临界压力值,如果不采取措施,下部钻柱将不可避免地发生弯曲。
在转盘钻井中,整个钻柱处于不停旋转的状态,作用在钻柱上的力,除拉力和压力外,还有由于旋转产生的离心力。
离心力的作用有可能加剧下部钻柱的弯曲变形。
钻柱上部的受拉伸部分,由于离心力的作用也可能呈现弯曲状态。
在钻进过程中,通过钻柱将转盘扭矩传送给钻头。
在扭矩的作用下,钻柱不可能呈平面弯曲状态,而是呈空间螺旋形弯曲状态。
根据井下钻柱的实际磨损情况和工作情况来分析,钻柱在井眼内的旋转运动形式可能是自转,钻柱像一根柔性轴,围绕自身轴线旋转;也可能是公转,钻柱像一个刚体,围绕着井眼轴线旋转并沿着井壁滑动;或者是公转与自转的结合及整个钻柱或部分钻柱做无规则的旋转摆动。
从理论上讲,如果钻柱的刚度在各个方向上是均匀一致的,那么钻柱是哪种运动形式取决于外界阻力(如钻井液阻力、井壁摩擦力等)的大小,但总以消耗能量最小的运动形式出现。
因此,一般认为弯曲钻柱旋转的主要形式是自转,但也可能产生公转或两种运动形式的结合,既有自转,也有公转。
在钻柱自转的情况下,离心力的总和等于零,对钻柱弯曲没有影响。
这样,钻柱弯曲就可以简化成不旋转钻柱弯曲的问题。
在井下动力钻井时,钻头破碎岩石的旋转扭矩来自井下动力钻具,其上部钻柱一般是不旋转的,故不存在离心力的作用。
另外,可用水力荷载给钻头加压,这就使得钻柱受力情况变得比较简单。
二、钻柱的受力分析钻柱在井下受到多种荷载(轴向拉力及压力、扭矩、弯曲力矩)作用,在不同的工作状态下,不同部位的钻柱的受力的情况是不同的。
【钻井工程】第五章 钻柱及钻具组合设计

(3)钻柱由于旋转产生的离心力。
① 离心力的作用加剧下部钻柱的弯曲,使弯曲半波长度缩 短。
② 钻柱轴线呈变节距的空间螺旋弯曲曲线形状。
6
5.1钻柱的工作状态及受力分析
5.1.1钻柱的工作状态
(4)钻柱旋转运动4种形式 ① 钻柱围绕自身弯曲轴线旋动; ② 钻柱围绕井眼轴线旋转并沿着井壁滑动; ③ 钻柱围绕井眼轴线旋转,沿着井壁反向滚动; ④ 整个钻柱或部分钻柱作无规则的旋转摆动。
1258.82 267.39 266.42
165
0.4
1214.30
0.49
36.91
165
71.4
165
71.4
214
71.4
165
71.4
214
71.4
165
71.4
165
83.0
214
71.4
215. 9
9.0
1214.30
5.2
1214.30
1.5
1214.30
9.0
1214.30
1.5
1214.30
循环液体时的水力载荷所形成
t
1 F
K
d
q
n1 i1
Li
K
i
qc Lc
Qi
K
a
K
f
Qh
10
4
Qh Pt Pb F0 104
24
5.2钻井过程中各种应力的计算
5.2.1钻柱轴向应力的计算
2)钻柱下部压应力的计算
(1)在钻柱空悬或小钻压钻柱仍能保持直线状态的情况下, 泥浆浮力是集中作用在钻柱最下部端面上,此时钻柱最 下端所受的压应力为
钻柱分析

钻柱一、钻柱的作用与组成二、钻柱的工作状态与受力分析三、钻柱设计一、钻柱的组成与功用(一)钻柱的组成钻柱(Drilling String)是钻头以上,水龙头以下部分的钢管柱的总称.它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。
(二)钻柱的功用(1)提供钻井液流动通道;(2)给钻头提供钻压;(3)传递扭矩;(4)起下钻头;(5)计量井深。
(6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况);(7)进行其它特殊作业(取芯、挤水泥、打捞等);(8)钻杆测试 ( Drill-Stem Testing),又称中途测试。
1. 钻杆(1)作用:传递扭矩和输送钻井液,延长钻柱。
(2)结构:管体+接头(3)规范:壁厚:9 ~ 11mm外径:长度:根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类:第一类 5.486~ 6.706米(18~22英尺);第二类 8.230~ 9.144米(27~30英尺);第三类 11.582~13.716米(38~45英尺)。
常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12•丝扣连接条件:尺寸相等,丝扣类型相同,公母扣相匹配。
•钻杆接头特点:壁厚较大,外径较大,强度较高。
•钻杆接头类型:内平(IF)、贯眼(FH)、正规(REG); NC系列•内平式:主要用于外加厚钻杆。
特点是钻杆通体内径相同,钻井液流动阻力小;但外径较大,容易磨损。
贯眼式:主要用于内加厚钻杆。
其特点是钻杆有两个内径,钻井液流动阻力大于内平式,但其外径小于内平式。
正规式:主要用于内加厚钻杆及钻头、打捞工具。
其特点是接头内径<加厚处内径<管体内径,钻井液流动阻力大,但外径最小,强度较大。
三种类型接头均采用V型螺纹,但扣型、扣距、锥度及尺寸等都有很大的差别。