全等三角形中的截长补短-学生版

合集下载

全等三角形-截长补短法

全等三角形-截长补短法

全等三角形-截长补短法全等三角形截长补短法在初中数学的几何学习中,全等三角形是一个重要的知识点,而解决全等三角形相关问题时,截长补短法是一种非常实用且巧妙的方法。

首先,咱们来聊聊什么是截长补短法。

简单来说,截长补短就是通过在图形中截取或者延长某条线段,使得图形中的线段关系发生变化,从而构造出全等三角形,帮助我们解决问题。

比如说,有一个三角形 ABC,其中∠B = 2∠C,要证明 AB = AC + CD。

这时候,我们就可以考虑使用截长补短法。

如果使用截长的思路,就在 AB 上截取 AE = AC,然后连接 DE。

这样一来,因为 AE =AC,再加上公共边 AD,以及已知的∠CAD =∠EAD,就可以证明△ACD 和△AED 全等。

然后通过一系列的角度推导,就能得出结论。

要是用补短的方法呢,就是延长 AC 至 E,使 CE = CD,连接 DE。

通过角度关系证明∠E =∠CDE,进而得出∠B =∠BDE,再证明△ABD 和△AED 全等。

接下来,咱们通过几个具体的例子来更深入地理解截长补短法。

例 1:在△ABC 中,AB > AC,AD 平分∠BAC,P 为 AD 上一点。

求证:AB AC > PB PC。

我们来用截长的方法解决。

在 AB 上截取 AE = AC,连接 PE。

因为 AD 平分∠BAC,所以∠BAD =∠CAD。

又因为 AE = AC,AP 是公共边,所以△APE ≌△APC。

那么 PC = PE。

在△PBE 中,根据三角形两边之差小于第三边,有 PB PE < BE。

而 BE = AB AE = AB AC,所以 AB AC > PB PC。

例 2:已知在正方形 ABCD 中,∠MAN = 45°,∠MAN 绕点 A 顺时针旋转,它的两边分别交 CB、DC 于点 M、N。

求证:BM + DN =MN。

这道题我们用补短的方法。

延长 CB 至 E,使 BE = DN,连接 AE。

模型 全等三角形中的常见五种基本模型(学生版)

模型 全等三角形中的常见五种基本模型(学生版)

模型介绍全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、截长补短模型①截长:在较长的线段上截取另外两条较短的线段。

如图所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS),则MC=FC=FG,∠BCM=∠DCF,可得△MCF为等腰直角三角形,又可证∠CFE=45°,∠CFG=90°,∠CFG=∠MCF,FG∥CM,可得四边形CGFM为平行四边形,则CG=MF,于是BF=BM+MF=DF+CG.②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。

如图所示,延长GC至N,使CN=DF,易证△CDF≌△BCN(SAS),可得CF=FG=BN,∠DFC=∠BNC=135°,又知∠FGC=45°,可证BN∥FG,于是四边形BFGN为平行四边形,得BF=NG,所以BF=NG=NC+CG=DF+CG.模型二、平移全等模型模型三、对称全等模型模型四、旋转全等模型模型五、手拉手全等模型例题精讲模型一、截长补短模型【例1】.如图,AD⊥BC,AB+BD=DC,∠B=54°,则∠C=.变式训练【变式1-1】.如图,点P是△ABC三个内角的角平分线的交点,连接AP、BP、CP,∠ACB=60°,且CA+AP=BC,则∠CAB的度数为()A.60°B.70°C.80°D.90°【变式1-2】.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【变式1-3】.如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC于F.(1)求△CDE的面积;(2)证明:DF+CF=EF.模型二、平移全等模型【例2】.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.变式训练【变式2-1】.如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD 沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.【变式2-2】.如图,AD,BF O,AB∥DF,AB=DF,点E与点C在BF上,且BE=CF.(1)求证:△ABC≌△DFE;(2)求证:点O为BF的中点.【变式2-3】.如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,∠ADC=60°,求CD的长.模型三、对称全等模型【例3】.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C 在同一条直线上.(1)求∠PAD的度数;(2)求证:P是线段CD的中点.变式训练【变式3-1】.如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.求证:AM=AN.【变式3-2】.如图,已知点E、F分别是正方形ABCD中边AB、BC上的点,且AB=12,AE=6,将正方形分别沿DE、DF向内折叠,此时DA与DC重合为DG,求CF的长度.【变式3-3】.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.模型四、旋转全等模型【例4】.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.变式训练【变式4-1】.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,求证:BC=BD﹣BE.【变式4-2】.如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是3+4.模型五、手拉手全等模型【例5】.如图,△ABC与△ADE是以点A为公共顶点的两个三角形,且AD=AE,AB=AC,∠DAE=∠CAB=90°,且线段BD、CE交于F.(1)求证:△AEC≌△ADB.(2)猜想CE与DB之间的关系,并说明理由.变式训练【变式5-1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③DE=DP;④∠AOB=60°.恒成立的结论有几个()A.1个B.2个C.3个D.4个【变式5-2】.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【变式5-3】.(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD.(2)若将△DEC绕点C旋转至图2、图3、图4情形时,其余条件不变,BE与AD还相等吗?为什么?实战演练1.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为()A.120︒B.135︒C.115︒D.125︒2.如图,在△AOB 和△COD 中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD 交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM 平分∠AOD,④MO 平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.13.如图,在△ABC 中,∠BAC=30°,且AB=AC,P 是△ABC 内一点,若AP+BP+CP 的最小值为4,则BC 2=.4.正方形ABCD中,AB=6,点E在边CD上,CE=2DE,将△ADE沿AE折叠至△AFE,延长EF交BC于点G,连接AG,=6;③EG=DE+BG;④BG=GC.其中正确的有(填序号).CF.下列结论:①△ABG≌△AFG;②S△FGC5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在D′处.(1)求证:AF=CF(2)求AF的长度.6.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)求证:△ACD≌△BCE;(2)若AB=3cm,则BE=cm.(3)BE与AD有何位置关系?请说明理由.7.如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.(1)求证:AE=AF;(2)求证:CD=2BE+DE.8.如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF.(1)若设BE=a,CF=b,满足+|b﹣5|=+,求BE及CF的长.(2)求证:BE2+CF2=EF2.(3)在(1)的条件下,求△DEF的面积.9.如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.(1)线段AE与DB的数量关系为;请直接写出∠APD=;(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;(3)在(2)的条件下求证:∠APC=∠BPC.10.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?分析:把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C'处,即AC=AC',据以上操作,易证明△ACD≌△AC'D,所以∠AC'D=∠C,又因为∠AC'D>∠B,所以∠C>∠B.感悟与应用:(1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,①求证:∠B+∠D=180°;②求AB的长.11.如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长.(1)李明同学作了如图乙的辅助线,将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP',可说明△APP'是直角三角形从而问题得到解决.请你说明其中理由并完成问题解答.(2)如图丙,在正方形ABCD内有一点P,且AP=,BP=,PC=1:类比第一小题的方法求∠BPC的度数,并直接写出正方形ABCD的面积.12.在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为.(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=12,求CF的最大值.。

人教版数学八年级上册第12章全等三角形专题课截长补短法优秀教学案例

人教版数学八年级上册第12章全等三角形专题课截长补短法优秀教学案例
在本节课的教学过程中,我注重引导学生主动参与,激发他们的学习兴趣。通过截长补短法这一专题的教学,学生不仅掌握了全等三角形的性质和判定方法,还培养了他们的数学思维能力和解决问题的能力。同时,我在教学中注重培养学生的团队协作能力和交流能力,使他们能够在合作中共同成长。总之,本节课的教学案例旨在为学生提供一个实践性强、富有挑战性的学习平台,使他们能够更好地理解和应用全等三角形的知识。
3.引导学生运用数学符号和语言,表达和阐述解题过程和思路。例如,要求学生用数学语言描述全等三角形的判定方法,并解释其原理。
4.鼓励学生积极思考和解决问题,培养他们的自主学习能力和问题解决能力。例如,在解决问题的过程中,引导学生独立思考,寻找解决方案,并进行验证。
(三)小组合作
1.组织学生进行小组讨论和实践活动,培养他们的团队协作能力和交流能力。例如,将学生分成小组,让他们共同解决一个实际问题,要求学生在讨论中交流思路、分享解题方法。
在全等三角形专题课中,学生已经学习了全等三角形的定义、性质和判定方法。通过对全等三角形的性质和判定方法的学习,学生已经能够熟练地运用SSS、SAS、ASA、AAS四种判定方法判断两个三角形是否全等。然而,在解决实际问题时,学生往往需要灵活运用多种方法,而截长补短法作为一种特殊的方法,可以帮助学生更加简洁地解决问题。
3.小组合作培养团队协作能力:组织学生进行小组讨论和实践活动,培养他们的团队协作能力和交流能力。通过小组合作,学生能够在合作中发现问题、解决问题,并培养批判性思维和自我反思能力。
4.反思与评价提高自我认知:教师引导学生对自己的学习过程进行反思,总结经验和教训。通过互评和自我评价,学生能够培养批判性思维和自我反思能力,提高自我认知。
2.引导学生通过观察、分析和归纳,发现全等三角形的性质和判定方法。例如,通过展示两个全等三角形的图形,让学生观察并分析它们的性质,引导学生归纳出全等三角形的判定方法。

专题01 截长补短模型证明问题(学生版)

专题01 截长补短模型证明问题(学生版)

专题01 截长补短模型证明问题模型:截长补短如图①,若证明线段AB、CD、EF之间存在EF=AB+CD,可以考虑截长补短法截长法:如图②,在EF上截取EG=AB,再证明GF=CD即可补短法:如图③,延长AB至H点,使BH=CD,再证明AH=EF即可模型分析截长补短的方法适用于求证线段的和差倍分关系. 截长,指在长线端中截取一段等于已知的线段;补短,指将一条短线端延长,延长部分等于已知线段. 该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程.模型实例例题1 如图,已知在△ABC中,∠C=2∠B,∠1=∠2 .求证:AB=AC+CD.例题2 如图,O D平分∠A O B,DC△O A于点C,∠A=∠GBD . 求证:A O+B O=2C O .课堂巩固提升1. 如图,在△ABC中,∠BAC=600,AD是∠BAC的平分线,且AC=AB+BD.求∠ABC的度数 .2. 在△ABC中,∠ABC=600,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD .3. 如图,∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB .求证:AB+CD=BC .4.如图,在△ABC中,∠ABC=900,AD平分∠BAC交BC于D,∠C=300,BE△AD于点E.求证:AC-AB =2BE .5. 如图,R t△ACB中,A=BC,AD平分∠BAC交BC于点D,CE△AD交AD于点F,交AB于点E.求证:AD =2DF+CE.6. 如图,五边形ABCDE中,AB=AE,BC+DE=CD,∠B+∠E=1800.求证:AD平分∠CDE【基础训练】1、如图,AC平分∠BAD,CE∠AB于点E,∠B+∠D=180°,求证:AE=AD+BE.2、如图,已知在∠ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD3、如图,在五边形ABCDE中,AB=AE,BC+DE=CD,∠B+∠E=180°,求证:AD平分∠CDE.4、已知四边形ABCD中,∠ABC+∠ADC=180°,AB=BC,如图,点P,Q分别在线段AD,DC上,满足PQ=AP+CQ,∠ADC求证:∠PBQ=90°-125、如图,在∠ABC中,∠B=60°,∠ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.6、如图所示,AB∠CD,BE,CE分别是∠ABC,∠BCD的平分线,点E在AD上,求证:BC=AB+CD.7、四边形ABCD中,BD>AB,AD=DC,DE∠BC,BD平分∠ABC(1)证明:∠BAD+∠BCD=180°(2)DE=3,BE=6,求四边形ABCD的面积.8、已知:在∠ABC中,AB=CD-BD,求证:∠B=2∠C.9、如图,∠ABC中,BD∠AC于点D,CE∠AB于点E,且BD,CE交于点F,点G是线段CD上一点,连接AF,GF,若AF=GF,BD=CD.求∠CAF的度数判断线段FG与BC的位置关系,并说明理由.【提升训练】1.如图,在△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD,CE交于点O,试判断BE,CD,BC的数量关系,并加以证明.2.如图,AD//BC,DC⊥AD,AE平分∠BAD,E是DC的中点.问:AD,BC,AB之间有何关系?并说明理由.3.如图,已知DE=AE,点E在BC上,AE∠DE,AB∠BC,DC∠BC,请问线段AB,CD和线段BC有何大小关系?并说明理由.4.如图,AB∥CD,BE,CE分别是∠ABC和∠BCD的平分线,点E在AD上.求证:BC=AB+CD.5.如图,在Rt∠ABC中,∠C=90°,BC=AC,∠B=∠CAB=45°,AD平分∠BAC交BC于D,求证:AB=AC+CD.6.如图,在∠ABC中,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB,AD,CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.9、如图,△ABC中,BD⊥AC于点D,CE⊥AB于点E,且BD,CE交于点F,点G是线段CD上一点,连接AF,GF,若AF=GF,BD=CD.(1)求∠CAF的度数(2)判断线段FG与BC的位置关系,并说明理由.。

全等三角形之截长补短法

全等三角形之截长补短法

全等三角形模型之截长补短法若遇到证明线段的和差倍分关系时,通常考虑“截长补短法“”,构造全等三角形.(1)截长法:在较长线段中截取一段等于另两条较短线段中的一条,然后证明剩下部分等于另一条.即证明“短1+短2=长”,“截长法”是在“长”线段上截取一条和“短1”相等长度的线段,再证明剩下的部分和“短2”等长.(2)补短法:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段.即证明“短1+短2=长”,“补短法”是将“短1”线段延长,延长的长度等于“短2”的长度,再证明新线段与“长”线段长度相等.【典型例题】1.【模型分析】当题目中出现线段的和差关系时,考虑用截长补短法,该类题目中常出现等腰三角形、角平分线等关键词句,采用截长补短法进行证明.问题:如图,在△ABC中,AD平分∠BAC交BC于点D,且∠B=2∠C,求证:AB+BD=AC.截长法:在AC上截取AE=AB,连接DE,证明CE=BD即可.补短法:延长AB至点F,使AF=AC,连接DF,证明BF=BD即可.请结合【模型分析】证明结论.求证:AB+BD=AC.【截长法】【补短法】2.已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AB+CD.3.课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC.求证:∠ABC=2∠ACB.小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明结论.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=BD,连接DF.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD =AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题;(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.4.阅读:探究线段的和差倍分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE(2)如图2,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.【小试牛刀】1.如图,△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC.(用两种方法)2.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为.3.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.4.已知:如图所示,四边形ABCD中,AD∥BC,O是CD上一点,且AO平分∠BAD,BO 平分∠ABC.(1)求证:AO⊥BO;(2)若AO=3,BO=4,求四边形ABCD的面积.5.如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是.。

全等三角形之截长补短法

全等三角形之截长补短法

例题1如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.考点:全等三角形的判定与性质.专题:证明题.分析:利用已知条件,求得∠B=∠E,∠2=∠1,AD=AD,得出△ABD≌△AED(AAS),∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.解答:证法一:如答图所示,延长AC,到E使CE=CD,连接DE.∵∠ACB=90°,AC=BC,CE=CD,∴∠B=∠CAB=45°,∠E=∠CDE=45°,∴∠B=∠E.∵AD平分∠BAC,∴∠1=∠2在△ABD和△AED中,∠B=∠E,∠2=∠1,AD=AD,∴△ABD≌△AED(AAS).∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.证法二:如答图所示,在AB上截取AE=AC,连接DE,∵AD平分∠BAC,∴∠1=∠2.在△ACD和△AED中,AC=AE,∠1=∠2,AD=AD,∴△ACD≌△AED(SAS).∴∠AED=∠C=90,CD=ED,又∵AC=BC,∴∠B=45°.∴∠EDB=∠B=45°.∴DE=BE,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD.点评:本题考查了全等三角形的判定和性质;通过SAS的条件证明三角形全等,利用三角形全等得出的结论来求得三角形各边之间的关系.例题2图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).考点:全等三角形的判定与性质;三角形三边关系.专题:计算题.分析:可延长AD到E,使AD=DE,连BE,则△ACD≌△EBD得BE=AC,进而在△ABE中利用三角形三边关系,证之.解答:证明:如图延长AD至E,使AD=DE,连接BE.∵BD=DC,AD=DE,∠ADC=∠EDB∴△ACD≌△EBD∴AC=BE在△ABE中,AE<AB+BE,即2AD<AB+AC∴AD<(AB+AC)点评:本题主要考查全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.考点:旋转的性质;全等三角形的判定与性质;等腰直角三角形.专题:证明题.分析:(1)由已知AC=BC,∠ADC=∠CEB=90°,利用互余关系可证∠DAC=∠ECB,可证△ACD≌△CBE,得AD=CE,CD=BE,故AD+BE=CE+CD=DE;(2)此时,仍有△ACD≌△CBE,AD=CE,CD=BE,利用线段的和差关系得DE=AD-BE.解答:证明:(1)∵∠DAC+∠ACD=90°,∠ACD+∠ECB=90°,∴∠DAC=∠ECB,又∵AC=BC,∠ADC=∠CEB=90°,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CE+CD=AD+BE;(2)DE=BE-AD.仿照(1)可证△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.点评:本题考查了用旋转法寻找证明三角形全等的条件,关键是利用全等三角形对应线段相等,将有关线段进如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是20cm.考点:轴对称的性质.分析:根据轴对称的性质可知:EP=EM,PF=FN,所以线段MN的长=△PEF的周长.解答:解:根据题意,EP=EM,PF=FN,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∴MN=20cm.点评:主要考查了轴对称的性质:对称轴上的任何一点到两个对应点之间的距离相等.(1)如图所示,已知△ABC中,∠ABC、∠ACB的平分线相交于点O.试说明∠BOC=90°+$\frac{1}{2}$∠A;(2)如图所示,在△ABC中,BD、CD分别是∠ABC、∠ACB的外角平分线.试说明∠D=90°-$\frac{1}{2}$∠A;(3)如图所示,已知BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,且与BD交于点D,试说考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:(1)根据三角形角平分线的性质可得,∠BOC+∠OCB=90°-$\frac{1}{2}$∠A,根据三角形内角和定理可得∠BOC=90°+$\frac{1}{2}$∠A;(2)根据三角形外角平分线的性质可得∠BCD=$\frac{1}{2}$(∠A+∠ABC)、∠DBC=$\frac{1}{2}$(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°-$\frac{1}{2}$∠A;(3)根据BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,可知,∠A=180°-∠1-∠3,∠D=180°-∠4=∠5=180°-∠3-$\frac{1}{2}$(∠A+2∠1),两式联立可得2∠D=∠A.解答:解:(1)∵在△ABC中,OB、OC分别是∠ABC、∠ACB的平分线,∠A为x°∴∠BOC+∠OCB=$\frac{1}{2}$(180°-∠A)=$\frac{1}{2}$×(180°-x°)=90°-$\frac{1}{2}$∠A 故∠BOC=180°-(90°-$\frac{1}{2}$∠A)=90°+$\frac{1}{2}$∠A;(2)∵BD、CD为△ABC两外角∠DBC、∠BCE的平分线∠A为x°∴∠BCD=$\frac{1}{2}$(∠A+∠ABC)、∠DBC=$\frac{1}{2}$(∠A+∠ACB)由三角形内角和定理得,∠BDC=180°-∠BCD-∠DBC=180°-$\frac{1}{2}$[∠A+(∠A+∠ABC+∠ACB)]=180°-$\frac{1}{2}$(∠A+180°)=90°-$\frac{1}{2}$∠A;(3)如图:∵BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线∴∠1=∠2,∠5=$\frac{1}{2}$(∠A+2∠1),∠3=∠4,在△ABE中,∠A=180°-∠1-∠3----①在△CDE中,∠D=180°-∠4-∠5=180°-∠3-$\frac{1}{2}$(∠A+2∠1),即2∠D=360°-2∠3-∠A-2∠把①代入②得2∠D=∠A.点评:此类题目比较简单,考查的是三角形内角与外角的关系,角平分线的性质,三角形内角和定理,属中学阶段的常规题.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有4处.考点:三角形的内切圆与内心;直线与圆的位置关系.专题:应用题.分析:依题意可作四个圆分别与三条直线相切,其中三个在三角形外部,一个在三角形内部,其圆心就是可供选择的地址.解答:解:可作四个圆分别与三条直线相切,其中三个在三角形外部,一个在三角形内部.故填4.点评:本题涉及圆的相关知识,难度中等.如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.考点:等腰三角形的性质;三角形的面积.专题:证明题.分析:猜想:PD、PE、CF之间的关系为PD=PE+CF.根据∵S△PAB= AB•PD,S△PAC= AC•PE,S△CAB= AB•CF,S△PAC= AB•PE,AB•PD= AB•CF+ AB•PE,即可求证.解答:猜想:PD、PE、CF之间的关系为PD=PE+CF.证明:连接AP,则S△PAC+S△CAB=S△PAB,∵S△PAB= AB•PD,S△PAC= AC•PE,S△CAB= AB•CF,又∵AB=AC,∴S△PAC= AB•PE,∴AB•PD= AB•CF+ AB•PE,即AB(PE+CF)= AB•PD,∴PD=PE+PF.点评:本题考查了等腰三角形的性质及三角形的面积,难度适中,关键是先猜想出PD、PE、CF之间的关系为PD=PE+CF再证明.如图,△ABC是等边三角形,BD是AC边上的中线,延长BC到E使CE=CD,试判断△BDE的形状.考点:等腰三角形的判定;等边三角形的性质.分析:因为△ABC是等边三角形,所以∠ABC=∠ACB=60°,BD是AC边上的中线,则∠DBC=30°,再由题中条件求出∠E=30°,即可判断△BDE的形状.解答:证明:∵△ABC是等边三角形∴∠ABC=∠ACB=60°∵AD=CD∴∠DBC= ∠ABC=30°∵CE=CD∴∠CDE=∠E∵∠ACB=∠CDE+∠E∴∠E=30°∴∠DBE=∠E∴BD=DE∴△BDE是等腰三角形.点评:本题考查了等腰三角形的判定与性质及等边三角形的性质;此题把等边三角形的性质和等腰三角形的判定结合求解.考查了学生综合运用数学知识的能力,得到∠E=30°是正确解答本题的关键.(2007•吉林)某家电商场经销A,B,C三种品牌的彩电,五月份共获利48 000元.已知A种品牌彩电每台可获利100元,B种品牌彩电每台可获利144元,C种品牌彩电每台可获利360元.请你根据相关信息,补全彩电销售台数的条形图和所获利润的百分数的扇形图.考点:扇形统计图;条形统计图.专题:图表型.分析:根据获利总数与扇形图,可计算出B型彩电的获利,进而求出B型彩电的数目;接着可求出C型彩电的获利和台数;利用A、C型的获利和获利总数分别求出它们所获利润的百分数,进而补全彩电销售台数的条形图和所获利润的百分数的扇形图即可.解答:解:根据题意可得:五月份共获利48000元,B种品牌彩电获利占30%,即获利48000×30%=14400元,故B种品牌彩电的台数为14400÷144=100台,则C种品牌彩的台数为(48000-120×100-14400)÷360=60台;据此可补全条形图.(4分)五月份共卖出(120+100+60)=280台,其中A种品牌彩电120台,占获利的25%,B种品牌彩100台占获利的30%,C种品牌彩电60台,占获利的45%,据此可补全扇形图.(6分)说明:条形图中每画对1个条形图得(2分).扇形图中每填对1个扇形得(1分).扇形图中若标成表示A,C计算的百分数正确,填图不正确,扣(1).如另画扇形图正确也得分.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,能直接反映部分占总体的百分比大小.如图所示,已知EA⊥AB于点A,CD⊥DF于点D,AB∥CD,请判断EA与DF的位置关系,并说明理由.考点:平行线的判定;垂线;平行线的性质.专题:探究型.分析:首先由AB∥CD,根据两直线平行,内错角相等,得到∠BAD=∠ADC,再根据垂直的定义得到∠EAB=∠CDF=90°,则∠EAB+∠BAD=∠CDF+∠ADC,即∠EAD=∠ADF,满足关于EA∥DF的条件:内错角相等,两直线平行.解答:解:EA∥DF.理由如下:∵EA⊥AB于点A,CD⊥DF于点D(已知),∴∠EAB=90°,∠CDF=90°(垂直定义).∵AB∥CD(已知),∴∠BAD=∠ADC(两直线平行,内错角相等),∴∠EAB+∠BAD=∠CDF+∠ADC,即∠EAD=∠ADF,∴EA∥DF(内错角相等,两直线平行).点评:本题考查了平行线的性质,垂直的定义以及平行线的判定定理.(2002•河南)如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= 54度.考点:平行线的性质;角平分线的定义.专题:计算题.分析:两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.解答:解:∵AB∥CD,∴∠BEF=180°-∠1=180°-72°=108°,∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG= ∠BEF= ×108°=54°,故∠2=∠BEG=54°.点评:本题应用的知识点为:两直线平行,内错角相等;同旁内角互补.(2006•大连)在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是.(1)试写出y与x的函数关系式.(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为,求x和y的值.考点:概率公式;二元一次方程组的应用.分析:(1)根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立.化简可得y与x的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=25..解答:解:(1)根据题意得:,(3分)整理,得8x=3x+3y,(4分)∴5x=3y,∴;(5分)(2)解法一:根据题意,得,(7分)整理,得2x+20=x+y+10,∴y=x+10,(8分)∴5x=3(x+10),∴x=15,y=25.解法二:(2)根据题意,可得,整理得,解得.(8分)点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)= .如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据等腰三角形三线合一的性质可得CH平分∠ACB,再证明△ACE和△BCF全等,然后根据全等三角形对应角相等和全等三角形对应边相等即可证明.解答:(1)证明:在等腰△ABC中,∵CH是底边上的高线,∴∠ACH=∠BCH,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴∠CAE=∠CBF(全等三角形对应角相等);(2)∵△ACE≌△BCF(SAS),∴AE=BF(全等三角形对应边相等).点评:本题主要考查全等三角形的判定和全等三角形的性质及等腰三角形的性质;熟练掌握定理和性如图,在等腰△ABC中,AB=AC,∠BAC=120°,AD为BC边上的高,过点D作DE∥AB,交AC于点E,图中除△ABC外,还有等腰三角形吗?若有,请指出,并说明理由.考点:等腰三角形的判定;等边三角形的判定.专题:开放型.分析:简单的等腰三角形的判定问题,利用平行以及角之间的关系进行判断.解答:解:△ADE是等边三角形;△DEC为等腰三角形.理由:因为AB=AC,∠BAC=120°,所以∠B=∠C=30°.因为DE∥AB,所以∠EDC=∠B=30°.所以△DEC为等腰三角形.因为AD⊥BC,所以∠DAE= ∠BAC= ×120°=60°.因为∠ADC=90°,所以∠ADE=60°.所以△ADE是等边三角形.如图,△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,BD=BE,则∠AED是105度.考点:等腰三角形的性质;三角形内角和定理.分析:由已知条件易得∠B=30°,△BED中根据等腰三角形的性质可得∠BED的度数,求其补角可得答案.解答:解∵△ABC中,AB=AC,∠BAC=120°∴∠B=∠C= (180°-∠BAC)= (180°-120°)=30°∵BD=BE∴∠BED=∠BDE= (180°-∠B)= (180°-30°)=75°∴∠AED=180°-75°=105°.故填105.点评:本题考查的是三角形内角和定理及等腰三角形的性质;做题时两次运用了等边对等角的性质及三角形内角和定理,要熟练掌握并能灵活应用这些知识.。

全等三角形-截长补短法

全等三角形-截长补短法

“截长补短”的思想在几何证明中的运用【学习目标】(30秒)用“截长补短法”解决线段的和、差问题。

【重、难点】(30秒)用“截长补短法”解决线段的和、差问题。

【操作思考】(2 分钟)1、画一画:线段AB=CD+EF线段CD=AB-EF线段 AB线段 CD线段 EF(通过让学生在纸上画出线段的和和差的图形来说明线段的截长补短)导学设计教学重难点用“截长补短法”解决线段的和、差问题。

教具准备三角尺、翻折全等三角形的纸张模型、多媒体课件.导学流程一、导入新课 , 揭示目标 (1 分钟 )线段 AB=10cm线段 CD=6cm线段 EF=4cm语言;画三条线段思考两条线段和与差能否等于第三条线段。

师生对照课件解读学习目标用“截长补短法”解决线段的和、差问题。

【归纳小结】( 2 分钟)截长补短法”:“截长”就是将题中的某条线段截成题中的几条线段之和;“补短”就是将题中某条线段延长(或补上某线段),然后,证明它与题中某条线段相等。

典题解析( 3+4+6 分钟)例 1、如图,在ABC 中, AD 是∠ BAC 的平分线,∠C=2 ∠B. 求证: AB=AC+CD思路点拨:延长AC 到 E,使 CE=CD, 连接 DE.二、归纳小结截长补短法:“ 截长” 就是将题中的某条线段截成题中的几条线段之和;“ 补短”就是将题中某条线段延长(或补上某线段),然后,证明它与题中某条线段相等。

三.典题解析例 1、思路点拨:延长AC 到 E,使ACE=CD, 连接 DE. 或者在 AB 上截取 AG ,使 AG =AC ,连接 DG。

追问 ; 这个图形的基本图形是怎样的图形?请把它画出来。

CDB证明:在AB上取一点E,使AE=AC,连接DE,∵AD 平分∠ BAC∴ ∠ EAD=∠ CADAE=AC ,∠EAD= ∠ CAD AD=AD ;∴△ AED ≌△ ACD ( SAS)∴∠ AED= ∠ C=2∠ BED=CD例 2、已知,如图 1-1 ,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ ABC.展示分配:一、三小组展示,其他小组质疑,提问。

截长补短法全等三角形

截长补短法全等三角形

截长补短法全等三角形全等三角形是指两个三角形的对应边长和对应角度都相等的情况下,它们是完全相等的。

而截长补短法是一种通过截取和补充边长的方法来构造全等三角形的技巧。

在几何学中,截长补短法是一种常用的构造方法,可以用来证明两个三角形全等。

它的基本思想是通过截取和补充边长,使得两个三角形的对应边长和对应角度完全相等,从而达到全等的目的。

为了更好地理解截长补短法,我们可以通过一个具体的例子来说明。

假设我们需要证明两个三角形ABC和DEF全等,其中已知∠A=∠D,AB=DE,BC=EF。

根据截长补短法,我们可以进行如下的构造:1. 在BC的延长线上截取一段长度等于EF的线段,记为BC'。

2. 在AC'上截取一段长度等于DE的线段,记为AC。

通过以上的构造,我们可以得到以下的结论:1. 由于BC'=EF,且BC=EF,所以BC=BC',即三角形ABC和DEF的两条边相等。

2. 由于AC=DE,且∠A=∠D,所以三角形ABC和DEF的两个角相等。

3. 由于AB=DE,所以三角形ABC和DEF的第三条边相等。

根据截长补短法,我们可以得到三角形ABC和DEF全等的结论。

除了上述的例子,截长补短法还可以应用于更复杂的情况。

例如,当我们需要证明两个三角形全等时,已知两个角度相等并且其中一条边长相等,我们可以通过截长补短法来构造第二条边,从而得到全等的结果。

截长补短法在几何学中有着广泛的应用。

它不仅可以用来证明三角形的全等,还可以用来解决各种与全等三角形相关的问题。

通过灵活运用截长补短法,我们可以简化证明过程,提高证明的效率。

截长补短法是一种通过截取和补充边长的方法来构造全等三角形的技巧。

通过灵活运用截长补短法,我们可以简化证明过程,提高证明的效率。

在解决几何问题时,我们可以尝试使用截长补短法,从而更好地理解和应用全等三角形的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九讲
板块
考试要求
A 级要求
B 级要求
C 级要求
全等三角 形的性质 及判

会识别全等三角形
掌握全等三角形的概念、判定和
性质,会用全等三角形的性质和
判定解决简单问题
会运用全等三角形 的
性质和判定解决 有关
问题
全等三角形的性质: 对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等, 对应角的角平分线相等,面积相等.
寻找对应边和对应角,常用到以下方法:
(1) 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2) 全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3) 有公共边的,公共边常是对应边. (4) 有公共角的,公共角常是对应角. (5) 有对顶角的,对顶角常是对应角. (6) 两个全等的不等边三角形中一对最长边 (或最大角)是对应边(或对应角),一对最短边(或
最小角)是对应边(或对应角).
要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:
(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS :三边对应相等的两个三角形全等.
(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.
全等三角形中的截长
补短
全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证
明的过程中,注意有时会添加辅助线.
奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系. 而证明
两条线段或两个角的和、差、倍、分相等是几何证明的基础.
例题精讲
板块一、截长补短
【例1】(06年北京中考题)已知ABC中,A 60°,BD、CE分别平分ABC和.ACB,BD、CE交于点O,试判断BE、CD、BC的数量关系,并加以证明.
【例2】如图,点M为正三角形ABD的边AB所在直线上的任意一点(点B除外),作DMN 60,射线MN与/ DBA外角的平分线交于点N , DM与MN有怎样的数量关
系?
M B
【例3】 如图2-9所示.已知正方形 ABCD 中,M 为CD 的中点,E 为MC 上一点,且/ BAE=2 /
DAM .求证:AE=BC+CE .
【例4】(“希望杯”竞赛试题 )如图,AD 丄AB , CB 丄AB , DM=CM=a , AD=h , CB= k , /
AMD =75° / BMC =45° 贝U AB 的长为 ( )
,
k h ,
A. a
B . k
C.
D. h
2
【例5】 已知:如图, ABCD 是正方形,/ FAD= / FAE.求证:BE+DF=AE.
【例6】 以 ABC 的AB 、AC 为边向三角形外作等边
ABD 、 ACE ,连结 CD 、BE 相交
于点0 .求证:OA 平分 DOE .
B
D
M E
C
D A
E
B
O
C
【例7】(北京市数学竞赛试题,天津市数学竞赛试题)如图所示,ABC是边长为1的正三角形,BDC是顶角为120。

的等腰三角形,以D为顶点作一个60°的MDN,点M、N分别在AB、AC上,求AMN的周长.
【例8】如图所示,ABC是边长为1的正三角形,BDC是顶角为120。

的等腰三角形,以D为顶点作一个60°的MDN,点M、N分别在AB、AC上,求AMN的周长.
【巩固】(全国数学联合竞赛试题)如图所示,在ABC中,AB AC , D是底边BC上的一点,E是线段AD 上的一点,且BED 2 CED BAC,求证BD 2CD .
D
【例 9】 五边形 ABCDE 中,AB=AE , BC+DE=CD ,/ ABC+ / AED=180° 求证:AD 平分 /
CDE
【巩固】(2009浙江湖州)若P 为 ABC 所在平面上一点,且
APB BPC CPA 120 ,
则点P 叫做ABC 的费马点.
⑴若点P 为锐角 ABC 的费马点,且 ABC 60 , PA 3, PC 4,则PB 的值
⑵ 如图,在锐角 ABC 外侧作等边 ACB',连结BB'. 求证:BB'过ABC 的费马点P ,且
BB ' PA PB PC .
板块—、全等与角度
【例10】如图,在 ABC 中, BAC 60°, AD 是 BAC 的平分线,且 AC AB BD ,求
ABC 的度数•
【例11】在等腰 ABC 中,AB AC ,顶角 A 20,在边AB 上取点D ,使AD BC , 求 BDC

B'
A
【例12】(“勤奋杯”数学邀请赛试题 )如图所示,在 ABC 中,AC BC , C 20°,又
M 在 AC 上,N 在 BC 上,且满足 BAN 50°, ABM 60°,求 NMB •
E ,使 DBE DBC ,且 BE BA ,求 BED
.
【例13】在四边形ABCD 中,已知 AB AC , ABD 60, 求
DBC 的度数. ADB 76, BDC 28,
【例14】(日本算术奥林匹克试题)如图所示,
CAB 36, ABD 48,
【例15】(河南省数学竞赛试题)在正
在四边形ABCD 中, DBC 24,求 ACD 的度数.
DAC 12 ,
ABC 内取一点D ,使DA DB ,在ABC 外取一点
J
D
B C
C
A B
A
【习题1】点M ,N 在等边三角形 ABC 的AB 边上运动,BD=DC , Z BDC=120 °,/ MDN =60 求证 MN=MB+NC
.
【例16】(北京市数学竞赛试题)如图所示,在 ABC 中,BAC BCA
内一点,使得 MCA 30 , MAC 16,求 BMC 的度数.
44 , M 为
ABC
【巩固】如图所示,在
DAB 10,
ABC 中,已知 BAC 80, ABC DBA
20,求 ACD 的度数
.
瓦家庭作业
60 , D 为三角形内一点,且
A
【习题2】(南斯拉夫数学奥林匹克试题,黄冈市数学竞赛试题)在ABC内取一点M,使得MBA 30°,MAB 10°.设ACB 80°,AC BC,求AMC.。

相关文档
最新文档