第8章 热辐射基本定律和辐射特性(杨世铭,陶文栓,传热学,第四版,答案)

合集下载

传热学-热辐射基本定律和辐射特性

传热学-热辐射基本定律和辐射特性
所以,不同方向上辐射能量的强弱,还要 在相同的看得见的辐射面积的基础上才能 作合理的比较
C1 (λT
eC2 /(λT )
)−5
d −1
(
λT
)
=
f
(λT )
f(λT)称为黑体辐射函数,表示温度为T 的黑体所发射的辐射能 中在波段0~λ内的辐射能所占的百分数。
利用黑体辐射函数数值表(360页表8-1)可以很容易地用 下式计算黑体在某一温度下发射的任意波段的辐射能量:
Eb(λ1−λ2 ) = ⎡⎣ Fb(0−λ2 ) − Fb(0−λ1) ⎤⎦ Eb
∫ 显然有
Eb =
∞ 0
Ebλ
d
λ
普朗克定律解释了黑体辐射能按波长分布的规律:
Ebλ
=
c1λ−5
ec 2
(λT )
−1
式中,Ebλ—黑体光谱辐射力,W/m3
λ— 波长,m ; T — 黑体温度,K ; c1 — 第一辐射常数,3.7419×10-16 W⋅m2; c2 — 第二辐射常数,1.4388×10-2 W⋅K;
8.1.2 从电磁波角度描述热辐射的特性
8.1.2 从电磁波角度描述热辐射的特性
c 电磁波的数学描述: = λν
c — 电磁波传播速度, m/s ν — 频率, 单位 1/s λ — 波长, 常用μm为单位
从理论上说,物体热辐射的电磁波波长范围可以包括整个波谱,即波长从零到无穷大 然而,在工业上所遇到的温度范围内,即2000K以下,有实际意义的热辐射波长位于 0.38—100μm之间,且大部分能量位于红外线区段的0.76—20μm范围内,而在可见 光区段、即波长为0.38—0.76μm 的区段,热辐射能量的比重不大
τ =0, α + ρ =1

传热学-第八章热辐射基本定律及物体的辐射特性

传热学-第八章热辐射基本定律及物体的辐射特性
辐射的能力最强,包括所有方向和所有波长; 真实物体表面的发射能力低于同温度下的黑体; 因此,定义了发射率 (也称为黑度) :相同温度下,
实际物体的半球总辐射力与黑体半球总辐射力之比:


E Eb
E
T4
15
上面公式只是针对方向和光谱平均的情况,但实际上,真实 表面的发射能力是随方向和光谱变化的。
Fb(02) Fb(01) f(2T)f(1T)
(4)立体角 定义:球面面积除以球半径的平方称为立体角,单位:
sr(球面度),如图8-8和8-9所示:
ddrA 2c sindd
10
图8-8 立体角定义图
11
图8-9 计算微元立体角的几何关系
12
(5) 定向辐射强度L(, ):

图8-3 镜反射
图8-4 漫反射
5
§8-2 黑体辐射的基本定律
1.黑体概念 黑体:是指能吸收投入到其面 上的所有热辐射能的物体,是 一种科学假想的物体,现实生 活中是不存在的。但却可以人 工制造出近似的人工黑体。
图8-5 黑体模型
6
2.热辐射能量的表示方法
辐射力E:
单位时间内,物体的单位表面积向半球空间发射的所有 波长的能量总和。 (W/m2);
光谱辐射力Eλ :
单位时间内,单位波长范围内(包含某一给定波长),物 体的单位表面积向半球空间发射的能量。 (W/m3);
E、Eλ关系: 显然, E和Eλ之间具有如下关系:

E E d 0
黑体一般采用下标b表示,如黑体的辐射力为Eb,
黑体的光谱辐射力为Ebλ
7
3.黑体辐射的三个基本定律及相关性质
(1)灰体法,即将光谱吸收比 () 等效为常数,即 = () = const。并将()与波长无关的物体称为灰体,与黑体类

《传热学》杨世铭-陶文铨-第八章热辐射汇编

《传热学》杨世铭-陶文铨-第八章热辐射汇编

1 透明体:
黑体概念
黑体:是指能吸收投入到其面
上的所有热辐射能的物体,是 一种科学假想的物体,现实生 活中是不存在的。但却可以人 工制造出近似的人工黑体。
图8-5
黑体模型
12
§8-2
黑体辐射的基本定律
1.热辐射能量的表示方法
辐射力E:
单位时间内,物体的单位表面积向半球空间发射的所有 波长的能量总和。 (W/m2); 光谱辐射力Eλ : 单位时间内,单位波长范围内(包含某一给定波长),物 体的单位表面积向半球空间发射的能量。 (W/m3);
6
二 从电磁波的角度描述热辐射的特性
1.传播速率与波长、频率间的关系 热辐射具有一般辐射现象的共性,以光速在空间传播。 电磁波的速率与波长、频率间的关系
c f

式中:f — 频率,s-1; λ— 波长,μm
7
2. 电磁波谱
物体辐射的电磁波波长可以包括整个波谱,如图8-1所示,而 我们所感兴趣的,即工业上有实际意义的热辐射区域一般为 0.1~100μ m。 注1:红外线区段:0.76~20μm 可见光区段:0.38~0.76μm 太阳辐射: 0.2~2μm 注2:波长在1mm~1m之间的电磁波称为微波。
13
E、Eλ关系:
显然, E和Eλ之间具有如下关系:
E


0
E d
黑体一般采用下标b表示,如黑体的辐射力为Eb, 黑体的光谱辐射力为Ebλ
14
2.黑体辐射的三个基本定律及相关性质 (1)Planck定律(第 T )
1
式中,λ— 波长,m ; T — 黑体温度,K ; c1 — 第一辐射常数,3.742×10-16 Wm2; c2 — 第二辐射常数,1.4388×10-2 WK;

传热学第8章热辐射基本定律和辐射特性

传热学第8章热辐射基本定律和辐射特性

1. 立体角
A r2
sr 球面度
对整个半球:
A 2r 2 2 sr
对微元立体角:
d
dA r2
s in dd
sr
n θ
dΩ r dA1
立体角定义
dθ dA2
φ dφ
r sind
rd
dA2
2. 定向辐射强度(辐射强度) 物体单位时间单位可见辐射面积单位立体角
内发出的辐射能量。
L( ,) d
n
W /(m2 sr)
引入辐射比 Fb(1 2 )
0
1
2
黑体波段内的辐射力
F b(12 )
E d 2
1
b
0 Eb d
1
0T 4
E d 2
1
b
F F b(02 )
b(01 )
其中: Fb(0) 为黑体辐射函数(表8-1)
则波段内黑体辐射力:
Eb(1 2 ) [Fb(02 ) Fb(01 ) ]Eb
8.2.3 兰贝特定律

dAcosd
θ
dA2
对各向同性物体表面:

L( ,) L( )
dA1
dA1cosθ
3. 定向辐射力 单位时间单位面积物体表面向某个方向发射
单位立体角内的辐射能, 称为该物体表面在该 方向上的定向辐射力。Eθ,W/(m2.sr)
4. 兰贝特定律 黑体的定向辐射强度与方向无关, 即半球空间各方向上的辐射强度都相等。
热辐射投射到固体,液体表面上:
1 0
表面性
热辐射投射到气体表面上:
1 0 容积性
(3)固体表面的两种反射现象 ✓镜反射 (Specular reflection) ✓漫反射 (Diffuse reflection) 主要取决于固体表面不平整尺寸 的大小(表面粗糙度)。

《传热学》第8章热辐射基本定律和辐射特性

《传热学》第8章热辐射基本定律和辐射特性

Eb
光辐射能力随着波长的 c15 c 2 / T 增加,先是增加,然后 e 1 又减少
λ— 波长,m ; T — 黑体温度,K ; c1 — 第一辐射常数,3.74.4388×10-2 WK;
8
第8章 热辐射基本定律和辐射特性
射能力和吸收能力都是最大的。
6
第8章 热辐射基本定律和辐射特性
8.2 黑体热辐射的基本定律
三个定律分别从不同角度揭示在一定的温度下,单位表面黑体辐射能的
多少及其随空间方向与随波长分布的规律。
8.2.1 斯忒藩-波尔兹曼定律
为了定量分析热辐射能量大小,引入辐射力的概念 辐射力:单位时间内单位表面积向其上的半球空间的所有方向辐射出去




d 45o IdA b cos 2 d 2 7000 W / m 2 sr 2 103 m 2 1 4.00103 sr 1.9810 2 W 2 16

7000 W / m 2 sr 103 m 2 3.46103 sr 2.8010 2 W
光谱辐射力最大处的波长λm亦随温度不同而 变化: mT 2.8976103 m K 2.9 103 m K 随着温度的增高,最大光辐射力的波长会减 小,曲线峰值向左移动。 波长与温度成反比的规律称为维恩位移定律 3. 普朗克定律与斯忒藩-玻耳兹曼定律的关系 光辐射力曲线下的面积就是该温度下黑 体的辐射力
反射能量—Qρ—反射率—ρ
穿透能量—Qτ—穿透率—τ
1
Q Q Q Q Q Q Q 1 Q Q Q
4
第8章 热辐射基本定律和辐射特性
固体和液体:α+ρ=1

传热学第四版课后习题答案(杨世铭-陶文铨)]

传热学第四版课后习题答案(杨世铭-陶文铨)]

第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。

答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。

联系是:在发生对流换热的同时必然伴生有导热。

导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。

2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。

试写出这三个公式并说明其中每一个符号及其意义。

答:① 傅立叶定律:dx dtq λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。

② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。

③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。

3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。

这三个参数中,只有导热系数是物性参数,其它均与过程有关。

4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。

试分析引入传热方程式的工程实用意义。

答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。

5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。

高教传热学第四版课件第8章

高教传热学第四版课件第8章

一.热辐射能量的表示方法
辐射力E:
单位时间内,物体的 单位表面积向半球空 间所有方向发射出去 的全部波长的辐射能 的总量(W/m2)
光谱辐射力Eλ:
E E d E、Eλ关系:
0 高教传热学第四版课件第8章
8-2 黑体辐射基本定律
二.黑体辐射的基本定律
1.Planck定律:
Eb
c15
ec2 (T) 1
λ—波长,m ;T —黑体温度, K ;c1 —第一辐射常数, 3.742×10-16 Wm2;c2 —第二
辐射常数,1.4388×10-2 mK;
Wien位移定律:m T2.897 16 0 3m2K .9103m.K
高教传热学第四版课件第8章
8-2 黑体辐射基本定律
2.Stefan-Boltzmann定律(四次方定律):
高教传热学第四版课件第8章
8-2 热辐射的基本概念
2.三种理想模型:
黑体: 1 镜体或白体: 1
透明体: 1
黑体模型:是指能吸收投入
到其面上的所有热辐射能
的物体,是一种科学假想
的物体,现实生活中是不
存在的。但却可以人工制
造出近似的人工黑体。
黑体模型
高教传热学第四版课件第8章
8-2 黑体辐射基本定律
高教传热学第四版课件第8章
8-1 热辐射的基本概念
一. 热辐射特点
1. 定义:由热运动产生的,以电磁波形式传递的能量
2. 特点:a 任何物体,只要温度高于0 K,就会不停地 向周围空间发出热辐射;b 可以在真空中传播;c 伴 随能量形式的转变;d 具有强烈的方向性;e 辐射能 与温度和波长均有关;f 发射辐射取决于温度的4次 方。
λT Fb(0-λ) λT Fb(0-λ) 1000 0.0323 1900 5.225 1100 0.0916 2000 6.690

新大《传热学》复习题及解答第8章 热辐射基本定律和辐射特性

新大《传热学》复习题及解答第8章 热辐射基本定律和辐射特性

第8章热辐射基本定律和辐射特性(复习题解答)【复习题8-1】什么叫黑体?在热辐射理论中为什么要引入这一概念?答:吸收比α=l的物体叫做黑体。

黑体完全吸收投入辐射,从黑体表面发出的辐射都为自身辐射,没有反射,因而黑体辐射的特性反映了物体辐射的规律,这为研究实际物体的辐射提供了理论依据和简化分析的基础。

【复习题8-2]温度均匀的空腔壁面上的小孔具有黑体辐射的特性,那么空腔内部壁面的辐射是否也是黑体辐射?答:空腔内部壁面不一定是黑体辐射。

小孔之所以呈现黑体特性,是因为辐射在空腔内经历了多次的吸收和反射,辐射能基本基本都被内壁面吸收,从小孔射出的辐射能基本为零。

【复习题8-3]试说明,为什么在定义物体的辐射力时要加上“半球空间”及“全部波长”的说明?答:因为辐射表面会向半球空间各个方向辐射能量,且辐射能中包含各种波长的电磁波,而辐射力必须包括辐射面辐射出去的所有能量,所以要加上“半球空间”和“全部波长”的说明。

【复习题8-4】黑体的辐射能按波长是怎样分布的?光谱辐射力E根的单位中分母的“n?”代表什么意义?答:黑体辐射能按波长的分布服从普朗克定律。

光谱辐射力单位中的分母“n?”代表了单位辐射面积“n?”和辐射的电磁波单位波长范围“m”的意思。

【复习题8-5]黑体的辐射能按空间方向是怎样分布的?定向辐射强度与空间方向无关是否意味着黑体的辐射能在半球空间各方向上是均匀分布的?答:黑体辐射能按空间方向分布服从拦贝特定律。

定向辐射强度与空间方向无关并不意味着黑体的辐射能在半球空间是均匀分布的。

因为定向辐射强度是指单位可见辐射面积,而在空间不同方向可见辐射面积是不同的,辐射能在各个方向也不同。

【复习题8-6】什么叫光谱吸收比?在不同光源的照耀下,物体常呈现不同的颜色,如何解释?答:光谱吸收比是指物体对某一特定波长的投入辐射所吸收的百分比。

在光源照射下,物体会吸收一部分辐射,并反射一部分辐射,物体呈现的是反射光的颜色,因而光源不同,反射光也会不同,物体也会呈现不同的颜色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章 热辐射基本定律和辐射特性课堂讲解课后作业【8-10】一等温空腔的内表面为漫射体,并维持在均匀的温度。

其上有一个面积为0.022m 的小孔,小孔面积相对于空腔内表面积可以忽略。

今测得小孔向外界辐射的能量为70W ,试确定空腔内表面的温度。

如果把空腔内表面全部抛光,而温度保持不变,问这一小孔向外的辐射有何影响?【解】小孔可以当做黑体来处理,4T A Φσ=498.4496K02.01067.570484b =⨯⨯==-A E T σ 小孔的黑体特性与空腔的内表面的性质无关,故不影响小孔向外的辐射。

【8-18】暖房的升温作用可以从玻璃的光谱穿透比变化特性解释。

有一块厚为3mm 的玻璃,经测定,其对波长为0.3~2.5μm 的辐射能的穿透比为0.9,而对其他波长的辐射能可以认为完全不穿透。

试据此计算温度为5800K 的黑体辐射及温度为300K 的黑体辐射投射到该玻璃上时各自的总穿透比。

【解】()()()()()()()()[]12212121212211~0b ~0b ~b bb b b bbbb bb bbb 0b9.09.0d 9.0d 9.0d d d d d λλλλλλλλλλλλλλλλλλλλλλλλλτλλτλλτλλτλλττF F F E E E E E E E E E E E E E E -=====++==⎰⎰⎰⎰⎰⎰⎰∞∞T 1=5800K ,K m 174058003.011⋅=⨯=μλT ,K m 1450058005.212⋅=⨯=μλT()0.0328541~0b =λF ,()0.9660652~0b =λF ()()[][]0.8398899032854.0966065.09.09.012~0b ~0b =-=-=λλτF F T 2=300K ,K m 903003.011⋅=⨯=μλT ,K m 0573005.212⋅=⨯=μλT()0.00002881~0b =λF ,()0.000242~0b =λF ()()[][]0.000190080.00002880.000249.09.012~0b ~0b =-=-=λλτF F【8-21】温度为310K 的4个表面置于太阳光的照射下,设此时各表面的光谱吸收比随波长的变化如附图所示。

试分析,在计算与太阳能的交换时,哪些表面可以作为灰体处理?为什么?【解】太阳辐射能的绝大部分集中在2μm 以下的区域,温度为310K 的物体辐射能则绝大部分在6μm 以上的红外辐射,由图可见,第一种情形与第三种情形,上述波段范围内单色吸收率相同,因而可以作为灰色处理。

【8-23】已知一表面的光谱吸收比与波长关系如附图所示,在某一瞬间,测得表面温度为1100K 。

投入辐射G λ按长分布的情形示于附图b 。

试:(1) 计算单位表面积所吸收的辐射能; (2) 计算该表面的发射率及辐射力;(3) 确定在此条件下物体表面的温度随时间如何变化,设物体无内热源,没有其他形式的热量传递。

【解】(1)()()()()()23322323643433336434333036336633m W 101146102.3234108.023104.0d 102.3d 108.0d 104.0d 1048.0d 108.0d 104.0d 8.0d 4.0d d d d ⨯=-⨯⨯+-⨯⨯+⨯⨯=⨯+⨯+⨯=⨯⨯+⨯+⨯=+=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∞∞λλλλλλλλλλλλλλαλλαλλαλλαλλλλλλG G G G G G G(2)()()()()()()()()()()[]()()3~0b 6~0b 3~0b 6~0b 3~0b 6~3b 3~0b b63b b3b b63b 3b b6b 63b 3b bb bb 4.08.08.04.08.04.0d 8.0d 4.0d 8.0d d d d d d F F F F F F F E E E E E E E E E E E E E E E -=-+=+=+=+=++===⎰⎰⎰⎰⎰⎰⎰⎰⎰∞∞∞λλλλλλαλλαλλαλλαλλεελλλλλλλλλT =1100K ,K m 3003110031⋅=⨯=μλT ,K m 0066110062⋅=⨯=μλT()0.340093~0b =F ,()0.783166~0b =F ()()0.4904920.340094.00.783168.04.08.03~0b 6~0b =⨯-⨯=-=F F ε 23484m W 1040.717911001067.50.490492⨯=⨯⨯⨯==-T E εσ(3) G E >,所以在此条件下物件表面的温度随时间的延长而降低。

【8-24】一测定物体表面辐射特性的装置示于附图中。

空腔内维持在均匀温度T f =1000K ;腔壁是漫灰体ε=0.8,腔内1000K 的热空气与试样表面间的对流换热表面传热系数h =10W/(m 2∙K);试样的表面温度用冷却水维持,恒为300℃。

试样表面的光谱反射比示于附图。

试:(1) 计算试样的吸收比;(2) 确定其发射率;(3) 计算冷却水带走的热量。

试样表面A =5cm 2。

【解】(1)()()()()()[]()()()[]()()()()()()()()()()()()()()()()()()()()()()()[]()()()[]()4~0b 4~0b 4~0b ~4b 4~0b f b 4f b f b 40f b f b 4f b f b 40f b f b 4f b f b 40f b f b 0f b f b 0f b f b 0f b f b 0f b f b 0f b 6.02.018.02.018.02.01d 8.0d 2.01d 8.0d 2.01d ,d ,1d ,d d ,1d ,1d ,F F F F F T E T E T E T E T E T E T E T E T E T E T T E T E T T E T E T T E T E T E T E T T E T E T T E T E T T +=-+-=+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=-=-=-==∞∞∞∞∞∞∞∞∞⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰λλλλλλρλλρλλρλλλρλλρλλααλλλλλλλλλλλT f =1000K ,K m 000410004f ⋅=⨯=μλT ,()0.480854~0b =F()0.488510.480856.02.06.02.04~0b =⨯+=+=F α (2)()()()()()()()()[]()()()[]()()()()()()()()()()()()()()()()()()()()()()()[]()()()[]()4~0b 4~0b 4~0b ~4b 4~0b b 4b b 40b b 4b b 40b b 4b b 40b b 0bb 0b b 0b b 0b b 0b b 0b 6.02.018.02.018.02.01d 8.0d 2.01d 8.0d 2.01d ,d ,1d ,d d ,1d ,1d ,d ,F F F F F T E T E T E T E T E T E T E T E T E T E T T E T E T T E T E T T E T E T E T E T T E T E T T E T E T T E T E T T +=-+-=+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=-=-=-===∞∞∞∞∞∞∞∞∞∞⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰λλλλλλρλλρλλρλλλρλλρλλαλλεελλλλλλλλλλλλT f =273+300=573K ,K m 22925734f ⋅=⨯=μλT ,()0.11848884~0b =F ()0.271093280.11848886.02.06.02.04~0b =⨯+=+=F ε(3) 冷却水带走的热量为:r c ΦΦΦ+=()()[]W 2.1353002731000101054f c =+-⨯⨯⨯=-=-T T Ah Φ ()()[][][]()13.02W5730.2710932810000.488511067.5105448444f 44f b f b r =⨯-⨯⨯⨯⨯⨯=-=-=-=--T T A T T A T E T E A εασεσασεαΦ 15.16W 02.13135.2r c =+=+=ΦΦΦ【8-26】为了考验高温陶瓷涂层材料使用的可靠性,专门设计了一个试验,如附图所示。

已知辐射探头表面积A d =10m 2,陶瓷涂层表面积A c =10-4m 2。

金属基板底部通过加热维持在T 2=1500K ,腔壁温度均匀且T w =90K 。

陶瓷厚δ1=5mm ,λ1=60W/(m∙K);基板厚为δ2=8mm ,λ2=30W/(m∙K)。

陶瓷表面是漫灰的,ε=0.8。

陶瓷涂层与金属基板间无接触热阻。

试确定:(1) 陶瓷表面的温度T 1及表面热流密度;(2) 置于空腔顶部的辐射能检测器(辐射探头)所接受到的由陶瓷表面发射出去的辐射能量;(3) 经过多次试验后,在陶瓷涂层与基板之间产生了很多小裂纹,形成了接触热阻,但T w 及陶瓷涂层表面的辐射热流密度及发射率均保持不变,此时温度T 1及T 2是增加、降低,还是不变?【解】如图所示:(1) 稳态运行时,电热器发出之热通过导热传导到陶瓷表面上,再通过辐射传递到腔壁四周,设陶瓷表面温度为T 2,则有()4w41c 221112c T T A T T A -=+-εσλδλδ()4418331901067.58.030108601051500-⨯⨯⨯=⨯+⨯--T T 用试凑法或计算机迭代,解得: K 14332=T(2) 对于漫灰体,兰贝特定律πεεθΩΦb b cos d d d E I I A ===⋅ πθΩεΦcos d d d b A E ⋅=由于辐射探头面积A d 和陶瓷涂层表面积A c 都很小,可按照微元面积来处理,面积A d 可构成微元角,则sr 10110d 5252d --===R A Ω, 24c m 10d -==A A面积A d 与面积A c 平行且共法线,所以θ=0W 106.0880cos 101015001067.58.0cos d d d 5454842----⨯=⨯⨯⨯⨯⨯⨯=⋅=ππθΩεσΦA T(3) ()Φεσλδλδ=-=+-4w 41c 221112cT T A T T A上式中,Φ恒定,ε恒定,T w 恒定,则T 1恒定;由于接触热阻的作用,左端分母增大,则T 2要升高。

相关文档
最新文档