重整、芳构化、异构化的区别

合集下载

立体化学的发展及几个立体化学概念的区分

立体化学的发展及几个立体化学概念的区分

立体化学的发展及几个立体化学概念的区分范霍夫1874年提出的碳四面体理论,标志着立体化学的创立。

一百多年以来,该理论的基本观点一直是有机化学核心理论的一部分,它不仅奠定了立体化学以后发展的基础,而且对整个有机化学都具有深远的意义。

那么碳四面体理论是在怎样的化学背景下提出的?让我们回溯I9世纪后半叶的化学界。

构型的认识必须以构造的认识为基础,对于构造的认识表现为布特列洛夫的平面结构理论,构型认识正是在经典结构理论与新的实验事实的矛盾中应运而生的。

1861年布特列洛夫提出平面结构理论,布特洛夫认为,从原子在分子中相互联结的方式的概念到空间相对位置的概念,只剩下一步路,而且是必然的一步,促使这一步完成的直接原因是由于对旋光异构现象的研究。

19世纪中叶,在对乳酸的旋光异构体的研究中发现,乳酸旋光异构体的数目多于平面结构理论预见的异构体数。

乳酸异构体数成为平面结构理论无法解释的困难,这就促使化学家不得不考虑原子在空间的排列问题。

1874年,范霍夫与列贝尔分别独自提出了立体化学的基本思想使结构理论进人了新纪元。

范霍夫提出的碳四面体假说,使分子由平面扩展到空间,并且从而引出了对映异构体的概念,他还提出了不对称碳原子的概念,阐明了不对称原子与旋光性之间的关系,指出,可以根据结构和旋光性的关系推测有机化台物的结构式。

范霍夫还预见了一种新的异构体:几何异构体(顺反异构体)。

列贝尔的论文仅比范霍夫的晚两个月发表,他的论文不及范霍夫的影响大。

列贝尔没有采用四面体碳的概念,他根据纯粹的几何推理提出了两条推测溶液是否具有旋光性的规则。

范霍夫的理论是以承认原子的真实存在为基本前提的,他在《空间化学》一书中开宗明义地写道:“化学是关于原子的定律,而有机化学则是关于碳原子”,“现代化学有两个弱电,它既不研究原子在分子中的相对位置,也不研究原子的运动”。

碳四面体理论实际上是原子论必然的逻辑结果、正因为如此,范霍夫理论的反对者都是把理论攻击的目标指向它的理论基础原子论本身,而并不否认原子在空间的排列是原子论必然的逻辑结果。

轻质烷烃转化-概述说明以及解释

轻质烷烃转化-概述说明以及解释

轻质烷烃转化-概述说明以及解释1.引言1.1 概述轻质烷烃是指碳链长度较短的烷烃化合物,主要包括甲烷、乙烷、丙烷等。

这些化合物在石油和天然气中占据重要地位,是石化工业的重要原料。

随着现代工业的发展,对能源资源的需求日益增长,轻质烷烃的转化成为一个研究热点。

本文将重点讨论轻质烷烃转化的相关问题,包括其定义与特性、转化的重要性、以及转化的方法与技术。

通过对这些内容的探讨,有助于深入了解轻质烷烃转化的机理和应用,推动相关领域的科研与技术发展。

1.2文章结构1.2 文章结构本文将首先介绍轻质烷烃的定义与特性,包括其组成、性质以及在工业生产中的重要性。

随后,将详细探讨轻质烷烃转化的重要性,即将其转化为更有附加值的化合物的必要性和潜在好处。

接着,将深入讨论各种轻质烷烃转化的方法与技术,介绍常见的催化剂、反应条件和产物选择等方面的内容。

最后,结合前文对轻质烷烃转化的介绍,对未来可能的研究方向和发展趋势进行展望,并提出一些可能的建议和新的研究领域。

通过本文的阐述,读者将对轻质烷烃的转化有一个全面的了解,并对未来的相关研究方向有所启发。

1.3 目的本文旨在探讨轻质烷烃转化的相关内容,从定义与特性、重要性到方法与技术进行系统性的介绍和分析。

通过深入研究,希望能够深化对轻质烷烃转化的认识,为相关领域的科研工作者提供参考和借鉴,推动该领域的发展与进步。

同时,也旨在引起更多人对燃料资源高效利用和环境保护的关注,促进可持续发展的理念在石化行业的应用和推广。

通过本文的撰写,希望能够为人们提供更多关于轻质烷烃转化的知识,促进相关技术的研究与应用,为推动我国石化产业的健康发展贡献一份力量。

2.正文2.1 轻质烷烃的定义与特性轻质烷烃是指碳原子数较少、分子中只含有碳氢键而没有其他功能团的烃类化合物,通常包括乙烷、丙烷、丁烷等。

它们是石油和天然气中最简单的烃类化合物,具有以下特性:1. 低密度:轻质烷烃的密度较低,通常在0.6~0.8 g/cm3之间,这使得它们在常温下为气态,易于储存和运输。

石油炼制名词解释

石油炼制名词解释

名词解释:1.催化裂化:催化裂化是在0.1~0.3MPa、500℃左右的温度及催化剂作用下,重质原料油发生以裂解为主的一系列化学反应,转化为气体、汽油、柴油、油浆及焦炭的工艺过程。

2.催化剂活性:催化剂的活性就是能加快反应速度的性能。

3.二次燃烧:由过剩O2含量太高,再生器密相床烧焦产生的CO在稀相段或集气室燃烧,放出大量热量而烧坏设备。

4氢转移反应:某烃分子上的氢脱下来立即加到另一烯烃分子上使之饱和的反应。

5碳堆积:再生器烧焦能力低或供氧不足,反应生成的焦炭烧为完全,使催化剂活性及选择性下降,又至使反应时生焦量增大,再生器烧焦更不完全,这样造成恶性循环,使催化剂上焦炭迅速增大,这就是碳堆积。

简答题1.简述催化裂化的化学反应分解反应、异构化反应,氢转移反应,烷基化反应,芳构化反应,烷基化反应、生焦反应2.列出芳烃转化的催化剂种类有酸性催化剂和固体酸,固体酸又分为浸附在适当载体上的质子酸;浸附在适当酸性卤化物,混合氧化物催化剂,贵金属-氧化硅-氧化铝催化剂;分子筛催化剂3.C8芳烃异构化反应所用的催化剂无定型SiO2-Al2O3催化剂,负载型铂催化剂。

ZSM催化剂,HF-BF3催化剂4.简述目前工业上分离对二甲苯的方法?答:深冷结晶法,络合分离法,吸附分离法5.简述开发芳烃转化工艺的原因不同来源的各种芳烃馏分组成是不同的,能得到各种芳烃的产量也不同,因此如果仅从这里取得芳烃,必然导致供需矛盾,所以用该工艺调节芳烃产量为什么催化裂化产物中少C1、C2,多C3、C4?正碳离子分解时不生成<C3、C4的更小正碳离子。

为什么催化裂化产物中多异构烃?伯、仲正碳离子稳定性差,易转化为叔正碳离子。

为什么催化裂化产物中多β烯烃?伯正碳离子易转为仲正碳离子,放出H+形成β烯烃。

催化裂化的原料和产品有什么特点?答:主要原料有:直馏馏分油、常压渣油、脱沥青油、焦化蜡油、减压渣油等。

主要产品有液化气、汽油、柴油、油浆等。

第十章 芳香族化合物

第十章  芳香族化合物

芳基 (Aryl)
1、普通命名法
邻氯苯甲醚 间甲苯酚 对甲苯甲酸 连三甲苯 偏三甲苯 间三甲苯
2、系统命名法
1,2-二溴苯
3-硝基溴苯
3-硝基苯甲醛
2-氨基-5-羟基苯甲醛 3-氨基-5-溴苯酚
三、单环芳烃的物理性质
一般为无色有芳香气味的液体,不溶于水,相对密度在 0.86-0.93之间,燃烧时火焰带有较浓的黑烟。沸点随相对 分子质量升高而升高。熔点除与相对分子质量有关外,还 与结构有关,通常对位异构体由于分子对称,熔点较高。 芳烃是一种良好的溶剂,但具有一定的毒性。常见单环 芳烃的物理常数P455表11-1
代反应等。
第三阶段:将具有芳香特性的化合物称为芳香化合物。
非苯芳香烃
3、苯及苯的表达方式
• 1825年 • 1857年 • 1858年
法拉第发现了苯。 凯库勒提出碳四价。 凯库勒提出苯分子具有环状结构。
勇于开始,才能找到成 功的路
Kekule’式
问题?
实际得到三种化合物
1865年 提出摆动双键学说
2°当引入的烷基为三个碳以上时,引入的烷基会发 生碳链异构现象。
3°烷基化反应不易停留在一元阶段,通常在反应中 有多烷基苯生成。
4°苯环上已有–NO2、-SO3H、-COOH、-COR等取 代基时,烷基化反应不在发生。因这些取代基都是 强吸电子基,降低了苯环上的电子云密度,使亲电 取代不易发生。例如,硝基苯就不能起付—克反应 ,且可用硝基苯作溶剂来进行烷基化反应。 5°烷基化试剂也可是烯烃或醇。
TNT十分稳定。与硝酸甘油不同,它对于摩擦、震动等 都不敏感。需要雷管引爆。每公斤TNT炸药可产生4200 千焦的能量。虽然,它的燃烧热低于脂肪和糖,但由于 能够迅速地释放能量,同时不需要消耗额外的氧气。从 而引发爆炸。现在常用吨TNT的爆炸当量来衡量核爆炸 、地震、行星撞击等大型反应时的能量。

氯对连续重整影响及相关分析

氯对连续重整影响及相关分析

氯对连续重整影响及相关分析摘要:氯在连续重整过程中具有双重作用,一方面氯作为重整催化剂酸性功能的主要提供者,与重整过程具有密不可分的关系;另一方面,氯对设备产生强烈的腐蚀,并可能导致催化剂中毒、失活、造成环境污染等。

因此,研究连续重整过程中氯的影响具有重要的意义。

主题词:连续重整水氯平衡催化剂功能氯腐蚀结盐1.重整装置概述1.1重整装置的意义催化重整是炼油和石油化工重要的工艺之一,除生产高辛烷值汽油和芳烃外,还副产大量低成本氢气。

近几年连续重整工艺对于汽油质量升级、增产苯和二甲苯等基础有机化工原料及缓解氢气资源紧张状况起到举足轻重的作用,尤其是随着汽油标准的提高,进一步凸显了连续重整装置的重要地位。

表1 汽油质量标准与汽油产品质量对比项目国IV 京V 催化汽油重整汽油辛烷值90/93/97 89/92/95 91 102 硫含量,ppm wt 50 10 500 0.5苯含量, V% ≤1.0 ≤1.0 0.60 0.63烯烃含量, V% ≤25 ≤25 40 01.2催化重整简介1.2.1概念“重整”是指烃类分子重新排列成新的分子结构。

通俗的说就是烃类分子的重新排列与整理,分为热重整和催化重整。

所谓的“催化重整”是以石脑油(直馏和各类加氢石脑油)为原料,在催化剂的存在下,烃类分子重新排列,环化为富含芳烃的高辛烷值汽油组分,并副产含氢气体等产品的工艺,因此是炼油工业中最重要的生产工艺之一。

1.2.2主要化学反应 (一)芳构化反应1.六元环脱氢反应CH3CH 33H 2目的反应RONC :74.8 RONC :120 ΔRONC=+45.2所需催化剂功能:金属功能 2.五元环烷烃异构脱氢反应CH33H 2目的反应RONC :92.3 RONC :106 ΔRONC=+13.7所需催化剂功能:金属功能和酸性功能 3.烷烃环化脱氢反应3H 2n-C 7H 16CH 3CH 3目的反应RONC :0 RONC:120 ΔRONC=+120所需催化剂功能:金属功能和酸性功能 (二)异构化反应n-C 7H 16i-C 7H 16 目的反应RONC :0 RONC :92 ΔRONC=+92所需催化剂功能:酸性功能 (三)加氢裂化反应n-C 7H 16H 2n-C 3H 8i-C 4H 10不利反应 H 3CH 2CH 2CH CH 3CH 3CH 3不利反应CH CH 3CH 3H 2C 3H 8不利反应控制反应速率的催化剂功能:酸性功能(四)缩合生焦反应在重整条件下,烃类还可以发生叠合和缩合等分子增大的反应,最终缩合成焦炭,覆盖在催化剂表面,使其失活。

异辛烷生产工艺简述

异辛烷生产工艺简述

烷基化是指烷烃与烯烃的化学加成反应,在反应中烷烃分子中的活泼氢原子的位置被烯烃取代。

烷基化装置原料是以催化裂化气体中异丁烷和异丁烯、丁烯一为主。

烷基化油以辛烷值高90-98,调和性能好,挥发性、燃烧清洁等成为优质调油组分。

原料是催裂化的液态烃经气分出来的碳四组分中的异丁烷和丁烯,以硫酸为催化剂,低温液相反应生产高辛烷值汽油组分(烷基化汽油)成品是异辛烷、异丁烷、正丁烷、重化物关于异构化、芳构化、烷基化,谁能给我说下醚后碳四用在这三个装置里都能产出什么,三个装置不同的特点.小鏼2014-11-22醚后碳四用在这几个工艺中,都是为了让烃链加长或者增加分子量.成为常态下为液体的油类化学品物质(或者汽油调和剂).如果说炼油工艺是将原油大分子打断成不同小分子链的油品的话,上面这三种工艺可以说是将小分子C4逆向变成大分子油类的工艺.1、芳构化,顾名思义,C4在催化剂和一定条件下生产芳烃(苯,甲苯,二甲苯等等芳烃类油品),可作为高辛烷值汽油的调和剂.芳构化装置现在国内主流工艺是大连理工与山东齐王达的工艺包和洛阳设计院的工艺包.2、烷基化,烷基是比较理想的油烃类,即饱和烃,就是说C4生产更大分子链的烷烃油类,比如C6,C7,C8烷烃.可直接作为汽油.烷基化装置出来的汽油很好,但是装置生产过程的催化剂等废酸的处理比较麻烦.现在估计已经解决.3、异构化,打乱分子重新排列.在石油炼制工业中C4正丁烷异构化得到的异丁烷,可作为生产高辛烷值航空汽油掺合剂异辛烷的主要原料.因此,正丁烷异构化装置常与异丁烷烷基化装置联合使用.C5、C6烷烃的异构化生成的支链化合物,如异戊烷、异己烷等,可直接作为高辛烷值汽油的掺合剂,异构化过程也可应用于增产所需的目的产物.如C8芳烃的异构混合物在分离出对二甲苯以后,可以通过异构化反应得到具有平衡组成的C8芳烃异构混合物,然后再将对二甲苯分离出.这样就可最大限度地得到所需的目的产物对二甲苯.——————纯手打,希望可以帮到你.2014年我国异辛烷装置产能分布格局及烷基化汽油市场需求量测算【图】2014年11月26日 13:1514264人浏览字号:T|T国内中小型异辛烷装置产能较多,但规模普遍较小。

石化工艺名词解释

常减压蒸馏常压蒸馏是石油加工的“龙头装置”,后续二次加工装置的原料,及产品都是由常减压蒸馏装置提供。

常减压蒸馏主要是通过精馏过程,在常压和减压的条件下,根据各组分相对挥发度的不同,在塔盘上汽液两相进行逆向接触、传质传热,经过多次汽化和多次冷凝,将原油中的汽、煤、柴馏分切割出来,生产合格的汽油、煤油、柴油及蜡油及渣油等。

催化重整催化重整:在有催化剂作用的条件下,对汽油馏分中的烃类分子结构进行重新排列成新的分子结构的过程叫催化重整。

石油炼制过程之一,加热、氢压和催化剂存在的条件下,使原油蒸馏所得的轻汽油馏分(或石脑油)转变成富含芳烃的高辛烷值汽油(重整汽油),并副产液化石油气和氢气的过程。

重整汽油可直接用作汽油的调合组分,也可经芳烃抽提制取苯、甲苯和二甲苯。

副产的氢气是石油炼厂加氢装置(如加氢精制、加氢裂化)用氢的重要来源。

沿革20世纪40年代在德国建成了以氧化钼(或氧化铬)/氧化铝作催化剂(见金属氧化物催化剂)的催化重整工业装置,因催化剂活性不高,设备复杂,现已被淘汰。

1949年美国公布以贵金属铂作催化剂的重整新工艺,同年11月在密歇根州建成第一套工业装置,其后在原料预处理、催化剂性能、工艺流程和反应器结构等方面不断有所改进。

1965年,中国自行开发的铂重整装置在大庆炼油厂投产。

1969年,铂铼双金属催化剂用于催化重整,提高了重整反应的深度,增加了汽油、芳烃和氢气等的产率,使催化重整技术达到了一个新的水平。

化学反应包括以下四种主要反应:①环烷烃脱氢;②烷烃脱氢环化;③异构化;④加氢裂化。

反应①、②生成芳烃,同时产生氢气,反应是吸热的;反应③将烃分子结构重排,为一放热反应(热效应不大);反应④使大分子烷烃断裂成较轻的烷烃和低分子气体,会减少液体收率,并消耗氢,反应是放热的。

除以上反应外,还有烯烃的饱和及生焦等反应,各类反应进行的程度取决于操作条件、原料性质以及所用催化剂的类型。

催化剂近代催化重整催化剂的金属组分主要是铂,酸性组分为卤素(氟或氯),载体为氧化铝。

世界芳烃生产技术的发展趋势(重整歧化-异构化-吸附分离-芳构化-甲基化)

连续再生重整工艺主要以 UOP公司的 Platfor2 mer工艺和 IFP的 A rom izer工艺为代表 。两种工艺 各具特点 ,最大的不同在于反应器的布置方式。 UOP采用重叠式 , IFP采用并列式 。至今 ,两种工艺 均已发展到了第三代 。从反应工艺参数看 ,两种第 三代工艺差异不大 ,均在较低的压力 ( 0135 M Pa)和 较低的氢油分子比 (小于 3)下操作 ,技术改进主要 体现在催化剂再生部分 。
Plus工艺 、美孚公司开发的 M TDP、LTDP工艺 、菲纳
公司开发的 T2BX工艺等 。
Tatoray甲苯歧化与烷基转移技术于 1969 年工
业化 ,由于其采用固定床临氢气相反应 ,操作稳定 ,
运行周期长 ,技术经济指标先进 ,是本领域内应用最
多的工业化技术 。目前我国运行的 13 套甲苯歧化
GTC公司也开发了一种采用高选择性和高处 理能力复合溶剂的芳烃抽提工艺 ,可以应用于全馏 分重整油的芳烃回收 ,而不需要预分离 。韩国 LG 加德士石油公司已采用该工艺建成了世界最大单系 列芳烃抽提装置 ,以重整油为原料可年产苯 232万 吨 ,甲苯 554 万吨 ,苯和甲苯回收率均在 9919%以 上 ,纯度均在 99199%以上 [ 2 ] 。
苯歧化和烷基转移的工艺研究 ,目的是将价值低廉
的甲苯和 C9 A 通过甲苯歧化和甲苯与 C9 A 的烷基 转移反应生成更有应用价值的苯和二甲苯 。自 20
世纪 60年代后期开始 ,已有多种甲苯歧化与烷基转
移工艺实现了工业化 ,包括日本东丽公司和 UOP公
司开发的 Tatoray工艺 、阿科 / IFP等开发的 Xylene -
吨 。但供应缺口依然较大 , 2005年的进口依存度高 达 5518%。

芳烃的生产 催化重整反应原理


02
催化重整催化剂
催化重整催化剂
重整催化剂两种功能 01 环烷烃和烷烃脱氢芳构化金属活性中心 02 环烷烃和烷烃异构化
催化重整催化剂
催化剂组成
A
活性组分 铂、钯、铱、铑
B
助催化剂 铼、锡
C
酸性载体 含卤素的γ-Al2O3


1. 催化重整化学反应类型:芳构 化反应、异构化反应、加氢裂 化反应和缩合生焦反应
2. 催化剂的功能和组成
1.芳构化反应
烷烃环化脱氢反应:
芳构化反应特点:强吸热、体积增大、可逆

催化重整反应类型
2.异构化反应
各种烃在重整催化剂表面都能发生异构化反应。
催化重整反应类型
3.加氢裂化反应
加氢裂化反应实际上是裂化、加氢、异构化综合进行的反应。
催化重整反应类型
4.缩合生焦反应
在重整条件下,烃类还可以发生叠合和缩合等分子增大的反应, 最终缩合成焦炭,覆盖在催化剂表面,使其失活。因此,这类反应 必须加以控制,工业上采用循环氢保护,一方面使容易缩合的烯烃 饱和,另一方面抑制芳烃深度脱氢。
催化重整反应原理
石脑油 汽油
连续重整工艺 芳烃

CONTENTS

01 催化重整反应类型 02 催化重整催化剂
01
催化重整反应类型
催化重整反应类型
芳构化 反应
异构化 反应
加氢裂化 反应
缩合生焦 反应
催化重整反应类型
1.芳构化反应
六元环脱氢反应:
五元环烷烃异构脱氢反应:
催化重整反应类型

浅谈催化重整的化学反应机理

浅谈催化重整的化学反应机理摘要:催化重整是炼油和石油化工工业中最重要的加工工艺之一,也是催化作用在工业上最重要的应用之一。

在催化重整催化剂上发生的主要化学反应是:六元环烷脱氢反应、五元环烷脱氢异构反应、直链烷烃异构化反应、烷烃脱氢环化反应、氢解和加氢裂化反应。

关键词:催化重整;化学反应1 概述催化重整的目的是提高汽油的辛烷值或制取芳烃。

为了达到这个目的就必须了解重整过程中发生的化学反应机理,从而尽可能多的得到目的产物。

催化重整原料主要含有链烷烃和环烷烃等饱和烃,也含有少量芳香烃。

由于混合芳烃的辛烷值明显高于链烷烃和环烷烃,因此,对催化重整来说,无论其目的是生产高辛烷值汽油调合组分还是生产芳烃,都是要最大限度的将链烷烃和环烷烃转化为芳烃。

在催化重整反应条件下,芳香烃的芳环十分稳定。

因此主要考虑的是链烷烃和环烷烃的转化反应,其中包括六元环烷脱氢反应、五元环烷脱氢异构反应、直链烷烃异构化反应、烷烃的脱氢环化反应等有利于生成芳烃或高辛烷值汽油组分的主要反应,也包括这些饱和烃类的氢解和加氢裂化等生成轻烃产物的副反应。

在重整条件下,芳烴也可能发生少量的脱烷基和烷基转移等反应;此外,还会发生使催化剂逐渐失活的生焦反应。

2 六元环烷脱氢反应该反应是重整过程最基本的化学反应,它的贡献是提高了重整油的辛烷值和芳烃含量。

在所有的催化重整反应中,六元环烷烃类脱氢反应是速度最快的反应。

这个反应在双功能催化剂上只由金属功能催化。

有数据表明环己烷在铂催化剂上的脱氢速率可达到氧化钼/氧化铝催化剂的500-1300倍。

在催化重整反应条件下,载体上的少量铂即可使六元环烷烃脱氢转化为芳烃达到或接近热力学平衡。

因此,可以认为这一反应在催化重整条件下基本不存在动力学方面的限制。

Haensel等通过实验证明六元环烷烃在金属催化剂表面上脱氢时,环上的六个氢原子是分步脱除即先生成烯烃再生成芳烃。

以环己烷为例:环己烷→环己烯→环己二烯→苯。

3 五元环烷脱氢异构反应重整催化剂具有两种不同的催化性能,一种是酸性,主要起异构化作用,一种是金属性能,起加氢和脱氢作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原料不同重整一般用的是直流汽油主反应是烷烃芳构化
芳构化一般指烯烃芳构化
异构化既有烷烃异构化又有烯烃异构化
1.催化重整(简称重整)是在一定温度、压力、催化剂和氢气存在的条件下,将常压蒸馏轻汽油、加氢裂化石脑油、加氢处理后的焦化(减粘裂化)石脑油、乙烯裂解汽油的抽余油、加氢后的催化裂化汽油等轻汽油馏分转化成含芳烃较高的重整汽油的过程。

如果以取60℃——145℃馏分(称轻石脑油)为原料油,产品主要是苯、甲苯、二甲苯等芳烃;如果以取60℃——180℃馏分(称轻石脑油)为原料油,产品主要是高辛烷值汽油组分;用作蒸汽裂解制乙烯原料或合成氨造气原料时,可取初馏点至220℃馏分。

重整过程副产氢气,可作为炼油厂加氢操作的氢源。

重整的反应条件是:反应温度为490~525℃,反应压力为1~2MPa。

重整的工艺过程可分为原料预处理和重整两部分。

2.芳构化工艺主要是针对以包括直馏汽油、加氢焦化汽油、油田凝析油、重整抽余油、裂解汽油等轻烃为原料芳构化生产芳烃的工艺。

芳构化有反再系统、产物分离和再生系统组成。

3.异构化是改变化合物的结构而不改变其组成和分子量的过程。

一般指有机化合物分子中原子或基团的位置的改变。

常在催化剂的存在下进行。

相关文档
最新文档