2动量守恒定律地应用-四种模型

合集下载

动量守恒定律的典型模型

动量守恒定律的典型模型
是匀速行走还是变速行走,甚至往返行走,只要 人最终到达船的左端,那么结论都是相同的。
3、人船模型的适用条件是:两个物体组成的 系统动量守恒,系统的合动量为零。
例7. 质量为m的人站在质量为M,长为L的静止小船的 右端,小船的左端靠在岸边。当他向左走到船的左端时, 船左端离岸多远?
解:先画出示意图。人、船系统动量守恒,总动
动量守恒典型问题
碰撞中弹簧模型
三、碰撞中弹簧模型
注意:状态的把握 由于弹簧的弹力随形变量变化,弹簧 弹力联系的“两体模型”一般都是作加速 度变化的复杂运动,所以通常需要用“动 量关系”和“能量关系”分析求解。复杂 的运动过程不容易明确,特殊的状态必须 把握:弹簧最长(短)时两体的速度相同; 弹簧自由时两体的速度最大(小)。
完全非弹性碰撞
碰撞后系统以相同的速度运动 v1=v2=v 动量守恒:
m1v10 m2v20 m1 m2 v
动能损失为
E=
1 2
m1v120
1 2
m2v220
1 2
m1
m2
v 2
m1m1
2 m1 m2
v10 v20 2
例1. 如图所示,光滑水平面上质量为m1=2kg的物 块以v0=2m/s的初速冲向质量为m2=6kg静止的光滑 1/4圆弧面斜劈体。求:
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V

在此过程中,木板B 的位移为S,小木块C 的位移为S+x.

动量守恒定律经典模型

动量守恒定律经典模型

动量守恒定律经典模型动量守恒定律是力学中的一个重要定律,它揭示了物体在相互作用过程中动量的守恒性质。

动量守恒定律在经典物理学中有广泛的应用,可以帮助我们更好地理解和解释各种物理现象。

动量指的是物体的运动状态,它是质量和速度的乘积。

当几个物体之间发生相互作用时,它们的总动量保持不变。

换句话说,如果没有外力施加,物体总动量的大小和方向保持不变。

举个例子,假设有两个质量不同的小车,它们靠在一起并静止不动。

当我们给其中一个小车施加一个向右的力时,它会向右移动,同时另一个小车会向左移动。

按照动量守恒定律,两个小车的总动量保持为零,即一个小车的动量增加,另一个小车的动量减小,保持了动量的守恒。

同样,当我们把一个乒乓球抛向固定的墙壁时,球会发生反弹,它的速度改变了方向。

根据动量守恒定律,乒乓球在抛出之前的动量与反弹之后的动量大小相等,方向相反。

这解释了为什么我们在打乒乓球时,球拍会因为球的反弹而产生推力。

动量守恒定律对于解释交通事故中的力学原理也有很大的指导意义。

当两辆车发生碰撞时,它们的总动量保持不变。

如果其中一辆车的质量较大,它将对另一辆车产生更大的冲击力。

这也是为什么汽车设计中重视车身的坚固性,以减少事故时乘客受到的冲击力的原因之一。

动量守恒定律还与火箭发射原理密切相关。

当火箭喷出燃料时,燃料向后喷出的同时,火箭本身会获得向前的动量。

由于燃料喷射速度很大,火箭的质量相对较大,所以火箭可以获得很大的动量,推动自身向前飞行。

总之,动量守恒定律是经典物理学中的重要定律,它能够帮助我们解释和理解许多物理现象。

通过应用这一定律,我们能够更好地分析和计算各种动量相关的问题。

在实际生活和科学研究中,动量守恒定律具有重要的指导意义,我们应当深入学习和应用这一定律,以更好地认识和探索物理世界。

动量守恒定律在板块模型中的应用例析

动量守恒定律在板块模型中的应用例析

动量守恒定律在板块模型中的应用例析动量守恒定律在板块模型中的应用例析作为一个地球科学爱好者,我对地球板块模型和其运动规律一直充满了兴趣。

在这篇文章中,我将详细探讨动量守恒定律在板块模型中的应用,并分享一些个人观点和理解。

一、什么是动量守恒定律?在讨论动量守恒定律在板块模型中的应用之前,我们需要先了解一下什么是动量守恒定律。

动量守恒定律是物理学中一个重要的基本定律,它描述了一个封闭系统中的物体动量的守恒。

动量是物体的质量乘以速度,可以简单理解为物体在运动中的惯性。

按照动量守恒定律,在封闭系统中,物体相互作用导致的动量变化之和为零,即动量守恒。

二、动量守恒定律在板块模型中的应用2.1 地球板块运动地球板块模型是地壳的一种表达方式,描述了地球表面的外壳以数个大块或小块来划分。

这些板块在地球内部的流动和碰撞是地质活动和地震的主要原因。

在板块运动中,动量守恒定律发挥着重要的作用。

当两个板块相互碰撞或滑动时,它们之间会存在动量的交换。

根据动量守恒定律,两个板块所受的动力的大小和方向必须相等且相反,以使总动量保持不变。

2.2 板块边界类型根据板块间相对运动的不同方式,我们可以将板块边界分为三种类型:边界滑移、边界聚合和边界分离。

在边界滑移型板块边界中,两个板块相互滑动,沿着边界线发生水平位移。

这种情况下,动量守恒定律保证了两个板块之间的动力平衡,并且没有产生垂直方向的位移。

在边界聚合型板块边界中,两个板块相互碰撞,在碰撞的过程中动量守恒定律确保了总动量守恒,并导致了新的地形的形成。

在边界分离型板块边界中,两个板块相互远离,动量守恒定律确保了两个板块之间的动力平衡,并且没有产生额外的动力。

三、个人观点和理解对于我来说,动量守恒定律在板块模型中的应用是非常有意思的。

它帮助我们理解了地球上发生的地质活动,包括地震、火山喷发和山脉的形成。

通过运用动量守恒定律,我们可以更好地解释和预测板块之间的相对运动,并理解地表形态的演化。

§2 动量守恒定律及其应用

§2   动量守恒定律及其应用

§2 动量守恒定律及其应用教学目标:1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问题.2.掌握应用动量守恒定律解决问题的一般步骤.3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题.教学重点:动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤. 教学难点:应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性.教学方法:1.学生通过阅读、对比、讨论,总结出动量守恒定律的解题步骤.2.学生通过实例分析,结合碰撞、爆炸等问题的特点,明确动量守恒定律的矢量性、同时性和相对性.3.讲练结合,计算机辅助教学教学过程一、动量守恒定律1.动量守恒定律的内容一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。

即:22112211v m v m v m v m '+'=+ 2.动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

3.动量守恒定律的表达形式(1)22112211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 2 和1221v v m m ∆∆-=4.动量守恒定律的重要意义从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。

(另一个最基本的普适原理就是能量守恒定律。

)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。

相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。

例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。

2动量守恒定律的应用-四种模型

2动量守恒定律的应用-四种模型

例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少?(g取10m/s2)练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少?例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C 发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小.练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。

例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中,(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求:(1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略).2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m .P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p .O C Ba b AB v A v B C例题参考答案例3:因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量定恒定律得m A v0=m A v A+m C v CA与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB A与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立①②③式,代入数据得v A=2 m/s.例4:P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得m v 0=2m v 1 解得v 1=v 02,方向向右P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得2m v 1+2m v 0=4m v 2 解得v 2=34v 0,方向向右. (2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大 12×2m v 21+12×2m v 20=12×4m v 22+Q +E p 从P 1与P 2碰撞后到P 停在A 点 12×2m v 21+12×2m v 20=12×4m v 22+2Q 联立以上两式解得E p =116m v 20,Q =116m v 20根据功能关系有Q =μ·2mg (L +x ) 解得x =v 2032μg-L .练4:(2)A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的内能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大.(ⅰ)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得 m v 0=2m v 1此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得 m v 1=2m v 2 12m v 21=ΔE +12(2m )v 22 联立解得ΔE =116m v 20. (ⅱ)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得m v 0=3m v 3 12m v 20-ΔE =12(3m )v 23+E p联立④⑤⑥式得E p =1348m v 20.课后作业:1.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 2.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为 =0.2.求:(1)小车的最终的速度; AB v A v B(2)小车至少多长(物体A 、B 的大小可以忽略).3.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .4.如图所示,一个带有14圆弧的粗糙滑板A 的总质量m A =3 kg ,其圆弧部分与水平部分相切于P ,水平部分PQ 长L =3.75 m .开始时,A 静止在光滑水平面上.现有一质量m B =2 kg 的小木块B 从滑块A 的右端以水平初速度v 0=5 m/s 滑上A ,小木块B 与滑板A 之间的动摩擦因数μ=0.15,小木块B 滑到滑板A 的左端并沿着圆弧部分上滑一段弧长后返回,最终停止在滑板A 上.(1)求A 、B 相对静止时的速度大小.(2)若B 最终停在A 的水平部分上的R 点,P 、R 相距 1 m ,求B 在圆弧上运动的过程中因摩擦而产生的内能.(3)若圆弧部分光滑,且除v 0不确定外其他条件不变,讨论小木块B 在整个运动过程中,是否有可能在某段时间里相对地面向右运动?如不可能,说明理由;如可能,试求出B 既向右滑动,又不滑离木板A 的v 0取值范围.(取g =10 m/s 2,结果可以保留根号)课后作业参考答案1解析:(1)设弹簧刚好恢复原长时,A 和B 物块速度的大小分别为v A 、v B ,由题意可知:m A v A -m B v B =0 12m A v A 2+12m B v B 2=E p 联立解得v A =6 m/s v B =12 m/s(2)当弹簧第二次被压缩到最短时,弹簧具有的弹性势能最大,此时A 、B 、C 具有相同的速度,设此速度为vm C v C =(m A +m B +m C )v 所以v =1 m/sC 与B 碰撞,设碰后B 、C 粘连时的速度为v ′ m B v B -m C v C =(m B +m C )v ′ 解得v ′=4 m/s故弹簧第二次被压缩到最短时,弹簧具有的最大弹性势能为:E p ′=12m A v A 2+12(m B +m C )v ′2-12(m A +m B+m C )v 2=50 J.2解析:(1)由于A 、B 、C 组成的系统水平方向动量守恒,且三者最后保持相对静止,设最终共同速度为v ,则()A A B B A B C m v m v m m m v -=++,v =0.4m/s(2)A 、B 始终没有相碰,若板长为L ,A 、B 相对板的位移分别为s AC 、s BC ,则AC BC s s L +≤O C a b系统的动能损失全部用于在相对位移上克服摩擦力做功,有222111()()222A A B A B C A AC B BC m v mv m m m v m gS m gS μ+-++=+ 故板长至少为L =4.8m .3解析:⑴系统的动量守恒可得m a v a =m b v b ,① 又m a =2m b =2 kg , v a =4.5m/s 解得:v b =9.0m/s ② 设滑块b 到达B 点时的速度为B v ,由动能定理得,222121bb B b b v m v m gL m -=-μ ③ 刚进入圆轨道时,设滑块b 受到的支持力为F N ,由牛顿第二定律得,R v m g m F Bb b N 2=- ④由牛顿第三定律'N N F F -= ⑤ 由③④⑤得滑块b 对轨道的压力N F N 95'-=,方向竖直向下⑵若小滑块b 能到达圆轨道最高点,速度为v C 则由机械能守恒,2221221Cb b B b v m R g m v m += ⑥ 解得s m v C 0.3= ⑦小物块b 恰能过最高点的速度为v ,则Rv m g m b b 2= ⑧解得,s m gR v 10==⑨因v v C 〈,故小滑块b 不能到达圆轨道最高点C .4【解析】(1)根据动量守恒得:m B v 0=(m B +m A )v解得:v =25v 0=2 m/s .(2)设B 在A 的圆弧部分产生的热量为Q 1,在A 的水平部分产生的热量为Q 2.则有: 12m B v 02=12(m B +m A )v 2+Q 1+Q 2 又Q 2=μm B g (L QP +L PR ) 联立解得:Q 1=0.75 J .(3)当B 滑上圆弧再返回至P 点时最有可能速度向右,设木块滑至P 的速度为v B ,此时A 的速度为v A ,有:m B v 0=m B v B +m A v A12m B v 02=12m B v B 2+12m A v A 2+μm B gL 代入数据得:v B 2-0.8v 0v B +6.75-0.2v 02=0当v B 的两个解一正一负时,表示B 从圆弧滑下的速度向右.即需:v 0>5.9 m/s ,故B 有可能相对地面向右运动.若要B 最终不滑离A ,有:μm B g ·2L ≥12m B v 02-12(m B +m A )(25v 0)2得:v 0≤6.1 m/s故v 0的取值范围为:5.9 m/s <v 0≤6.1 m/s .。

动量守恒定律10个模型

动量守恒定律10个模型

动量守恒定律10个模型简介动量守恒定律是物理学中的一个重要定律,它描述了在一个孤立系统中,系统的总动量在时间上是守恒的。

根据动量守恒定律,我们可以推导出许多有趣的模型和应用。

本文将介绍10个与动量守恒定律相关的模型,帮助读者更好地理解和应用这一定律。

1. 碰撞模型碰撞是动量守恒定律最常见的应用之一。

当两个物体碰撞时,它们之间的动量可以发生变化,但它们的总动量必须保持不变。

根据碰撞模型,我们可以计算出碰撞前后物体的速度和动量的变化。

2. 均质质点模型在动量守恒定律中,我们通常将物体看作是均质质点,即物体的质量分布均匀。

这样做的好处是简化计算,使得动量守恒定律更易于应用。

3. 爆炸模型爆炸是动量守恒定律另一个重要的应用场景。

当一个物体爆炸成多个碎片时,每个碎片的动量之和必须等于爆炸前物体的总动量。

通过爆炸模型,我们可以计算出碎片的速度和动量。

4. 转动惯量模型动量守恒定律不仅适用于质点,还适用于旋转物体。

当一个旋转物体发生转动时,它的动量也必须守恒。

转动惯量模型帮助我们计算旋转物体的动量和角速度的变化。

5. 弹性碰撞模型弹性碰撞是碰撞模型的一个特殊情况,它要求碰撞前后物体的动能守恒。

在弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。

6. 非弹性碰撞模型非弹性碰撞是碰撞模型的另一个特殊情况,它要求碰撞过程中有能量损失。

在非弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。

7. 线性动量守恒模型线性动量守恒模型是动量守恒定律的一个基本应用。

它适用于直线运动的物体,通过计算物体的质量和速度,我们可以得到物体的动量和动量守恒的结果。

8. 角动量守恒模型角动量守恒模型是动量守恒定律在旋转物体中的应用。

通过计算物体的转动惯量和角速度,我们可以得到物体的角动量和角动量守恒的结果。

9. 动量守恒实验模型动量守恒实验模型是利用实验验证动量守恒定律的方法。

2动量守恒定律的应用-四种模型

2动量守恒定律的应用-四种模型

例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少?(g取10m/s2)练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少?例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小.练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。

例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中,(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求:(1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略).2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m .P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p .O C Ba b AB v A v B C例题参考答案例3:因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量定恒定律得m A v0=m A v A+m C v CA与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB A与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立①②③式,代入数据得 v A =2 m/s.例4:P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得mv 0=2mv 1 解得v 1=v 02,方向向右P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得2mv 1+2mv 0=4mv 2 解得v 2=34v 0,方向向右.(2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大 12×2mv 21+12×2mv 20=12×4mv 22+Q +E p从P 1与P 2碰撞后到P 停在A 点 12×2mv 21+12×2mv 20=12×4mv 22+2Q联立以上两式解得E p =116mv 20,Q =116mv 2根据功能关系有Q =μ·2mg (L +x ) 解得x =v 2032μg-L .练4:(2)A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的内能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大.(ⅰ)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得 mv 0=2mv 1此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得 mv 1=2mv 2 12mv 21=ΔE +12(2m )v 22 联立解得ΔE =116mv 20.(ⅱ)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得mv 0=3mv 3 12mv 20-ΔE =12(3m )v 23+E p联立④⑤⑥式得E p =1348mv 20.课后作业:1.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.2.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求: (1)小车的最终的速度;(2)小车至少多长(物体A 、B 的大小可以忽略).3.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .4.如图所示,一个带有14圆弧的粗糙滑板A 的总质量m A =3 kg ,其圆弧部分与水平部分相切于P ,水平部分PQ 长L =3.75 m .开始时,A 静止在光滑水平面上.现有一质量m B =2 kg 的小木块B 从滑块A 的右端以水平初速度v 0=5 m/s 滑上A ,小木块B 与滑板A 之间的动摩擦因数μ=0.15,小木块B 滑到滑板A 的左端并沿着圆弧部分上滑一段弧长后返回,最终停止在滑板A 上.(1)求A 、B 相对静止时的速度大小.(2)若B 最终停在A 的水平部分上的R 点,P 、R 相距 1 m ,求B 在圆弧上运动的过程中因摩擦而产生的内能.(3)若圆弧部分光滑,且除v 0不确定外其他条件不变,讨论小木块B 在整个运动过程中,是否有可能在某段时间里相对地面向右运动?如不可能,说明理由;如可能,试求出B 既向右滑动,又不滑离木板A 的v 0取值范围.(取g =10 m/s 2,结果可以保留根号)课后作业参考答案1解析:(1)设弹簧刚好恢复原长时,A 和B 物块速度的大小分别为v A 、v B ,由题意可知:m A v A -m B v B =0 12m A v A 2+12m B v B 2=E p 联立解得v A =6 m/s v B =12 m/s(2)当弹簧第二次被压缩到最短时,弹簧具有的弹性势能最大,此时A 、B 、C 具有相同的速度,设此速度为vm C v C =(m A +m B +m C )v 所以v =1 m/sC 与B 碰撞,设碰后B 、C 粘连时的速度为v ′ m B v B -m C v C =(m B +m C )v ′ 解得v ′=4 m/s故弹簧第二次被压缩到最短时,弹簧具有的最大弹性势能为:E p ′=12m A v A 2+12(m B +m C )v ′2-12(m A +m B+m C )v 2=50 J.2解析:(1)由于A 、B 、C 组成的系统水平方向动量守恒,且三者最后保持相对静止,设最终共同速度O C B a b为v ,则()A A B B A B C m v m v m m m v -=++,v =0.4m/s(2)A 、B 始终没有相碰,若板长为L ,A 、B 相对板的位移分别为s AC 、s BC ,则AC BC s s L +≤ 系统的动能损失全部用于在相对位移上克服摩擦力做功,有222111()()222A A B A B C A AC B BC m v mv m m m v m gS m gS μ+-++=+ 故板长至少为L =4.8m .3解析:⑴系统的动量守恒可得m a v a =m b v b ,① 又m a =2m b =2 kg , v a =4.5m/s 解得:v b =9.0m/s ② 设滑块b 到达B 点时的速度为B v ,由动能定理得,222121bb B b b v m v m gL m -=-μ ③ 刚进入圆轨道时,设滑块b 受到的支持力为F N ,由牛顿第二定律得,R v m g m F Bb b N 2=- ④由牛顿第三定律'N N F F -= ⑤ 由③④⑤得滑块b 对轨道的压力N F N 95'-=,方向竖直向下⑵若小滑块b 能到达圆轨道最高点,速度为v C 则由机械能守恒,2221221Cb b B b v m R g m v m += ⑥ 解得s m v C 0.3= ⑦小物块b 恰能过最高点的速度为v ,则Rv m g m b b 2= ⑧解得,s m gR v 10==⑨因v v C 〈,故小滑块b 不能到达圆轨道最高点C .4【解析】(1)根据动量守恒得:m B v 0=(m B +m A )v解得:v =25v 0=2 m/s .(2)设B 在A 的圆弧部分产生的热量为Q 1,在A 的水平部分产生的热量为Q 2.则有: 12m B v 02=12(m B +m A )v 2+Q 1+Q 2 又Q 2=μm B g (L QP +L PR ) 联立解得:Q 1=0.75 J .(3)当B 滑上圆弧再返回至P 点时最有可能速度向右,设木块滑至P 的速度为v B ,此时A 的速度为v A ,有:m B v 0=m B v B +m A v A12m B v 02=12m B v B 2+12m A v A 2+μm B gL 代入数据得:v B 2-0.8v 0v B +6.75-0.2v 02=0当v B 的两个解一正一负时,表示B 从圆弧滑下的速度向右.即需:v 0>5.9 m/s ,故B 有可能相对地面向右运动.若要B 最终不滑离A ,有:μm B g ·2L ≥12m B v 02-12(m B +m A )(25v 0)2得:v 0≤6.1 m/s故v 0的取值范围为:5.9 m/s <v 0≤6.1 m/s .如有侵权请联系告知删除,感谢你们的配合!。

高中物理第08章动量守恒 动量守恒定律应用 四种常见模型

高中物理第08章动量守恒 动量守恒定律应用 四种常见模型

高中物理第08章动量守恒 动量守恒定律应用四种常见模型Lex Li01、动量守恒定律概述(1)动量守恒定律的五性:①条件性:满足系统条件或近似条件;②系统性:动量守恒是相对与系统的,对于一个物体无所谓守恒;③矢量性:表达式中涉及的都是矢量,需要首先选取正方向,分清各物体初、末动量的正、负。

④相对性:方程中的所有动量必须相对于同一参考系;⑤同时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。

不同时刻的动量不能相加。

(2)应用动量守恒定律解题的步骤①对象(系统性):分析题意,明确研究对象;②受力(条件性):对各阶段所选系统内物体进行受力分析,判定能否应用动量守恒; ③过程(矢量性、相对性、同时性):确定过程的始、末状态,写出初动量和末动量表达式;④方程:建立动量守恒方程求解。

02、常见模型(1)碰撞、爆炸:作用时间极短,内力远大于外力,系统动量守恒①弹性碰撞:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则: 动量守恒:221101v m v m v m += 动能不变:222211111011v m v m v m +=解得:121012m m v v m m −=+ 120122m v v m m =+②非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能损失:22'2'21111112211222222()()E m v m v m v m v ∆=+−+ ③完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v机械能损失:222111112212()()E m v m v m m v ∆=+−+④爆炸:系统动量守恒,机械能增加例01 如图所示,光滑水平面上有A、B、C三个物块,其质量分别为m A=2.0 kg,m B=m C =1.0 kg,现用一轻弹簧将A、B两物块连接,并用力缓慢压缩弹簧使A、B两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C恰好以4 m/s的速度迎面与B发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B与C碰撞前),A和B物块速度的大小;(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.针对训练01 如图所示,总质量为M的大小两物体,静止在光滑水平面上,质量为m的小物体和大物体间有压缩着的弹簧,另有质量为2m的物体以v0速度向右冲来,为了防止冲撞,大物体将小物体发射出去,小物体和冲来的物体碰撞后粘合在一起.小物体发射的速度至少应多大,才能使它们不再碰撞?(2)人船模型(平均动量守恒问题):特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).例02 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少?(g取10m/s2)练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少?例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小.练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。

例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中,(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度围),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求:(1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略).2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m .P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p .O C a b AB v A v B C例题参考答案例3:因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量定恒定律得 m A v 0=m A v A +m C v CA 与B 在摩擦力作用下达到共同速度,设共同速度为v AB ,由动量守恒定律得 m A v A +m B v 0=(m A +m B )v AB A 与B 达到共同速度后恰好不再与C 碰撞,应满足 v AB =v C 联立①②③式,代入数据得 v A =2 m/s.例4:P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得mv 0=2mv 1 解得v 1=v 02,方向向右P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得2mv 1+2mv 0=4mv 2 解得v 2=34v 0,方向向右.(2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大 12×2mv 21+12×2mv 20=12×4mv 22+Q +E p从P 1与P 2碰撞后到P 停在A 点 12×2mv 21+12×2mv 20=12×4mv 22+2Q联立以上两式解得E p =116mv 20,Q =116mv 2根据功能关系有Q =μ·2mg (L +x ) 解得x =v 2032μg-L .练4:(2)A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大.(ⅰ)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得 mv 0=2mv 1此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得 mv 1=2mv 2 12mv 21=ΔE +12(2m )v 22 联立解得ΔE =116mv 20.(ⅱ)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得mv 0=3mv 3 12mv 20-ΔE =12(3m )v 23+E p联立④⑤⑥式得E p =1348mv 20.课后作业:1.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度围),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.2.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求:(1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略).3.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .4.如图所示,一个带有14圆弧的粗糙滑板A 的总质量m A =3 kg ,其圆弧部分与水平部分相切于P ,水平部分PQ 长L =3.75 m .开始时,A 静止在光滑水平面上.现有一质量m B =2 kg 的小木块B 从滑块A 的右端以水平初速度v 0=5 m/s 滑上A ,小木块B 与滑板A 之间的动摩擦因数μ=0.15,小木块B 滑到滑板A 的左端并沿着圆弧部分上滑一段弧长后返回,最终停止在滑板A 上.(1)求A 、B 相对静止时的速度大小.(2)若B 最终停在A 的水平部分上的R 点,P 、R 相距 1 m ,求B 在圆弧上运动的过程中因摩擦而产生的能.(3)若圆弧部分光滑,且除v 0不确定外其他条件不变,讨论小木块B 在整个运动过程中,是否有可能在某段时间里相对地面向右运动?如不可能,说明理由;如可能,试求出B 既向右滑动,又不滑离木板A 的v 0取值围.(取g =10 m/s 2,结果可以保留根号)课后作业参考答案1解析:(1)设弹簧刚好恢复原长时,A 和B 物块速度的大小分别为v A 、v B ,由题意可知:m A v A -m B v B =0 12m A v A 2+12m B v B 2=E p 联立解得v A =6 m/s v B =12 m/s(2)当弹簧第二次被压缩到最短时,弹簧具有的弹性势能最大,此时A 、B 、C 具有相同的速度,设此速度为vm C v C =(m A +m B +m C )v 所以v =1 m/sC 与B 碰撞,设碰后B 、C 粘连时的速度为v ′ m B v B -m C v C =(m B +m C )v ′ 解得v ′=4 m/sO C a b AB v A v B C故弹簧第二次被压缩到最短时,弹簧具有的最大弹性势能为:E p ′=12m A v A 2+12(m B +m C )v ′2-12(m A +m B+m C )v 2=50 J.2解析:(1)由于A 、B 、C 组成的系统水平方向动量守恒,且三者最后保持相对静止,设最终共同速度为v ,则()A A B B A B C m v m v m m m v -=++,v =0.4m/s(2)A 、B 始终没有相碰,若板长为L ,A 、B 相对板的位移分别为s AC 、s BC ,则AC BC s s L +≤ 系统的动能损失全部用于在相对位移上克服摩擦力做功,有222111()()222A A B A B C A AC B BC m v mv m m m v m gS m gS μ+-++=+ 故板长至少为L =4.8m .3解析:⑴系统的动量守恒可得m a v a =m b v b ,① 又m a =2m b =2 kg , v a =4.5m/s 解得:v b =9.0m/s ② 设滑块b 到达B 点时的速度为B v ,由动能定理得,222121bb B b b v m v m gL m -=-μ ③ 刚进入圆轨道时,设滑块b 受到的支持力为F N ,由牛顿第二定律得,R v m g m F Bb b N 2=- ④由牛顿第三定律'N N F F -= ⑤ 由③④⑤得滑块b 对轨道的压力N F N 95'-=,方向竖直向下⑵若小滑块b 能到达圆轨道最高点,速度为v C 则由机械能守恒,2221221Cb b B b v m R g m v m += ⑥ 解得s m v C 0.3= ⑦小物块b 恰能过最高点的速度为v ,则Rv m g m b b 2= ⑧解得,s m gR v 10==⑨因v v C 〈,故小滑块b 不能到达圆轨道最高点C .4【解析】(1)根据动量守恒得:m B v 0=(m B +m A )v解得:v =25v 0=2 m/s .(2)设B 在A 的圆弧部分产生的热量为Q 1,在A 的水平部分产生的热量为Q 2.则有: 12m B v 02=12(m B +m A )v 2+Q 1+Q 2 又Q 2=μm B g (L QP +L PR )联立解得:Q 1=0.75 J .(3)当B 滑上圆弧再返回至P 点时最有可能速度向右,设木块滑至P 的速度为v B ,此时A 的速度为v A ,有:m B v 0=m B v B +m A v A12m B v 02=12m B v B 2+12m A v A 2+μm B gL 代入数据得:v B 2-0.8v 0v B +6.75-0.2v 02=0当v B 的两个解一正一负时,表示B 从圆弧滑下的速度向右.即需:v 0>5.9 m/s ,故B 有可能相对地面向右运动.若要B 最终不滑离A ,有:μm B g ·2L ≥12m B v 02-12(m B +m A )(25v 0)2得:v 0≤6.1 m/s故v 0的取值围为:5.9 m/s <v 0≤6.1 m/s .。

相关文档
最新文档