上海市2015年12月大同杯数学竞赛(含答案)

合集下载

2015上海数学自招大同中学真题

2015上海数学自招大同中学真题

2015年大同中学自主招生测试题数学试题一、填空题1、已知二次函数2y ax bx c =++符合2()()()f x f x f x ⋅-=,则这样的二次函数有___________个。

2、一辆火车经过一个信号灯花了14分钟,经过600m 隧道用了34分钟, 则火车速度为___________/km h 。

3、使完全平方数211n +成立的正整数n 为____________。

4、838,212称这两个数字为回文数,并且838212626-=也是回文数,便称(838,212)为回文数对,那么有________个(a b >)的(,)a b 的回文数对?5、有九个格子,三种颜色,每一列每一行三种颜色不重复, 那么有_____种情况?6、当有一列数相加,每两个数字之间差不大于1,且第一个与最后一个数为1时,则称这个相加之后的数为“好数”,例如:12334543322133+++++++++++=,则称这些数是33的“好数”,已知2008是好数,那么它的好数至少有_______项?7、已知两个函数2(0)k y k x=<与y x =-+的图像相交于点P ,且OP =___k =。

8a +=,求a 。

9、已知:当n 为偶数时,()2,Snap n n =当n 为奇数时,()3,Snap n n =P 为大于2的质数,求[(1)]Snap snap p p --。

10、在一个直角三角形中,三边为等比数列,且最短边为2,求斜边长。

二、解答题1、4a b c ++=,22210a b c ++=,33322a b c ++=,求444a b c ++。

2、已知40AB BC ==,25CE =,求BD 的长3、已知二次函数二次项系数为a ,当()0f x =时两根为1和3,(1) 当()60f x a +=,。

求()f x 的解析式;(2) 当()f x 有最大值且最大值为正数时,求a 的范围。

试题:2015年大同杯初赛试卷最新修正版

试题:2015年大同杯初赛试卷最新修正版

初中物理竞赛(大同中学杯)初赛试卷(兼区县物理竞赛试卷)2015年3月8日上午9:00一l 0:30说明:1、本试卷共分两部分,第一部分为单项选择题,每题3分,共30题,计90分:第二部分为多项选择题,每题5分,全对得5分,部分选对得2分,选错或不选得0分,共l2题,计60分。

全卷满分l50分。

2、考试时间为90分钟。

3、考生使用答题纸(卡),把每题的正确选项填在答题纸(卡)相应位置。

允许使用计算器,考试完毕后,请将试卷、答题纸(卡)一并交给监考人员。

4、水的比热容:c水=4.2×103焦/(千克·℃)第一部分:单项选择题1,最早提出物体运动不需要力来维持的物理学家是( )(A)亚里士多德(B)焦耳(C)牛顿(D)伽利略2.如图所示,以下现象中通过做功改变物体内能的是((A)搓手取暖(B)水被加热(c)勺子烫手(D)曝晒钢瓶3.如图所示,能正确表示小磁针指向的是()4.有的工厂的烟囱里会冒出“白烟”,主要原因是( )(A)排出的气体中含有C02气体遇冷凝结,形成“白烟”(B)排出的热气体与空气中的水滴混合,形成“白烟”(C)排出的气体中含有大量的C0、C02等混合气体,形成“白烟”(D)排出的气体中含有水蒸气遇冷凝结成小水滴,形成“白烟”5.把一个带正电的物体A,靠近一个原来不带电的验电器的金属小球,然后用手去触摸金属小球(人体是通大地的导体),再移开手,这时( )(A)金属小球和金属箔都不带电(B)金属小球带负电,金属箔不带电(C)金属小球带负电,金属箔带正电(D)金属小球带负电,金属箔也带负电6.如图所示,在水平的两根平行筷子中间放上两只乒乓球,通过空心塑料管向两球间用力吹气,会发现两只乒乓球( )(A)相互靠近(B)相互远离(C)静止不动(D)向同一方向运动7.如图所示的日食现象,又称为日蚀,是一种天文现象。

当月球运行至太阳与地球之间时,对地球上的部分地区来说,月球挡住了太阳的一部分或全部光线,看起来好像是太阳的一部分或全部消失了,这就是日食现象。

2015年全国高中数学联赛参考答案(A卷word版本)

2015年全国高中数学联赛参考答案(A卷word版本)

2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。

分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题份分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,线段DC 上的动点P 与CB 延长线上的动点Q 满=,则PQ PA ⋅的最小值为 .答案34.解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得 ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解;(ii) ππππw w 22925≤<≤,此时2549≤≤w ;(iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w .综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd ,若,,,d c c b b a ><>则称abcd 为P 类数,若d c c b b a <><,,,则称abcd 为Q 类数,则P 类数总量与Q 类数总量之差等于 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑. 因此,()()285N P N Q -=. 三、解答题9.(本题满分16分)若实数c b a ,,满足cb ac b a 424,242=+=+,求c 的最小值. 解:将2,2,2abc分别记为,,x y z ,则,,0x y z >.由条件知,222,x y z x y z +=+=,故2222224()2z y x z y z y z y -==-=-+.8分因此,结合平均值不等式可得,4221111(2)244y y z y y y y +==++≥⋅=12分 当212y y =,即y =时,zx求).由于2log c z =,故c的最小值225log log 33=-.16分 10.(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值. 解:由条件可知,(14)i j a a i j ≤<≤是6个互不相同的数,且其中没有两个为相反数,由此知,4321,,,a a a a 的绝对值互不相等,不妨设||||||||4321a a a a <<<,则||||(14)i j a a i j ≤<≤中最小的与次小的两个数分别是12||||a a 及13||||a a ,最大与次大的两个数分别是34||||a a 及24||||a a ,从而必须有121324341,81,3,24,a a a a a a a a ⎧=-⎪⎪⎪=⎨⎪=⎪=-⎪⎩ 10 分 于是2341112113,,248a a a a a a a =-===-. 故2231412113{,}{,24}{2,}82a a a a a a =--=--,15分结合1a Q ∈,只可能114a =±.由此易知,123411,,4,642a a a a ==-==-或者123411,,4,642a a a a =-==-=.检验知这两组解均满足问题的条件. 故123494a a a a +++=±. 20 分 11.(本题满分20分)设21,F F 分别为椭圆1222=+y x 的左右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点B A ,,焦点2F 到直线l 的距离为d ,如果11,,BF l AF 的斜率依次成等差数列,求d 的取值范围.解:由条件知,点1F 、2F 的坐标分别为(-1, 0)和(l, 0) .设直线l 的方程为y kx m =+,点A 、B 的坐标分别为11(,)x y 和22(,)x y ,则12,x x 满足方程22()12x kx m ++=,即 222(21)4(22)0k x kmx m +++-=.由于点A 、B 不重合,且直线l 的斜率存在,故12,x x 是方程①的两个不同实根,因此有①的判别式22222(4)4(21)(22)8(21)0km k m k m ∆=-⋅+⋅-=+->,即2221k m +>.②由直线11,,BF l AF 的斜率1212,,11y y k x x ++依次成等差数列知,1212211y yk x x +=++,又1122,y kx m y kx m =+=+,所以122112()(1)()(1)2(1)(1)kx m x kx m x k x x +++++=++,化简并整理得,12()(2)0m k x x -++=.假如m k =,则直线l 的方程为y kx k =+,即 z 经过点1F (-1, 0),不符合条件. 因此必有1220x x ++=,故由方程①及韦达定理知,1224()221kmx x k =-+=+,即12m k k=+.③ 由②、③知,222121()2k m k k +>=+,化简得2214k k>,这等价于||2k >. 反之,当,m k满足③及||2k >l 必不经过点1F (否则将导致m k =,与③矛盾), 而此时,m k 满足②,故l 与椭圆有两个不同的交点A 、B ,同时也保证了1AF 、1BF 的斜率存在(否则12,x x 中的某一个为- l ,结合1220x x ++=知121x x ==-,与方程①有两个不同的实根矛盾).10分点2F (l , 0)到直线l: y kx m =+的距离为211|2|(2)22d k kk ==+=+.注意到||2k >t =t ∈,上式可改写为 21313()()222t d t t t=⋅+=⋅+.考虑到函数13()()2f t t t=⋅+在上上单调递减,故由④得,(1)f d f <<,即2)d ∈.20 分加试1.(本题满分40分)设)2(,,,21≥⋅⋅⋅n a a a n 是实数,证明:可以选取{}1,1,,,21-∈⋅⋅⋅n εεε,使得))(1()()(122121∑∑∑===+≤+ni i i n i i ni i a n a a ε.证法一:我们证明:2[]222111[]2()(1)()n n n n i i j i n i i i j a a a n a ====⎛⎫ ⎪+-≤+ ⎪ ⎪⎝⎭∑∑∑∑,① 即对1,2,,[]2n i =,取1i ε=,对[]1,,2ni n =+,取1i ε=-符合要求.(这里,[]x 表示实数x 的整数部分.) 10分事实上,①的左边为2222[][][]222111[]1[]1[]122222n n n n n n i j i j i j n n n i i i j j j a a a a a a ====+=+=+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++-=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ []2221[]122222n n i j n i j n n a n a ==+⎛⎫⎛⎫⎛⎫⎡⎤⎡⎤ ⎪ ⎪≤+- ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪ ⎪⎝⎭⎝⎭∑∑(柯西不等式)30分 []2221[]1212222n n i j n i j n n a a ==+⎛⎫⎛⎫⎛+⎫⎡⎤⎡⎤ ⎪ ⎪=+ ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪⎪⎝⎭⎝⎭∑∑(利用122n n n +⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦) []2221[]12(1)n n i j n i j n a n a ==+⎛⎫⎛⎫ ⎪ ⎪≤++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭∑∑(利用[]x x ≤) 21(1)()ni i n a =≤+∑.所以 ① 得证,从而本题得证.证法二:首先,由于问题中12,,,n a a a 的对称性,可设12n a a a ≥≥≥.此外,若将12,,,n a a a 中的负数均改变符号,则问题中的不等式左边的21)(∑=n i i a 不减,而右边的21ni i a=∑不变,并且这一手续不影响1i ε=±的选取,因此我们可进一步设120n a a a ≥≥≥≥. 10分引理:设120n a a a ≥≥≥≥,则1110(1)ni i i a a -=≤-≤∑.事实上,由于1(1,2,,1)i i a a i n +≥=-,故当n 是偶数时,1123411(1)()()()0ni i n n i a a a a a a a --=-=-+-++-≥∑,11232111(1)()()ni i n n n i a a a a a a a a ---=-=------≤∑.当n 是奇数时,11234211(1)()()()0ni i n n n i a a a a a a a a ---=-=-+-++-+≥∑,1123111(1)()()ni i n n i a a a a a a a --=-=-----≤∑.引理得证. 30 分回到原题,由柯西不等式及上面引理可知22122211111(1)(1)n n n ni i i i i i i i i a a n a a n a -====⎛⎫⎛⎫⎛⎫+-≤+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑,这就证明了结论. 40分证法三:加强命题:设12,,,n a a a ⋅⋅⋅(2n ≥)是实数,证明:可以选取12,,,{1,1}n εεε⋅⋅⋅∈-,使得 2221111()()()()n nn i i i i i i i a a n a n ε===+≤+∑∑∑.证明 不妨设22212n a a a ≥≥⋅⋅⋅≥,以下分n 为奇数和n 为偶数两种情况证明.当n 为奇数时,取12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,于是有12221112()[()()]n nni i jn i i j a a a -+===+-∑∑∑12221122[()+()]n ni jn i j a a -+===∑∑1222112112()+2()()22n n i j n i j n n a n a -+==--≤⋅⋅-∑∑(应用柯西不等式).1222112(1)()+(1)()n ni jn i j n a n a -+===-+∑∑ ①另外,由于22212n a a a≥≥⋅⋅⋅≥,易证有122211211(1)(1)n n i j n i j a a n n -+==+≥-∑∑,因此,由式①即得到1222112(1)()+(1)()n nijn i j n a n a -+==-+∑∑211()()n i i n a n =≤+∑,故n 为奇数时,原命题成立,而且由证明过程可知,当且仅当12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,且12n a a a ==⋅⋅⋅=时取等号.当n 为偶数时,取1221n εεε==⋅⋅⋅==,24221n n n εεε++==⋅⋅⋅==-,于是有2222112()[()()]n nni i j n i i j a a a +===+-∑∑∑22222122[()+()]n ni j n i j a a +===∑∑2222122()+2()()22nn i j n i j n n a n a +==≤⋅⋅-∑∑(应用柯西不等式).222212[()+()]n nijn i j n a a +===∑∑22111()()()nn ii i i n a n a n ===≤+∑∑,故n 为偶数时,原命题也成立,而且由证明过程可知,当且仅当120n a a a ==⋅⋅⋅==时取等号,若12,,,n a a a ⋅⋅⋅不全为零,则取不到等号.综上,联赛加试题一的加强命题获证. 2.(本题满分40分)设{},,,,21n A A A S ⋅⋅⋅=其中n A A A ,,,21⋅⋅⋅是n 个互不相同的有限集合)2(≥n ,满足对任意的S A A j i ∈,,均有S A A j i ∈ ,若2min 1≥=≤≤i ni A k ,证明:存在i ni A x 1=∈ ,使得x 属于n A A A ,,,21⋅⋅⋅中的至少kn个集合.证明:不妨设1||A k =.设在12,,,n A A A 中与1A 不相交的集合有s 个,重新记为12,,,s B B B ,设包含1A 的集合有t 个,重新记为12,,,t C C C .由已知条件,1()i B A S ∈,即112(){,,,}i t B A C C C ∈,这样我们得到一个映射12121:{,,,}{,,,},()s t i i f B B B C C C f B B A →=. 显然f 是单映射,于是,s t ≤. 10 分设112{,,,}k A a a a =.在n A A A ,,,21⋅⋅⋅中除去12,,,s B B B ,12,,,t C C C 后,在剩下的n s t --个集合中,设包含i a 的集合有i x 个(1i k ≤≤),由于剩下的n s t --个集合中每个集合与从的交非空,即包含某个i a ,从而12k x x x n s t +++≥--. 20 分不妨设11max i i k x x ≤≤=,则由上式知i n s tx k --≥,即在剩下的n s t --个集合中,包含1a的集合至少有n s tk--个.又由于),,2,1(1t i C A i ⋅⋅⋅=⊆,故12,,,t C C C 都包含1a ,因此包含1a 的集合个数至少为(1)n s t n s k t n s tt k k k---+---+=≥(利用2k ≥) nk ≥(利用s t ≤). 40 分 3.(本题满分50分)如图,ABC ∆内接于圆O ,P 为BC 弧上一点,点K 在AP 上,使得BK 平分ABC ∠,过C P K ,,三点的圆Ω与边AC 交于D ,连接BD 交圆Ω于E ,连接PE ,延长交AB 于F ,证明:FCB ABC ∠=∠2.证法一:设CF 与圆Q 交于点L (异于C),连接PB 、PC 、 BL 、KL .注意此时C 、D 、L 、K 、E 、P 六点均在圆Ω上,结合A 、 B 、P 、C 四点共圆,可知∠FEB=∠DEP=180°-∠DCP=∠ABP=∠FBP ,因此△FB E ∽△FPB ,故FB 2=FE ·FP .10分又由圆幂定理知,FE ·FP= FL ·FC ,所以FB 2=FL ·FC . 从而△FBL ∽△FCB .因此, ∠FLB=∠FBC=∠APC=∠KPC=∠FLK, 即B 、K 、L 三点共线. 30 分再根据△FBL ∽△FCB 得,∠FCB=∠FBL=12∠ABC, 即∠ABC=2∠FCB .证法二:设CF 与圆Ω交于点L (异于C).对圆内接广义六边形DCLKPE 应用帕斯卡定理可知, DC 与KP 的交点A 、CL 与PE 的交点F 、LK 与ED 的交点了共线,因此B ’是AF 与ED 的交点,即B ’=B .所以B 、K 、L 共线.10分根据A 、B 、P 、C 四点共圆及L 、K 、P 、C 四点共圆,得 ∠ABC=∠APC=∠FLK=∠FCB+∠LBC,又由BK 平分∠ABC 知,∠FBL=12∠ABC ,从而 ∠ABC=2∠FCB .4.(本题满分50分)求具有下述性质的所有正整数k :对任意正整数n 都有1)1(2+-n k 不整除!)!(n kn . 解:对正整数m ,设2()v m 表示正整数m 的标准分解中素因子2的方幂,则熟知2(!)()v m m S m =-,①这里()S m 表示正整数m 在二进制表示下的数码之和.由于1)1(2+-n k 不整除()!!kn n ,等价于2()!()(1)!kn v k n n ≤-,即22(()!)(!)kn v kn n v n -≥-,进而由①知,本题等价于求所有正整数k ,使得()()S kn S n ≥对任意正整数n 成立. 10分我们证明,所有符合条件的k 为2(0,1,2,)aa =.一方面,由于(2)()aS n S n =对任意正整数n 成立,故2ak =符合条件. 20 分另一方面,若k 不是2的方幂,设2,0,ak q a q =⋅≥是大于1的奇数.下面构造一个正整数n ,使得()()S kn S n <.因为()(2)()aS kn S q S qn <⋅=, 因此问题等价于我们选取q 的一个倍数m ,使得()()m S m S q <. 由(2,q )=l ,熟知存在正整数u ,使得21(mod )uq ≡.(事实上,由欧拉定理知,u 可以取()q ϕ的.)设奇数q 的二进制表示为1212222,0,2t a a at a a a t +++=<<<≥.取1122222t t a a tu aa-+++++,则()S m t =,且2(21)0(mod )t a tu m q q =+-≡.我们有1(1)02121211212(122)12t t ttu uu t a a lu a u t ul m q q q q q -+-=---=++⋅=+⋅+++=+⋅∑由于2102u uq -<<,故正整数21u q -的二进制表示中的最高次幂小于u ,由此易知,对任意整数,(01)i j i j t ≤<≤-,数212t u iu a q +-⋅与212tu ju a q+-⋅的二进制表示中没有相同的项.又因为0i a >,故212(0,1,,1)tu lu a l t q +-⋅=-的二进制表示中均不包含1,故由②可知21()1()()u m S S t t S m q q-=+⋅>=, 因此上述选取的m 满足要求.综合上述的两个方面可知,所求的k 为2(0,1,2,)aa =.50分。

2015大同杯复赛试卷及答案

2015大同杯复赛试卷及答案

上海市第二十九届初中物理竞赛(大同中学杯)复赛试题(2 0 1 5年)说明:1.本试卷共有五大题,答题时间为120分钟,试题满分为150分。

2.答案及解答过程均写在答卷纸上。

其中第一、二大题只要写出答案而不写解答过程: 第三~第五大题按题型要求写出完整的解答过程。

解答过程中可以使用计算器。

3.考试完毕将试卷、一答题纸、草稿纸分开上交。

4.本试卷中常数g 取9.8牛/千克,水的比热容4.2×103焦/千克·℃,水的密度1.0×103千克/米3,大气压强1.01×1 05帕,水银密度13.6×103千克/米3。

一、选择题(以下每小题只有一个选项符合题意,每小题4分,共3 2分)1.5 0年前华裔物理学家高锟在光导纤维通信领域取得突破性的进展并因此获得2009年的 诺贝尔物理学奖。

光纤传播信息利用的原理是( )(A)光的全反射 (B)光的折射 (C)光的衍射 (D)光的散射 2.对以下物理现象的分析和解释正确的是( )①在有雪的路面上撒些食盐,使冰雪的熔点升高,更容易融化。

②在加油站,有“禁止使用手机”警告语,这是由于手机发射的电磁波会引起汽油燃烧,发生危险事故。

③通常冰冻的肉在水中比在同温度的空气中解冻得快,烧烫的东西放入水中比在同温度的空气中冷却得快,这些物理现象都说明水的比热容比空气大。

④从高处落下的薄纸片,即使无风,纸片下落的路线也曲折多变,是由于纸片表面各处的气流速度不同,导致纸片上各处受力不均匀。

(A)①② (B)②③ (C)③④ (D)①④3.为了节能,商场安装了智能化的电动扶梯。

无人乘行时,扶梯运转得很慢;有人走近扶 梯时,它会先慢慢加速,再匀速运转。

要实现这样的功能,需要安装传感器,则一般采用的 传感器为( )(A)位移传感器 (B)电压传感器 (C)光电传感器 (D)温度传感器4.某同学站在圆心O 处用细绳拉着小球,使球跟着身体在水平面内作逆时针运动,俯视图如图所示。

2015年全国高中数学联赛试题及答案详解(A卷)

2015年全国高中数学联赛试题及答案详解(A卷)

(i ) 5 2 ,此时 1 且 5 ,无解;
22
2
4
(ii) 5 9 2 ,此时有 9 5 ;
件等价于:存在整数 k, l (k l) ,使得
2k 2l 2 .

2
2
当 4 时,区间[, 2]的长度不小于 4 ,故必存在 k, l 满足①式.
当 0 4 时,注意到[, 2] (0, 8) ,故仅需考虑如下几种情况:


答案: 2015 1007i .
解:由已知得,对一切正整数 n ,有
zn2 zn1 1n 1i zn 1 ni 1n 1i zn 2 i , 于是 z2015 z1 10072 i 2015 1007i .
4. 在矩形 ABCD 中, AB 2, AD 1 ,边 DC 上(包含点 D 、 C )的动点 P 与 CB 延 长线上(包含点 B )的动点 Q 满足 DP BQ ,则向量 PA 与向量 PQ 的数量积 PA PQ 的
6. 在平面直角坐标系 xOy 中,点集 K (x, y) x 3y 6 3x y 6 0所对
应的平面区域的面积为

答案:24.
解:设 K1 (x, y) x 3y 6 0 .先考虑 K1
在第一象限中的部分,此时有 x 3y 6 ,故这些点对
应于图中的 OCD 及其内部.由对称性知, K1 对应的 区域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 (x, y) 3x y 6 0 ,则 K2 对
应的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知, K 所对应的平面区域是被

2015年全国高中数学联赛试题答案

2015年全国高中数学联赛试题答案
1≤i ≤ k
…………………20 分
包含 a1 的集合至少有
n− s −t 个.又由于 A1 ⊆ Ci ( i = 1, , t ) ,故 C1 , C2 , , Ct 都 k
n− s −t ,即在剩下的 n − s − t 个集合中, k
包含 a1 ,因此包含 a1 的集合个数至少为
n− s −t n − s + (k − 1)t n − s + t (利用 k ≥ 2 ) = +t ≥ k k k n . ……………40 分 ≥ (利用 t ≥ s ) k
n ≤ (n + 1) ∑ห้องสมุดไป่ตู้ai2 , i =1 所以①得证,从而本题得证.
…………………40 分
证法二:首先,由于问题中 a1 , a2 , , an 的对称性,可设 a1 ≥ a2 ≥ ≥ an .此 n 外,若将 a1 , a2 , , an 中的负数均改变符号,则问题中的不等式左边的 ∑ ai 不 i =1 减,而右边的 ∑ ai2 不变,并且这一手续不影响 ε i = ±1 的选取,因此我们可进一
2t u − 1 2u − 1 m 1 2αt ⋅ 1 2αt ⋅ 1 + 2u + + 2(t −1)u ) =+ =+ ( q q q
…………………10 分
n + 2 ∑ aj n = j +1 2
2
2
n 2 n n n 2 2 ≤ 2 ∑ ai + 2 n − ∑ a j (柯西不等式) …………30 分 2 i =1 2 = n j +1 2 n n 2 2 n + 1 n n n + 1 2 a j (利用 n − = = 2 ∑ ai + 2 ) ∑ 2 2 2 i =1 2 = n j +1 2 n n 2 2 2 ≤ n ∑ ai + (n + 1) ∑ a j (利用 [ x ] ≤ x ) n = i =1 j +1 2

2015 年全国初中数学联合竞赛试题参考答案及评分标准

2015 年全国初中数学联合竞赛试题参考答案及评分标准

C E
B
G
∴ GF 11, GE 10 ,∴ EF GE2 GF 2 221 .
4. 已知 O 为坐标原点,位于第一象限的点 A 在反比例函数 y 1 (x 0) 的图象上,位于第二象限的 x
点 B 在反比例函数 y 4 (x 0) 的图象上,且 OA OB ,则 tan ABO 的值为 x
5. 已知实数 x, y 满足关系式 xy x y 1,则 2 2 .
B. 6 4 2 .
C.1.
D. 6 4 2 .
【答】B.
设 x y t , 则 由 题 设 条 件 可 知 xy x y 1 t 1 , 所 以 x, y 是 关 于 m 的 一 元 二 次 方 程
则 5n2 3n 5 125m2 15m 5 120m2 15m 5(m2 1) .
∵ 5n2 3n 5 是 15 的倍数,∴ m2 1是 3 的倍数,∴ m 3k 1或 m 3k 2 ,其中 k 是非负整数.
∴ n 5(3k 1) 15k 5或 n 5(3k 2) 15k 10 ,其中 k 是非负整数. ∴符合条件的所有正整数 n 的和是(5+20+35+50+65+80+95)+(10+25+40+55+70+85)
A. 8. 【答】C.
B. 12.
C. 16.
D.24.
依题意,有 n m2 bm c (m 8)2 b(m 8) c ,于是可得 b 8 2m .
∵抛物线 y x2 bx c 与 x 轴只有一个公共点,∴ b2 4c 0 ,∴ c 1 b2 (4 m)2 . 4
6. 设 n 是小于 100 的正整数且使 5n2 3n 5 是 15 的倍数,则符合条件的所有正整数 n 的和是( )
A.285. 【答】D.

2015大同杯初赛试卷及参考答案

2015大同杯初赛试卷及参考答案

上海市第二十九届初中物理竞赛(大同中学杯)初赛试卷(兼区县物理竞赛试卷)2015年3月8日上午9:00一l 0:30说明:1、本试卷共分两部分,第一部分为单项选择题,每题3分,共30题,计90分:第二部分为多项选择题,每题5分,全对得5分,部分选对得2分,选错或不选得0分,共l2题,计60分。

全卷满分l50分。

2、考试时间为90分钟。

3、考生使用答题纸(卡),把每题的正确选项填在答题纸(卡)相应位置。

允许使用计算器,考试完毕后,请将试卷、答题纸(卡)一并交给监考人员。

4、水的比热容:c水=4.2×103焦/(千克·℃)第一部分:单项选择题:1,最早提出物体运动不需要力来维持的物理学家是( )(A)亚里士多德(B)焦耳(C)牛顿(D)伽利略2.如图所示,以下现象中通过做功改变物体内能的是( )(A)搓手取暖(B)水被加热(c)勺子烫手(D)曝晒钢瓶3.如图所示,能正确表示小磁针指向的是()4.有的工厂的烟囱里会冒出“白烟”,主要原因是( )(A)排出的气体中含有C02气体遇冷凝结,形成“白烟”(B)排出的热气体与空气中的水滴混合,形成“白烟”(C)排出的气体中含有大量的C0、C02等混合气体,形成“白烟”(D)排出的气体中含有水蒸气遇冷凝结成小水滴,形成“白烟”5.把一个带正电的物体A,靠近一个原来不带电的验电器的金属小球,然后用手去触摸金属小球(人体是通大地的导体),再移开手,这时( )(A)金属小球和金属箔都不带电(B)金属小球带负电,金属箔不带电(C)金属小球带负电,金属箔带正电(D)金属小球带负电,金属箔也带负电6.如图所示,在水平的两根平行筷子中间放上两只乒乓球,通过空心塑料管向两球间用力吹气,会发现两只乒乓球( )(A)相互靠近(B)相互远离(C)静止不动(D)向同一方向运动7.如图所示的日食现象,又称为日蚀,是一种天文现象。

当月球运行至太阳与地球之间时,对地球上的部分地区来说,月球挡住了太阳的一部分或全部光线,看起来好像是太阳的一部分或全部消失了,这就是日食现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市2015年12月大同杯数学竞赛(含答案)BCO 1O 2PA倍,则这三个素数为________.解答:设这三个素数为,,a b c 。

则有23()abc a b c =++。

因为23是素数,从23()abc a b c =++,可以得到23能够整除三个素数,,a b c 的abc 积。

从而可以得到其中有一个素数必为23。

假设23a = 这样就有23124(1)(1)2446212bc b c bc b c b c =++⇒--+=⇒--==⨯=⨯因为,b c 为素数,所以得到5,7b c ==或3,13b c == 这样得到三个素数为5,7,23或3,13,23。

5. 如图,圆1O 与圆 2O 外切于点P ,从圆1O 上点A作圆2O 的切线AB , B 是切点,连接AP 并延长,与圆2O 交于点C .已知圆1O 、圆2O 的半径分别为2、1,则ACAB=________.解答:做如图所示的辅助线。

可以得到21211//2CO PC AO CO PA AO ⇒==为此设PC k=,则2.PA k = 应用切割线定理有:223.AB AP AC k k AB=⋅=⨯⇒=所以AC AB ==。

A 'B AM NPQ6、 如图所示,在平面直角坐标系xOy 中,MON的两边分别是射线 y x (x0)与x 轴正 半轴.点A (6,5),B (10,2)是MON内的两个定点,点P 、Q 分别是MON两边上的动点,则四边形ABQP 周长的最小值是________.解答:本题主要就是应用对称。

应为四边形ABQP ,其中一个边AB 为定值。

要求四边形 ABQP 周长的最小值,只要求另外三边的最小值。

从对称可以得到/(5,6)A ,/(10,2)B -.四边形另外三边的最小值为//A B依据两点间距离公式有 。

//22(105)(26)89A B=----=22(105)(25)34AB =---=8934+。

7. 不定方程2222x y xy x y+=++的整数(,y)x 解共有________组。

解答:设x y k +=,所以从2222x y xy x y+=++,可以得到222k xy xy k -=+所以222233k kk k xy xy --=⇒=。

这样,y x 是方程22203k kt kt --+=的两个根,并且根为整数。

所以2222()40803k kk k k -∆=--⨯≥⇒-≤。

因此有08k ≤≤。

同时要保证22(2)33k k k k xy --==为整数。

这样就有0k =,3,5,6,8当0k =时,(,y)(0,0)x = 当3k =时,方程为方程2310t t -+=没有整数解。

当5k =时,方程为方程2550tt -+=没有整数解。

当6k =时,方程为方程2680t t -+=,有整数解为2,4。

所以(,y)(2,4)x =或(4,2) 当8k =时,方程为方程28160t t -+=,有整数解为4,4。

所以(,y)(4,4)x = 整数(,y)x 解共有4组8. 设a 是给定的正实数,n 是给定的大于1 的整数,实数123,,,,nx x x x ⋅⋅⋅ 满足2222123n xx x x a+++⋅⋅⋅+=,则2222212131232()()()()()n n x x x x x x x x x x -+-+⋅⋅⋅+-+-+⋅⋅⋅+-21()n n x x -+⋅⋅⋅+-的最大值________________。

解答: 因为2222212131232()()()()()n n x x x x x x x x x x -+-+⋅⋅⋅+-+-+⋅⋅⋅+-21()n n x x -+⋅⋅⋅+-C22212123234211(1)()2()2()2()2n n n n x n n nn x x x x x x x x x x x x x x x x ---=-++⋅⋅⋅+-++⋅⋅+-++⋅⋅+-⋅⋅⋅-+-123234211(1)2()2()2()2n n n x n n nn a x x x x x x x x x x x x x ---=--++⋅⋅+-++⋅⋅+-⋅⋅⋅-+- 有这样的一个结论,因为222222222222()2x y x y x y xy x y x y xy x y +=+≥⇒≤+⇔-+≤-≤+而1232342112()2()2()2n n n x n n nx xx x x x x x x x x x x ----++⋅⋅+-++⋅⋅+-+-22222222222212131232422222222222223435321212222221212[()()()][()()()][()()()][()()]()](1)(1)(1)(1)(n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x n x x x x x n x x x ----≤++++⋅⋅+++++++⋅⋅+++++++⋅⋅++⋅⋅⋅++++++=-+-+⋅⋅+-=-++⋅⋅+)(1)n a=-所以最大值为2(1)n a -二、解答题(第9、10 题,每题15分,第11、12 题,每题20 分,共70 分) 9. 如图,在△ABC 中,BCa,CAb,ACB 60,△ABD是正三角形,P 是其中心,求CP 的长度.解答:分析作D 点关于AB 的对称点/D 。

则/AD B ∆/60AD B ∠=ACB 60所以/,,,A C D B过P点。

连接AP ,BP 。

因为P 是正三角形ABD 02sin 603AP BP AB AB ===因为A ,C ,B ,P 四点共圆,也就是四边形ACBP 为 圆内接四边形,应用圆内接四边形托勒密定理 可以得到AB PC BP AC AP BC ⋅=⋅+⋅ 所以3)3PC a b =+。

10. 在1,2,… ,2015 这2015 个正整数中选出k 个数,使得其中任意两个不同的数的和 都不是50 的倍数,求k 的最大值. 解答:因为所有的整数,被5除余数为0,1,2,3,4,… ,47,48,49。

共50中情况。

而2015504015÷=⋅⋅⋅。

下面吧从1,2,… ,2015这2015个数被50除,余数的情况列表如下。

第1行取1到25这25个数,取50这个个数,任意两个数的和都不能被50整除。

第2行取51到74这24个数,和第一组取得的数组成新的数集,则这新的数集任意两个数的和不能被50整除。

以后每行都取前24个数,取到第40行位置。

最后一行取15个数。

这样正整数集合最大数值个数为2624(4021)15977+⨯-++=这样集合为这样式样⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅{1,2,,25,50,51,52,,74,101,102,,124,151,152,,174,,1951,1952,,1974,⋅⋅⋅2001,,2015}G ICA50这个数可以换成1到2015之间50的倍数任意一个数。

因此k 的最大值为977.11. 已知△ABC 的三边长均为正整数,周长为 35,G 和I 分别为△ABC 的重心和内心, 且GIC90,求边AB 的长度.解答:本题有一定难度,但是抓住内心和重心的特征还是能够找到解题的路径的。

由题意知道GIC90,并且平分ACB∠,出现角平分+垂直的特征。

这样可以构造出三角形。

为此延长GI 和反向延长GI . 很容易得到CMN ∆为等腰三角形,也就是CM CN =过垂心G 和内心I 分别做AC 和BC 边的垂线。

设ABC∆的内接圆的半径为r 。

由面积法得到: CGMCGNCIMCINS S S S ∆∆∆∆+=+也就是1112222CM GP CN GF rCN ⋅+⋅=⨯CA所以2GP GF r +=因为G 为三角形ABC11233B ACA BCd d r --+= 用面积法有:12122233S S S b a a b c⨯+⨯=++化简为116b a a bc +=++ 也就是635a b ab +=635()ab a b =+,因为,a b 为正整数所以得到35ab k =,则6a b k += 为此,a b 为方程26350tkt k -+=的两个根。

235(6)43509k k k ∆=--⨯≥⇒≥有356356a b k k +=<⇒<。

因此4,5k = 当4k =时,方程为2243540(14)(10)014,10tt t t t -+⨯=⇒--=⇒=所以此时10,14a b ==。

因此11AB =。

当5k =时,方程为2303550t t -+⨯=没有整数解。

因此11AB =。

12. 设,a b 是正整数,22ab - 不是 4的倍数,求证:(3)(57)a b a b ++不是完全平方数.证明:22()()ab a b a b -=+-,当,a b 为同奇数,或者同偶数时,可以得到22()()a b a b a b -=+-一定是4的倍数。

已知22ab - 不是 4的倍数,所以,a b 中一个为奇数,一个为偶数。

假设21,2a n b m =+=。

因为222222(3)(57)522215(21)22(21)221(2)20(1)588448420(1)8840804(1)5a b a b a ab b n n m m n n mn m m n n mn m m m m ++=++=+++⨯+=+++++=+++++++因为220(1)8840804(1)n n mn m mm m ++++++能够被8整除。

所以此时(3)(57)a b a b ++被8除余5.因为要是完全平方数,奇数的时被8除余1.因此此种情况下不是完全平方数。

假如2,21a m b n ==+,因为222222(3)(57)522215(2)222(21)21(21)208844214(1)21168840214(1)164(1)5a b a b a ab b m m n n m mn m n n m mn m n n m m ++=++=+⨯+++=+++⨯++=+++⨯+++++从而2168840214(1)164(1)mmn m n n m m +++⨯++++能够被8整除,所以此时(3)(57)a b a b ++被8除余5.因为要是完全平方数,奇数的时被8除余1.因此此种情况下不是完全平方数。

综合可以得到:(3)(57)a b a b ++不是完全平方数.。

相关文档
最新文档