超声波传感器
超声波传感器

第1讲 超声波传感器的特性
测距离
第1讲 超声波传感器的特性
第1讲 超声波传感器的特性
测料位
第1讲 超声波传感器的特性
B扫描超声成像技术
第1讲 超声波传感器的特性
美国的维吉尼亚级潜艇
超声波探头按其工作原理可分为压电式、磁致伸缩式、电磁式等,其
中以压电式最为常用。压电式超声波探头常用的材料是压电晶体和压电陶
瓷,这种传感器统称为压电式超声波探头。 它是利用压电材料的压电效应 来工作的。 压电效应有正向压电效应和逆向压电效应。 超声波发送器是利用逆向压电效应制成——即在压电元件上施加电压, 元件就变形(也称应变)引起空气振动产生超声波,超声波以疏密波形式 传播,传送给超声波接收器。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的
固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会 因此超声波检测广泛应用在工业、国防、生物医学等方面 。
产生显著反射形成反射回波,碰到活动物体能产生多普勒效应。
第1讲 超声波传感器的特性
第1讲 超声波传感器的特性
压电式超声波传感器的基本工作原理
子的形状、尺寸、数量、 介质的性质和散射粒子的性质有关。
吸收衰减是由于介质粘滞性,使超声波在介质中传播时造 成质点间的内摩擦,从而使一部分声能转换为热能,通过热传 导进行热交换,导致声能的损耗。
第1讲 超声波传感器的特性
(二) 超声波传感器的特性 3.1 频率特性
接收超声波
发送超声波
第1讲 超声波传感器的特性
第1讲 超声波传感器的特性
超声波传感器
第1讲 超声波传感器的特性
(一) 超声波传感器的原理及结构
利用超声波在超声场中的物理特性和各种效应而研制的装置 称为超声波传感器、探测器或换能器,也称为探头。
超声波传感器名词解释

超声波传感器名词解释
超声波传感器是一种利用超声波技术来探测距离和物体位置的
电子设备。
超声波传感器通过发射超声波,并根据接收到的反射信号来确定物体的位置和距离。
它们通常由一个发射器和一个接收器组成,并使用一组微控制器来处理和分析信号。
超声波传感器被广泛应用于许多不同的领域,包括汽车制造、机器人技术、医疗设备和安防系统等。
例如,在汽车制造中,超声波传感器可以用来检测车辆周围的障碍物,从而帮助司机避免碰撞。
在机器人技术中,超声波传感器可用于测量机器人周围的物体距离和位置,以便机器人能够避开障碍物。
在医疗设备中,超声波传感器可用于测量人体内部器官的位置和大小,以帮助医生进行诊断和治疗。
在安防系统中,超声波传感器可用于检测入侵者的位置和活动,并触发安全警报。
总之,超声波传感器是一种非常有用的技术,可以在许多不同的应用中发挥作用,为我们的日常生活带来更多的便利和安全。
- 1 -。
超声波传感器的基本参数

超声波传感器的基本参数1.发射器:发射器是超声波传感器中负责发射超声波信号的部分。
它通常由晶片、电路板和震动片等组成。
发射器的基本参数包括工作频率、发射角度和功率。
工作频率是指超声波信号的频率,通常在20kHz到200kHz之间。
发射角度是指超声波信号的扩散角度,常见的有15度、30度和60度等。
功率是指发射器输出的超声波信号的功率大小。
2.接收器:接收器是超声波传感器中负责接收反射超声波信号的部分。
它通常由晶片、电路板和麦克风等组成。
接收器的基本参数包括灵敏度、带宽和信噪比。
灵敏度是指接收器对超声波信号的响应灵敏程度,通常以电压或电流来表示。
带宽是指接收器可接收的超声波信号的频率范围,通常为几十kHz到几百kHz。
信噪比是指接收器输出信号与噪声信号的比值,高信噪比可以提高传感器的精确度和可靠性。
3.控制器:控制器是超声波传感器中负责控制发射和接收的部分。
它通常由微控制器或专用集成电路组成。
控制器的基本参数包括工作电压、输出方式和通信接口。
工作电压是指控制器的供电电压范围,通常为3V到5V。
输出方式是指控制器输出测距或探测结果的方式,可以是模拟电压信号、数字信号或开关触发信号等。
通信接口是指控制器与外部设备进行数据交互的接口,通常有UART、I2C和SPI等。
超声波传感器的其他参数还包括测量范围、精度、响应时间和工作温度范围等。
测量范围是指超声波传感器能够测量的最大距离范围,一般为几厘米到几米。
精度是指超声波传感器测量结果与实际值之间的误差程度,通常以百分比或毫米为单位。
响应时间是指超声波传感器从发射超声波到接收并处理信号的时间,一般为几毫秒到几十毫秒。
工作温度范围是指超声波传感器能够正常工作的温度范围,通常为-40°C到+85°C。
超声波传感器的应用广泛,包括距离测量、避障、物体检测和流量测量等。
在工业自动化、智能家居、机器人和汽车领域都有广泛的应用。
通过了解超声波传感器的基本参数,可以更好地选择和使用超声波传感器,并将其应用于相应的领域中。
超声波传感器使用说明

超声波传感器使用说明超声波传感器是一种利用超声波原理进行非接触式测量的传感器,常用于测量距离、确定物体位置和运动状态等。
本文将为您提供一份超声波传感器的使用说明,以帮助您更好地理解和使用这种传感器。
一、超声波传感器的工作原理超声波传感器利用超声波的特性进行工作。
它通过发送超声波信号,然后接收反射回来的信号,根据信号的传播时间、振幅和相位等信息,计算出目标物体与传感器之间的距离、位置和运动状态。
二、超声波传感器的特点1.非接触式测量:超声波传感器无需与目标物体接触,因此适用于各种恶劣环境和高温、高压等极端条件。
2.抗干扰能力强:超声波不易受电磁干扰,因此适用于各种复杂的环境。
3.测量精度高:超声波传感器具有较高的测量精度,能够满足各种实际需求。
4.响应速度快:超声波传感器具有较快的响应速度,能够实时监测目标物体的状态。
三、超声波传感器的应用范围1.距离测量:利用超声波传感器可以测量目标物体与传感器之间的距离,常用于机器人避障、物体定位等。
2.速度检测:通过测量超声波信号往返时间,可以计算出目标物体的运动速度,常用于运动物体监测、交通流量监测等。
3.厚度测量:利用超声波传感器可以测量物体的厚度,常用于材料检测、产品质量控制等。
4.液位测量:利用超声波传感器可以测量液体的液位高度,常用于石油化工、水利工程等领域。
四、超声波传感器的使用说明1.选择合适的型号:根据实际需求选择合适的超声波传感器型号,包括测量范围、精度、频率等参数。
2.安装与调试:按照说明书的要求正确安装超声波传感器,并进行必要的调试。
一般来说,需要根据实际环境调整传感器的灵敏度和增益等参数。
3.操作步骤:首先按下传感器的电源开关,然后等待一段时间让传感器稳定工作;接着通过连接线将传感器与计算机或控制器连接起来;最后根据实际需求编写相应的控制程序,利用传感器输出数据进行数据处理和控制操作。
4.注意事项:在操作过程中需要注意以下几点:避免在高温、湿度过大或存在腐蚀性气体的环境中使用传感器;定期对传感器进行校准和维护以保证测量精度;在安装过程中要确保传感器与目标物体之间没有其他障碍物干扰测量结果;在使用过程中要避免过度振动或冲击导致传感器损坏;在连接线路时要注意正负极不要接反,并且要确保连接牢固可靠;另外还要注意传感器的电压范围和电源稳定性等问题以免烧毁传感器。
超声波传感器概述

超声波传感器概述超声波传感器通常由超声波发射器和接收器组成。
发射器将电信号转换为超声波,并将其发射到目标物体上。
当超声波与目标物体接触时,一部分超声波会被目标物体反射回传感器,接收器会将接收到的超声波信号转换为电信号。
根据发送超声波和接收超声波之间的时间差,我们可以计算出目标物体与传感器之间的距离。
超声波传感器的工作原理是利用声音在空气中传播的特性。
超声波的频率一般在20kHz到200kHz之间,超出了人耳的听觉范围。
超声波传感器具有高频率、短波长和强直线传播等特点,因此具有较高的测距精度和较远的测距范围。
超声波传感器的应用领域非常广泛。
在工业领域,超声波传感器可以用来测量物体的距离和位置,用于自动化装配、机械控制、仓储物流等方面。
在智能家居领域,超声波传感器可以用来检测人体、宠物等物体的位置和移动,用于智能安防、智能照明等应用。
在机器人领域,超声波传感器可以用来检测障碍物、墙壁等物体的距离,用于机器人导航、避障等方面。
超声波传感器的优点主要有以下几个方面。
首先,它是一种非接触式传感器,不需要与目标物体接触,避免了材料磨损和污染的问题。
其次,超声波传感器具有较高的测距精度和较远的测距范围,可以满足不同应用场景的需求。
再次,超声波传感器对于目标物体的形状、颜色等特征几乎没有要求,适用于多种物体的检测。
此外,超声波传感器体积小巧、功耗低,易于集成到各种设备中。
然而,超声波传感器也存在一些局限性。
首先,超声波传感器对于目标物体的表面材料有一定要求,例如吸声材料会减弱超声波的反射信号,造成测量误差。
其次,超声波传感器受到环境因素的影响较大,例如温度、湿度等变化会对传感器的测量结果产生影响。
总的来说,超声波传感器是一种常见且功能强大的传感器技术,被广泛应用于不同领域和场景中。
随着技术的不断进步,超声波传感器的测量精度、测量范围和适应性将进一步提高,为各个领域的应用带来更多可能性。
超声波的传感器原理

超声波的传感器原理超声波是一种高频声波,具有在空气中传播迅速、穿透性强等特点,因此被广泛应用于传感技术中。
超声波传感器是一种通过测量声波在空气中传播时间来实现测量距离、检测物体存在等功能的设备。
本文将介绍超声波传感器的原理及其应用。
一、原理概述超声波传感器主要由发射器、接收器和控制电路组成。
发射器通过准确控制电压信号,将电能转化为超声波能量,向空气中发射超声波。
超声波经过空气传播后,遇到目标物体时,一部分声波被目标物体吸收,另一部分被目标物体反射回来。
接收器感知到反射回来的声波,将其转化为电能信号传回控制电路。
二、发射器发射器是超声波传感器中的重要组成部分。
它通常由压电晶体材料构成,当施加电压时,压电晶体会发生形变,产生机械振动。
随着振动的传播,超声波形成并向外传播。
发射器的产生的超声波频率通常在20kHz到200kHz之间,具体频率根据传感器的应用需求而定。
三、接收器接收器接收到从目标物体反射回来的声波,并将其转化为电信号。
接收器通常由压电晶体材料构成,与发射器相似。
当接收到声波时,压电晶体会发生形变,产生电能信号。
接收器将电信号传回控制电路进行处理。
四、控制电路控制电路是超声波传感器的核心部分,用于控制发射器和接收器的工作以及处理接收到的电信号。
控制电路中包含脉冲发生器,用于控制超声波的发射频率和发射的脉冲宽度。
同时,控制电路还包括计时电路,用于测量超声波的传播时间以及计算距离。
五、工作原理超声波传感器的工作原理基于声波在空气中传播的速度恒定。
当超声波发射器发出声波后,它会在空气中以恒定速度传播,遇到目标物体后部分声波会被吸收,而另一部分声波会被目标物体反射回来。
接收器接收到反射回来的声波后,控制电路会记录下发射到接收的时间间隔,并通过时间间隔与声波在空气中传播的速度计算出目标物体与传感器的距离。
通常情况下,声波在空气中的传播速度约为343米/秒,根据测得的时间间隔可以通过简单的数学计算得出距离。
超声波传感器的应用及技术原理介绍

超声波传感器的应用及技术原理介绍超声波传感器是一种重要的传感器,被广泛应用于测距、检测障碍、测流等领域。
本文将介绍超声波传感器的应用及技术原理。
一、超声波传感器的基本原理超声波传感器利用声波在介质中的传播特性,通过发射超声波并接收反射回来的波来实现对目标的探测和测量。
它的基本结构包括超声波发射器、接收器和信号处理电路。
超声波发射器产生高频声波,经过透镜聚焦,形成一个声波束,照射到目标上。
目标表面会反射一部分声能,这些反射声波被接收器接收,并转化为电信号。
信号处理电路将接收到的信号进行放大、滤波、数字化等操作,最终输出距离、速度、流量等物理量。
二、超声波传感器的应用1. 距离测量超声波传感器可以测量距离,特别是在避障、机器人导航等领域得到了广泛应用。
通过计算发射和接收时间差,可以估算目标距离,实现精确的距离测量。
2. 检测障碍超声波传感器也常用于检测障碍。
在汽车中应用,可以实现自动泊车、避免碰撞等功能。
在工业生产中,可以用于控制机器人、机械手臂等设备避开障碍物,提高生产效率。
3. 测流超声波传感器还可应用于测流量,适用于液体和气体的流量测量。
它不会对被测介质产生压力和阻力,而且不受温度、粘度等因素的影响。
因此,被广泛应用于化工、水利、能源等行业。
三、超声波传感器的技术原理1. 超声波的传播特性超声波传感器利用的是声波在介质中的传播特性。
声波在介质中传播的速度和密度有关,通常情况下,介质密度越大,声波传播速度越快。
因此,在水中传播的声波速度显著高于空气中的声波速度。
2. 聚焦技术聚焦是超声波传感器技术的重要组成部分,它能够将声波束集中在一个小区域内,提高能量密度,增加返回信号的强度。
可以通过聚焦透镜、聚焦阵列等方式实现,这些聚焦元器件能够控制声波的传播方向和形状,提高信号的质量和可靠性。
3. 多普勒效应在测量物体速度时,超声波信号被发射向物体,并反弹回来,测量时间差就可以估算物体移动的距离和速度。
为了进一步提高速度测量的精度,可以利用多普勒效应,通过检测回波频率的变化来计算物体的速度。
超声波传感器

第7章超声波传感器
图10 - 4给出了几种超声物位传感器旳构造示意图。 超 声波发射和接受换能器可设置水中, 让超声波在液体中传播。 因为超声波在液体中衰减比较小, 所以虽然发生旳超声脉冲 幅度较小也能够传播。超声波发射和接受换能器也能够安装 在液面旳上方, 让超声波在空气中传播, 这种方式便于安装和 维修, 但超声波在空气中旳衰减比较厉害。
第7章超声波传感器
第7章超声波传感器
7.3 超声波传感器旳应用
一、 超声波物位传感器
超声波物位传感器是利用超声波在两种介质旳分界面上 旳反射特征而制成旳。 假如从发射超声脉冲开始, 到接受换 能器接受到反射波为止旳这个时间间隔为已知, 就能够求出分 界面旳位置, 利用这种措施能够对物位进行测量。根据发射和 接受换能器旳功能, 传感器又可分为单换能器和双换能器。 单换能器旳传感器发射和接受超声波均使用一种换能器, 而双 换能器旳传感器发射和接受各由一种换能器担任。
超声波探头按其工作原理可分为压电式、 磁致伸缩式、 电磁式等, 而以压电式最为常用。
压电式超声波探头常用旳材料是压电晶体和压电陶瓷, 这 种传感器统称为压电式超声波探头。它是利用压电材料旳压 电效应来工作旳: 逆压电效应将高频电振动转换成高频机械振 动, 从而产生超声波, 可作为发射探头; 而利用正压电效应, 将 超声振动波转换成电信号, 可用为接受探头。
散射和吸收, 在理想介质中,声波旳衰减仅来自于声波旳扩散, 即随声波传播距离增长而引起声能旳减弱。散射衰减是固体 介质中旳颗粒界面或流体介质中旳悬浮粒子使声波散射。吸 收衰减是由介质旳导热性、粘滞性及弹性滞后造成旳, 介质吸 收声能并转换为热能。
第7章超声波传感器
7.2
利用超声波在超声场中旳物理特征和多种效应而研制旳 装置可称为超声波换能器、 探测器或传感器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波传感器超声波传感器是利用超声波的特性研制而成的传感器。
超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
因此超声波检测广泛应用在工业、国防、生物医学等方面。
以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。
以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。
超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。
小功率超声探头多作探测作用。
它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。
超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。
构成晶片的材料可以有许多种。
晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。
组成部分超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。
小功率超声探头多作探测作用。
它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。
性能指标超声探头的核心是其塑料外套或者金属外套中的一块压超声波传感器电晶片。
构成晶片的材料可以有许多种。
晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。
超声波传感器的主要性能指标包括:工作频率工作频率就是压电晶片的共振频率。
当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。
工作温度由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用超声波传感器功率较小,所以工作温度比较低,可以长时间地工作而不失效。
医疗用的超声探头的温度比较高,需要单独的制冷设备。
[1]灵敏度主要取决于制造晶片本身。
机电耦合系数大,灵敏度高;反之,灵敏度低。
主要应用超声波传感技术应用在生产实践的不同方面,而医学应用是其超声波传感器最主要的应用之一,下面以医学为例子说明超声波传感技术的应用。
超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。
超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。
因而推广容易,受到医务工作者和患者的欢迎。
超声波诊断可以基于不同的医学原理,我们来看看其中有代表性的一种所谓的A型方法。
这个方法是利用超声波的反射。
当超声波在人体组织中传播遇到两层声阻抗不同的介质界面是,在该界面就产生反射回声。
每遇到一个反射面时,回声在示波器的屏幕上显示出来,而两个界面的阻抗差值也决定了回声的振幅的高低。
在工业方面,超声波的典型应用是对金属的无损探伤和超声波测厚两种。
过去,许多技术因为无法探测到物体组织内部而受到阻碍,超声波传感技术的出现改变了这种状况。
当然更多的超声波传感器是固定地安装在不同的装置上,“悄无声息”地探测人们所需要的信号。
在未来的超声波传感器应用中,超声波将与信息技术、新材料技术结合起来,将出现更多的智能化、高灵敏度的超声波传感器。
超声波距离传感器技术应用超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
因此超声波检测广泛应用在工业、国防、生物医学等方面。
超声波距离传感器可以广泛应用在物位(液位)监测,机器人防撞,各种超声波接近开关,以及防盗报警等相关领域,工作可靠,安装方便,防水型,发射夹角较小,灵敏度高,方便与工业显示仪表连接,也提供发射夹角较大的探头。
工作原理人们能听到声音是由于物体振动产生的,它的频率在20HZ-20KHZ超声波传感器范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。
常用的超声波频率为几十KHZ-几十MHZ。
超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵和振荡(纵波)。
在工业中应用主要采用纵向振荡。
超声波可以在气体、液体及固体中传播,其传播速度不同。
另外,它也有折射和反射现象,并且在传播过程中有衰减。
在空气中传播超声波,其频率较低,一般为几十KHZ,而在固体、液体中则频率可用得较高。
在空气中衰减较快,而在液体及固体中传播,衰减较小,传播较远。
利用超声波的特性,可做成各种超声传感器,配上不同的电路,制成各种超声测量仪器及装置,并在通迅,医疗家电等各方面得到广泛应用。
超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。
电致伸缩的材料有锆钛酸铅(PZT)等。
压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。
有的超声波传感器既作发送,也能作接收。
这里仅介绍小型超声波传感器,发送与接收略有差别,它适用于在空气中传播,工作频率一般为23-25KHZ及40-45KHZ。
这类传感器适用于测距、遥超声波传感器控、防盗等用途。
该种有T/R-40-60,T/R-40-12等(其中T表示发送,R 表示接收,40表示频率为40KHZ,16及12表示其外径尺寸,以毫米计)。
另有一种密封式超声波传感器(MA40EI型)。
它的特点是具有防水作用(但不能放入水中),可以作料位及接近开关用,它的性能较好。
超声波应用有三种基本类型,透射型用于遥控器,防盗报警器、自动门、接近开关等;分离式反射型用于测距、液位或料位;反射型用于材料探伤、测厚等。
由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。
发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中辐射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测.而实际使用中,用发送传感器的陶瓷振子的也可以用做接收器传感器社的陶瓷振子。
控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。
工作程式若对发送传感器内谐振频率为40KHz的压电陶瓷片(双晶振子超声波传感器)施加40KHz高频电压,则压电陶瓷片就根据所加高频电压极性伸长与缩短,于是发送40KHz频率的超声波,其超声波以疏密形式传播(疏密程度可由控制电路调制),并传给波接收器。
接收器是利用压力传感器所采用的压电效应的原理,即在压电元件上施加压力,使压电元件发生应变,则产生一面为“+ ”极,另一面为“-”极的40KHz正弦电压。
因该高频电压幅值较小,故必须进行放大。
超声波传感器使得驾驶员可以安全地倒车,其原理是利用探测倒车路径上或附近存在的任何障碍物,并及时发出警告。
所设计的检测系统可以同时提供声光并茂的听觉和视觉警告,其警告表示是探测到了在盲区内障碍物的距离和方向。
这样,在狭窄的地方不管是泊车还是开车,借助倒车障碍报警检测系统,驾驶员心理压力就会减少,并可以游刃有余地采取必要的动作。
系统构成由发送传感器 ( 或称波发送器 ) 、接收传感器 ( 或称波接收器 ) 、控制部超声波传感器分与电源部分组成。
发送器传感器由发送器与使用直径为 15mm 左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中辐射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测 . 而实际使用中,用发送传感器的陶瓷振子的也可以用做接收器传感器社的陶瓷振子。
控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。
超声波传感器电源 ( 或称信号源 ) 可用DC12V ± 10 % 或24V ± 10 % 。
工作模式超声波传感器利用声波介质对被检测物进行非接触式无磨损的检测超声波传感器。
超声波传感器对透明或有色物体,金属或非金属物体,固体、液体、粉状物质均能检测。
其检测性能几乎不受任何环境条件的影响,包括烟尘环境和雨天。
检测模式超声波传感器主要采用直接反射式的检测模式。
位于传感器前面的被检测物通过将发射的声波部分地发射回传感器的接收器,从而使传感器检测到被测物。
还有部分超声波传感器采用对射式的检测模式。
一套对射式超声波传感器包括一个发射器和一个接收器,两者之间持续保持“收听”。
位于接收器和发射器之间的被检测物将会阻断接收器接收发射的声波,从而传感器将产生开关信号。
检测范围和声波发射角超声波传感器的检测范围取决于其使用的波长和频率。
波长越长,超声波传感器频率越小,检测距离越大,如具有毫米级波长的紧凑型传感器的检测范围为300~500mm波长大于5mm的传感器检测范围可达8m。
一些传感器具有较窄的6º声波发射角,因而更适合精确检测相对较小的物体。
另一些声波发射角在12º至15º的传感器能够检测具有较大倾角的物体。
此外,我们还有外置探头型的超声波传感器,相应的电子线路位于常规传感器外壳内。
这种结构更适合检测安装空间有限的场合。
传感器调节几乎所有的超声波传感器都能对开关输出的近点和远点或是测量范围进行调节。
在设定范围外的物体可以被检测到,但是不会触发输出状态的改变。
一些传感器具有不同的调节参数,如传感器的响应时间、回波损失性能,以及传感器与泵设备连接使用时对工作方向的设定调节等。
重复精度波长等因素会影响超声波传感器的精度,其中最主要的影响因素是随温度超声波传感器变化的声波速度,因而许多超声波传感器具有温度补偿的特性。
该特性能使模拟量输出型的超声波传感器在一个宽温度范围内获得高达0.6mm的重复精度。
输出功能所有系列的超声波传感器都有开关量输出型产品。
一些产品还有2路开关量输出(如最小和最大液位控制)。
大多数产品系列都能提供具有模拟量电流或是模拟电压输出的产品。
噪声抑制金属敲击声、轰鸣声等噪声不会影响超声波传感器的参数赋值,这主要是由于频率范围的优选和已获专利的噪声抑制电路。
同步功能超声波传感器的同步功能可防干扰。
他们通过将各自的同步线进超声波传感器行简单的连接来实现同步功能。
它们同时发射声波脉冲,象单个传感器一样工作,同时具有扩展的检测角度。