模糊数学 豆浆
最新模糊数学教案01

0 0 0
R1
0 0 1
0 1 0
1
0 0
1 0 0
R2 0 1 0
0 0 1
合成(° )运算的性质:
性质1:(A ° B) ° C = A ° (B ° C); 性质2:Ak ° Al = Ak + l,(Am)n = Amn; 性质3: A ° ( B∪C ) = ( A ° B )∪( A ° C) ;
∨{(rik∧rkj) | 1≤k≤n} = rij .
综上所述 R2≤R.
设R2≤R,则对任意的 i , j , k,若有 rij =1, rjk = 1,
即(rij∧rjk) = 1,因此 ∨{(ris∧rsk) | 1≤s≤n}=1,
由R2≤R,得rik=1,所以R具有传递性.
集合上的等价关系
( B∪C ) ° A = ( B ° A )∪( C ° A) ; 性质4:O ° A = A ° O = O,I ° A=A ° I O=为A;零矩阵,I 为 n 阶单位方阵. 性质5:A≤B,AC≤≤BDaAij≤°bij .C ≤B ° D.
关系三大特性的矩阵表示法: 设R为 X = {x1, x2, … , xn} 上的关系,则
rij =R(xi , yj ),R = (rij)m×n, 则R为布尔矩阵(Boole),称为R的关系矩阵.
布尔矩阵(Boole)是元素只取0或1的矩阵.
关系的合成
设 R1 是 X 到 Y 的关系, R2 是 Y 到 Z 的关系, 则R1与 R2的合成 R1 ° R2是 X 到 Z 上的一个关系.
模糊数学在实际中的应用几乎涉及到国民经济的各 个领域及部门,农业、林业、气象、环境、地质勘探、 医学、经济管理等方面都有模糊数学的广泛而又成功的 应用.
模糊数学_3第五章 模糊映射与变换,模糊关系方程

f fR : u V
满足:
{ f (u)} R | u
f (u ) vu
反之任给一普通映射 f : U V 也可确定普通关系
R {(u,v) | v f (u )}
或
1 当v f (u ) X R (u ,v) 0 当v f (u )
普通关系的映射象和原象都是清晰的。
~
R | u 4 f (u4 ) (0.7,0,0.4)
~
R | u1 0.4 0.7 0 ~ R | u 2 0.1 0.4 0.3 R ~ u R|u ~ 3 0 0.5 0 R | u 4 0.7 0 0.4 ~ v
对于模糊集合普通映射, f : U V 给定 A F (U ),在 f 之下的象应当是什么? ~ 给定 B F (V ),在 f 之下的原象应当是什么? ~ 普通集合 f 怎样扩展到 F (U ) 与 F (V ) 之间去。 • 定义5.6 设 f : U V ,所谓 f 在模糊集类上的扩展, 1 乃是指这样两个映射,仍记为 f 与 f
f : U V
设 A 1, 0, 0.2, 0, 0.1,, 0.9
~
由扩展原理: f ( A) (v1) A (u1 ) A (u2 ) A (u3 )
~ ~ ~ ~
1 0 0.2 1
f ( A) (v2 ) 0.1
f ( A) (v3 ) 0.9
在身高论域V上应表现为
0 .1 0 .2 1 . 5 1 .6
b a R (0.8,1,0.8,0.6,0.2) 0.8 1 0.8 0.6 0.2 1.4m 1.5m 1.6m 1.7m 1.8m
模糊数学(讲义)

模糊数学及其应用引言任何新生事物的产生和发展,都要经过一个由弱到强,逐步成长壮大的过程,一种新理论、一种新学科的问世,往往一开始会受到许多人的怀疑甚至否定。
模糊数学自1965年L.A.Zadeh教授开创以来所走过的道路,充分证实了这一点,然而,实践是检验真理的标准,模糊数学在理论和实际应用两方面同时取得的巨大成果,不仅消除了人们的疑虑,而且使模糊数学在科学领域中,占有了自己的一席之地。
经典数学是适应力学、天文、物理、化学这类学科的需要而发展起来的,不可能不带有这些学科固有的局限性。
这些学科考察的对象,都是无生命的机械系统,大都是界限分明的清晰事物,允许人们作出非此即彼的判断,进行精确的测量,因而适于用精确方法描述和处理。
而那些难以用经典数学实现定量化的学科,特别是有关生命现象、社会现象的学科,研究的对象大多是没有明确界限的模糊事物,不允许作出非此即彼的断言,不能进行精确的测量。
清晰事物的有关参量可以精确测定,能够建立起精确的数学模型。
模糊事物无法获得必要的精确数据,不能按精确方法建立数学模型。
实践证明,对于不同质的矛盾,只有用不同质的方法才能解决。
传统方法用于力学系统高度有效,但用于对人类行为起重要作用的系统,就显得太精确了,以致于很难达到甚至无法达到。
精确方法的逻辑基础是传统的二值逻辑,即要求符合非此即彼的排中律,这对于处理清晰事物是适用的。
但用于处理模糊性事物时,就会产生逻辑悖论。
如判断企业经济效益的好坏时,用“年利税在100万元以上者为经济效益好的企业”表达,否则,便是经济效益不好的企业。
根据常识,显而易见:“比经济效益好的企业年利税少1元的企业,仍是经济效益好的企业”,而不应被划为经济效益不好的企业。
这样,从上面的两个结论出发,反复运用经典的二值逻辑,我们最后就会得到,“年利税为0者仍为经济效益好的企业”的悖论。
类似的悖论有许多,历史上最著名的有“罗素悖论”。
它们都是在用二值逻辑来处理模糊性事物时产生的。
模糊数学ppt课件

1 2
,则有rij'
பைடு நூலகம்[0,1]
。也可以
用平移—极差变换将其压缩到[0,1]上,从而得到模糊相似矩阵
R (rij )nm
(2)绝对值指数法. 令
m
rij exp{ xik x jk }(i, j 1, 2, , n) k 1
则 R (rij )nm
(3)海明距离法. 令
rij
1
d (xi , x j )
(6)主观评分法:设有N个专家组成专家组,让每一位专家对
所研究的对象 x i 与 x j 相似程度给出评价,并对自己的自信度
作出评估。如果第k位专家 Pk 关于对象 x i与 x j 的相似度评价
为 rij (k ),对自己的自信度评估为aij (k ) (i, j 1,2,, n),则相关 系数定义为
)2
(i, j 1,2,, n)
其中E为使得所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
(5)切比雪夫距离法. 令
rij
d (xi ,
1 xj)
Q
d
m
k 1
( xi xik
,
x
j ), x jk
(i, j 1,2,, n)
其中Q为使所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
第三步. 聚类 所谓模糊聚类方法是根据模糊等价矩阵将所研究的对象进
行分类的方法。对于不同的置信水平 [0,1] ,可以得到不同 的分类结果,从而形成动态聚类图。 (一)传递闭包法
通常所建立的模糊矩阵R 只是一个模糊相似矩阵,即R 不 一定是模糊等价矩阵。为此,首先需要由R 来构造一个模糊等
《模糊数学教案》课件

《模糊数学教案》课件第一章:模糊数学简介1.1 模糊数学的概念与发展1.2 模糊集合的基本概念1.3 模糊数学的应用领域第二章:模糊集合的基本运算2.1 模糊集合的并、交、补运算2.2 模糊集合的余集、商集运算2.3 模糊集合的运算规律与性质第三章:模糊逻辑与模糊推理3.1 模糊逻辑的基本概念3.2 模糊推理的基本方法3.3 模糊推理的应用实例第四章:模糊控制系统4.1 模糊控制系统的原理与结构4.2 模糊控制规则的制定方法4.3 模糊控制系统的仿真与优化第五章:模糊数学在工程与应用领域的应用5.1 模糊数学在模式识别中的应用5.2 模糊数学在中的应用5.3 模糊数学在优化方法中的应用第六章:模糊数学在决策分析中的应用6.1 模糊决策树6.2 模糊综合评价方法6.3 模糊多属性决策方法第七章:模糊数学在控制理论与应用中的扩展7.1 模糊PID控制器设计7.2 模糊自适应控制方法7.3 模糊控制系统的稳定性分析第八章:模糊数学在信号处理中的应用8.1 模糊信号处理的基本概念8.2 模糊滤波器设计8.3 模糊信号识别与分类第九章:模糊数学在机器学习与数据挖掘中的应用9.1 模糊聚类分析9.2 模糊神经网络9.3 模糊数据挖掘方法第十章:模糊数学在其它领域的应用及发展趋势10.1 模糊数学在生物学中的应用10.2 模糊数学在环境科学中的应用10.3 模糊数学的未来发展趋势重点和难点解析一、模糊数学简介难点解析:理解模糊数学的哲学背景与发展历程,以及模糊集合的隶属度函数和二、模糊集合的基本运算难点解析:掌握模糊集合运算的规则,以及如何通过模糊集合的运算得到新的模糊集合。
三、模糊逻辑与模糊推理难点解析:理解模糊逻辑的推理规则,以及如何应用模糊推理解决实际问题。
四、模糊控制系统难点解析:掌握模糊控制系统的构建和运作机制,以及如何制定合适的模糊控制规则。
五、模糊数学在工程与应用领域的应用难点解析:了解模糊数学在不同领域中的应用方法,以及如何将模糊数学应用于实际问题。
模糊数学(模糊关系合成)

)-1,
x
y
吉林大学计算机科学与技术学院
13
例2答案
吉林大学计算机科学与技术学院
14
例2答案
同例1一样,首先把y作为变量,x和 z均当作常量,画出对应的曲线
吉林大学计算机科学与技术学院
15
例2答案
求出交点的横坐标z* 求得交点的纵坐标,即为合成关系
RоR的隶属函数
吉林大学计算机科学与技术学院
存在一个y,y是x的兄弟,且y是z父 亲
xSz存在y∈X,使xQy且yRz 称叔侄关系S是兄弟关系Q和父子关
系R的合成,记为S=QоR
5
关系合成的定义
设Q∈P(U×V),R∈P(V×W), S∈P(U×W)
若(u,w)∈S存在v∈V,使 (u,v)∈Q且(v,w)∈R,则称关系S是 由关系Q与关系R合成的,记作 S=QоR
I ⊆ A⊆A2 ⊆ A3 ⊆…⊆ An-1 ⊆An⊆…
证明:
A2 A A A I A;
A3 A2 A A2 I A2;
...
吉林大学计算机科学与技术学院
32
对称性
若模糊关系R满足R(u,v)=R(v,u),则 称R具有对称性
模糊对称矩阵
rij = rji
例如:
1 0.4 0.5 A 0.4 1 0.9
(5) (QоR) λ= Qλо Rλ 推论 (Rn) λ= (Rλ)n
(6) (QоR) T= QTо RT 推论 (Rn) T= (RT)n
吉林大学计算机科学与技术学院
27
课后作业
吉林大学计算机科学与技术学院
28
3-7 模糊等价关系及聚类图
吉林大学计算机科学与技术学院
29
模糊数学模型
第十九章 模糊数学方法模糊数学是研究和处理模糊现象的一种数学方法,它也同其它的学科一样,主要是来源 于实际的需要.在社会实践中,模糊概念(或现象)无处不在.例如:在日常生活中的好与坏、大与小、厚与薄、快与慢、长与短、轻与重、高与低、贵与贱、软与硬、深与浅、美 与丑、黑与白、早与晚、生与熟、动与静、穷与富、疏与密等等都包含着一定的模糊概念.随着科学技术的发展,各学科领域对与这些模糊概念有关的实际问题往往都需要给出定量的分析,因此,这就要求人们研究和处理这些模糊概念(或现象)的数学方法.模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科.统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定领域扩大到了模糊领域,即从精确现象到模糊现象.我们知道,在各科学领域中,所涉及到的各种量总是可以分为确定性的和不确定性的两大类,模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法.实际中,我们处理现实对象的数学模型可以分为三大类:第一类是确定性的数学模型,即模型的背景具有确定性,对象之间具有必然的关系.第二类是随机性的数学模型,即模型的背景具有随机性和偶然性.第三类是模糊性模型,即模型的背景及关系都具有模糊性.我们这里所说的模糊数学建模方法就是针对实际中具有模糊性的问题,建立数学模型所需要的模糊数学的理论和知识.19.1 模糊数学的基本概念19.1.1 模糊集与隶属函数1. 模糊集与隶属函数的概念一般说来,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象全体构成的集合为U ,称之为论域,在此,总是假设问题的论域是非空的.如果U 是论域,则U 的所有子集组成的集合称为U 的幂集,记作)(U F .例如:},,{c b a U =,则{}},,}{,{},,{},,{},{},{},{,)(c b a c b c a b a c b a U F Φ=.为了与模糊集相区别,在这里称通常的集合为普通集.对于论域U 的每一个元素U x ∈和某一个子集U A ⊂,有A x ∈,或A x ∉,二者有且仅有一个成立.于是,对于子集A 定义映射{}1,0:→U A μ, 即⎩⎨⎧∉∈=A x Ax x A ,0,1)(μ则称之为集合A 的特征函数,集合A 可以由特征函数唯一确定.所谓论域U 上的模糊集A 是指:对任意U x ∈总以某个程度])1,0[(∈A μ属于A ,而非A x ∈或A x ∉.也可以将普通集的特征函数的概念推广到模糊集,即模糊集的隶属函数.定义19.1 设U 是一个论域,如果给定了一个映射]1,0[)(]1,0[:∈→x x U A A μμ则就确定了一个模糊集A ,其映射A μ称为模糊集A 的隶属函数,)(x A μ称为x 对模糊集A 的隶属度.使5.0)(=x A μ的点0x 称为模糊集A 的过渡点,即是模糊性最大的点.对一个确定的论域U 可以有多个不同的模糊集,记U 上的模糊集的全体为)(U F ,即]}1,0[:|{)(→=U A U F A μ则)(U F 就是论域U 上的模糊幂集,显然)(U F 是一个普通集合,且)(U F U ⊆.2. 模糊集的表示法对于有限的论域},,,{21n x x x U =,A 是U 上的任一个模糊集,其隶属度为)(i A x μ),,2,1(n i =,则模糊集的表示形式有(1) Zadeh 表示法nn A A A ni ii A x x x x x x x x A )()()()(22111μμμμ+++==∑=这里“i i A x x )(μ”不是分数,“+”也不表示求和,只是符号,它表示点i x 对模糊集A 的隶属度是)(i A x μ.(2) 序偶表示法 {}))(,(,)),(,()),(,(2211n A n A A x x x x x x A μμμ =(3) 向量表示法())(,),(),(21n A A A x x x A μμμ =对于论域U 为无限集的情况,则U 上的模糊集A 可以表示为 ⎰=UA xx A )(μ,这里“⎰”不是积分号,“xx A )(μ”也不是分数.3.模糊集的运算模糊集与普通集有相同的运算和相应的运算规律.定义19.2 设模糊集)(,U F B A ∈,其隶属函数为)(),(x x B A μμ.(1) 若对任意U x ∈,有)()(x x A B μμ≤,则称A 包含B ,记A B ⊆; (2) 若B A ⊆且A B ⊆,则称A 与B 相等,记为A B =.定义19.3 设模糊集)(,U F B A ∈,其隶属函数为)(),(x x B A μμ,则称B A 和BA 为A 与B 的并集和交集;称cA 为A 的补集或余集.它们的隶属函数分别为))(),(max()()()(x x x x x B A B A B A μμμμμ=∨=))(),(min()()()(x x x x x B A B A B A μμμμμ=∧= )(1)(x x A A cμμ-=其中“∨”和“∧”分别表示取大算子和取小算子.并且,并和交运算可以直接推广到任意有限的情况,同时也满足普通集的交换律、结合律、分配律等运算〔1,2,3,4〕.19.1.2 隶属函数的确定方法我们知道,模糊数学的基本思想是隶属程度的思想.应用模糊数学方法建立数学模型的关键是建立符合实际的隶属函数.然而,如何确定一个模糊集的隶属函数至今还是尚未完全解决的问题.这里仅介绍几种常用的确定隶属函数的方法.1. 模糊统计方法模糊统计方法可以算是一种客观方法,主要是基于模糊统计试验的基础上根据隶属度的客观存在性来确定的.所谓的模糊统计试验必须包含下面的四个要素:(1) 论域U ;(2) U 中的一个固定元素0x ;(3) U 中的一个随机变动的集合*A (普通集);(4) U 中的一个以*A 作为弹性边界的模糊集A ,对*A 的变动起着制约作用.其中*0A x ∈,或*0A x ∈,致使0x 对A 的隶属关系是不确定的.假设我们做n 次模糊统计试验,则可计算出:0x 对A 的隶属频率=n A x 的次数*0∈事实上,当n 不断增大时,隶属频率趋于稳定,其频率的稳定值称为0x 对A 的隶属度,即∞→=n A x lim)(0μn A x 的次数*0∈2. 指派方法指派方法是一种主观的方法,它主要依据人们的实践经验来确定某些模糊集隶属函数的一种方法.如果模糊集定义在实数域R 上,则模糊集的隶属函数称为模糊分布.所谓的指派方法就是根据问题的性质主观地选用某些形式的模糊分布,再依据实际测量数据确定其中所包含的参数.常用的模糊分布如表19-1所示.实际中,根据问题对研究对象的描述来选择适当的模糊分布.偏小型模糊分布一般适合于描述像“小”、“少”、“浅”、“淡”、“冷”、“疏”、“青年”等偏向小的程度的模糊现象.偏大型模糊分布一般适合于描述像“大”、“多”、“深”、“浓”、“热”、“密”、“老年”等偏向大的程度的模糊现象.而中间型模糊分布一般适合于描述像“中”、“适中”、“不太多”、“不太少”、“不太深”、“不太浓”、“暖和”、“中年”等处于中间状态的模糊现象.但这些方法所给出的隶属函数都是近似的,应用时需要对实际问题进行分析,逐步地进行修改完善,最后得到近似程度更好的隶属函数.表19-1: 常用的模糊分布(a) 偏小型 (b) 中间型 (c) 偏大型矩形分布⎩⎨⎧>≤=a x a x x A ,0,1)(μ⎩⎨⎧><≤≤=b x a x b x a x A 或,0,1)(μ⎩⎨⎧<≥=a x a x x A ,0,1)(μ梯形分布⎪⎪⎩⎪⎪⎨⎧>≤≤--<=bxbxaabxbaxxA,0,,1)(μ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<≤--<≤<≤--=dxaxdxccdxdcxbbxaabaxxA,,0,,1,)(μ⎪⎪⎩⎪⎪⎨⎧>≤≤--<=bxbxaabaxaxxA,1,,)(μ正态分布⎪⎩⎪⎨⎧>≤=⎪⎭⎫⎝⎛--axeaxx a xA,,1)(2σμ2)(⎪⎭⎫⎝⎛--=σμaxAex⎪⎩⎪⎨⎧>-≤=⎪⎭⎫⎝⎛--axeaxx a xA,1,)(2σμk次抛物型分布⎪⎪⎩⎪⎪⎨⎧>≤≤⎪⎭⎫⎝⎛--<=bxbxaabxbaxxkA,,,1)(μ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<<≤⎪⎭⎫⎝⎛--<≤<≤⎪⎭⎫⎝⎛--=dxaxdxccdxdcxbbxaabaxxkkA,,,,1,)(μ⎪⎪⎩⎪⎪⎨⎧>≤≤⎪⎭⎫⎝⎛--<=bxbxaabaxaxxkA,1,,)(μГ型分布⎩⎨⎧≥><=--axekaxxaxkA,)0(,1)()(μ⎪⎩⎪⎨⎧≥><≤<=---bxekbxaaxexbxkaxkA,)0(,1,)()()(μ⎩⎨⎧≥-><=--axekaxxaxkA,1)0(,)()(μ柯西型分布⎪⎪⎩⎪⎪⎨⎧>>>-+≤=)0,0(,)(11,1)(βααμβaxaxaxxA且为偶数),0()(11)(>>-+=βααμβaxxA⎪⎪⎩⎪⎪⎨⎧>>>-+≤=-)0,0(,)(11,)(βααμβaxaxaxxA3.其它方法实际中,用来确定模糊集的隶属函数的方法是多种多样的,主要是根据问题的实际意义来确定.譬如,在经济管理、社会管理中,可以直接借助于已有的“客观尺度”作为模糊集的隶属度.如果论域U 表示机器设备,在U 上定义模糊集=A “设备完好”,则可以用“设备完好率”作为A 的隶属度.如果U 表示产品,在U 上定义模糊集=A “质量稳定”,则可用产品的“正品率”作为A 的隶属度.如果U 表示家庭,在U 上定义模糊集A =“家庭贫困”,则可以用Engel 系数总消费食品消费=作为A 的隶属度.另外,对于有些模糊集而言,直接给出隶属度有时是很困难的,但可以利用所谓的“二元对比排序法”来确定,即首先通过两两比较确定两个元素相应隶属度的大小排出顺序,然后用数学方法加工处理得到所需要的隶属函数.19.2 模糊关系与模糊矩阵19.2.1 模糊关系与模糊矩阵的概念定义19.4 设论域V U ,,则称乘积空间V U ⨯上的一个模糊子集)(~V U F R ⨯∈为从U 到V 的模糊关系.如果~R的隶属函数为]1,0[:~→⨯V U R μ),(),(~y x y x R μ则称隶属度),(~y x R μ为),(y x 关于模糊关系~R的相关程度.由于模糊关系就是乘积空间V U ⨯上的一个模糊子集,因此,模糊关系同样具有模糊集的运算及性质.设},,,{},,,,{2121n m y y y V x x x U ==,~R是由U 到V 的模糊关系,其隶属函数 为),(~y x R μ,对任意的V U y x j i ⨯∈),(有),,2,1;,,2,1](1,0[),(~n j m i r y x ij j i R ==∈=μ,记n m ij r R ⨯=)(,则R 就是所谓的模糊矩阵,于是有下面的一般性定义.定义19.5 设矩阵nm ij r R ⨯=)(,且),,2,1;,,2,1](1,0[n j m i r ij ==∈,则称R 为模糊矩阵.特别地,如果),,2,1;,,2,1}(1,0{n j m i r ij ==∈,则称R 为布尔(Bool)矩阵.当1=m ,或1=n 时,则相应的模糊矩阵为),,,(21n r r r R =,或Tm r r r R ),,,(21 =,则分别称为模糊行向量和模糊列向量.19.2.2 模糊等价与模糊相似定义19.6 若模糊关系)(~V U F R ⨯∈,且满足:(1) 自反性:=),(~x x R μ1;(2) 对称性:),(),(~~x y y x R R μμ=;(3)传递性:~~~R R R ⊆ (()),(),(),(),(~~~~~y x y z z x y x RR R V z R R μμμμ≤∧∨=⇔∈ ).则称~R 是U 上的一个模糊等价关系,其隶属度函数),(~y x R μ表示),(y x 的相关程度.当论域为},,,{21n x x x U =时,U 上的模糊等价关系可表示为n n ⨯阶模糊等价矩阵nn ij r R ⨯=)(.定义19.7 设论域为},,,{21n x x x U =,I 为单位矩阵,如果模糊矩阵n n ij r R ⨯=)(满足:(1) 自反性:),,2,1,1(n i r R I ii ==⇔≤;(2) 对称性:),,2,1,;(n j i r r R R ji ij T ==⇔=;(3)传递性:R R R ≤ (()),,2,1,;1n j i r r r ij kj ik nk =≤∧⇔∨=).则称R 为模糊等价矩阵.实际中,要建立一个模糊等价关系或模糊等价矩阵往往是困难的,这主要是由于传递性难已满足.但是,对于满足自反性和对称性的模糊关系~R与模糊矩阵R ,则分别称为模糊相似关系与模糊相似矩阵.19.2.3 λ-截矩阵与传递矩阵定义19.8 设nm ij r R ⨯=)(为模糊矩阵,对任意的]1,0[∈λ.(1) 如果令⎪⎪⎭⎫⎝⎛==⎪⎩⎪⎨⎧<≥=n j m i r r r ij ij ij ,,2,1,,2,1,0,1)( λλλ则称()n m ij r R ⨯=)(λλ为R 的λ-截矩阵. (2) 如果令⎪⎪⎭⎫⎝⎛==⎪⎩⎪⎨⎧≤>=n j m i r r r ij ij ij ,,2,1,,2,1,0,1)( λλλ则称()nm ij r R ⨯=)(λλ为R 的λ-强截矩阵.显然,对任意的]1,0[∈λ,λ-截矩阵是布尔矩阵. 定义19.9 设R 是n n ⨯阶的模糊矩阵,如果满足R R R R ≤=2(()),,2,1,;1n j i r r r ij kj ik nk =≤∧⇔∨=则称R 为模糊传递矩阵.将包含R 的最小的模糊传递矩阵称为R 的传递包,记为)(R t .事实上,对于任意的模糊矩阵n n ij r R ⨯=)(,则n n k ij n k nk kr R R t ⨯==⎪⎭⎫⎝⎛∨==)(11)( .特别地, 当R 为模糊相似矩阵时,则存在一个最小的自然数)(n k k ≤,使得kR R t =)(,对任意自然数k l >都有kl R R =,此时)(R t 一定为模糊等价矩阵.19.3 模糊聚类分析方法在许多工程技术和经济管理中,常常需要对某些指标按一定的标准(相似的程度、亲疏关系等)进行分类处理.例如,根据生物的某些性态对其进行分类、根据空气的性质对空气质量进行分类,以及工业上对产品质量的分类、工程上对工程规模的分类、图像识别中对图形的分类、地质学中对地质土壤的分类、水资源中的水质分类等等.这种对客观事物按一定标准进行分类的数学方法主要就是聚类分析法,而模糊聚类分析法就是根据事物的某些模糊性质进行分类的一种数学方法.下面给出模糊聚类分析方法的一般步骤.19.3.1 数据标准化(1) 获取数据:设论域},,,{21n x x x U =为所需分类研究的对象,每个对象又由m 个指标表示其性态,即),,2,1}(,,,{21n i x x x x im i i i ==,于是,可以得问题的原始数据矩阵为()mn ij x A ⨯=.(2) 数据的标准化处理:在实际问题中的数据可能有不同的性质和不同的量纲,为了使原始数据能够适合模糊聚类的要求,需要将原始数据矩阵A 做标准化的处理,即通过适当的数据变换和压缩,将其转化为模糊矩阵.常用的方法有以下两种: (ⅰ) 平移-标准差变换如果原始数据之间有不同的量纲,则可以采用这种变换后使每个变量的均值为0,标准差为1,即可以消除量纲的差异的影响.即令),,2,1;,,2,1(m j n i s x x x jjij ij==-='其中),,2,1()(1,121121m j x x n s x n x n i j ij j n i ij j =⎥⎦⎤⎢⎣⎡-==∑∑==.(ⅱ) 平移-极差变换如果经过平移-标准差变换后还有某些]1,0[∈'ijx ,则还需对其进行平移-极差变换,即令{}{}{}),,2,1(min max min 111m j xx x x x ijni ijni ij ni ijij='-''-'=''≤≤≤≤≤≤显然所有的]1,0[∈''ijx ,且也不存在量纲因素的影响,从而可以得到模糊矩阵()m n ijx R ⨯''=.19.3.2 建立模糊相似矩阵设论域},,,{21n x x x U =,),,2,1}(,,,{21n i x x x x im i i i ==,即数据矩阵为()mn ij x A ⨯=,如果i x 与j x 的相似程度为),,2,1,)(,(~n j i x x R r j i ij ==,则称之为相似系数,确定相似系数ij r有多种不同的方法.(1) 数量积法对于U x x x x im i i i ∈=},,,{21 ,令⎪⎭⎫⎝⎛⋅=∑=≠m k jk ik j i x x M 1max ,则取⎪⎩⎪⎨⎧≠⋅==∑=j i x x M j i r m k jk ik ij ,1,11,显然]1,0[∈ij r .若出现有某些0<ij r ,可令21+='ij ij r r ,则有]1,0[∈'ijr .也可以用平移-极差变换将其压缩到]1,0[上,即可以得到模糊相似矩阵()mn ij r R ⨯=.(2) 夹角余弦法: 令),,2,1,(12121n j i xx x xr mk jkmk ikmk jkikij =⋅=∑∑∑===则()nn ij r R ⨯=.(3) 相关系数法: 令()()()()),,2,1,(12121n j i x xx xx x x xr mk jjkmk iikmk j jk i ikij =-⋅---=∑∑∑===其中∑==m k ik i x m x 11,∑==mk jk j x m x 11,则()n n ij r R ⨯=. 注意:},,,{21im i i ix x x x =中的样本ik x 属于同一个样本空间i X ),,2,1(m k =.(4) 指数相似系数法: 令∑=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--=m k k jk ik ij s x x m r 122)(43exp 1其中()∑=-=ni k ik k x x n s 121,∑==ni ikk x n x 11),,2,1(m k =.则()n n ij r R ⨯=. 注意:},,,{21im i i i x x x x =中的样本ik x 属于不同的样本空间k X ,即),,2,1(m k X x k ik =∈.(5) 最大最小值法: 令()()),,2,1,;0(11n j i x x xx x r ij mk jkikmk jk ikij =>∨∧=∑∑==则()nn ij r R ⨯=.(6) 算术平均值法: 令()()),,2,1,;0(2111n j i x x x x xr ij mk jk ik mk jk ikij =>+∧=∑∑==则()nn ij r R ⨯=.(7) 几何平均值法:令()),,2,1,;0(11n j i x x x x xr ij mk jkik mk jk ikij =>⋅∧=∑∑==则()nn ij r R ⨯=.(8) 绝对值倒数法:令⎪⎩⎪⎨⎧≠⎪⎭⎫⎝⎛-==-=∑ji x x M j i r m k jk ik ij ,,111其中M 为使得所有),,2,1,](1,0[n j i r ij =∈的确定常数,则()n n ij r R ⨯=.(9) 绝对值指数法:令),,2,1,(exp 1n j i x x r m k jk ik ij =⎭⎬⎫⎩⎨⎧--=∑=则()nn ij r R ⨯=.(10) 海明距离法:令),,2,1,(),(),(11n j i x x x x d x x d H r m k jkik j i j i ij =⎪⎩⎪⎨⎧-=⋅-=∑=其中H 为使得所有),,2,1,](1,0[n j i r ij =∈的确定常数.则()nn ij r R ⨯=.(11) 欧氏距离法:令()),,2,1,(),(),(112n j i x x x x d x x d E r m k jk ik j i j i ij =⎪⎩⎪⎨⎧-=⋅-=∑=其中E 为使得所有),,2,1,](1,0[n j i r ij =∈的确定常数.则()nn ij r R ⨯=.(12) 契比雪夫距离法:令),,2,1,(),(),(11n j i x x x x d x x d Q r jkik m k j i j i ij =⎪⎩⎪⎨⎧-=⋅-=∨=其中Q 为使得所有),,2,1,](1,0[n j i r ij =∈的确定常数.则()nn ij r R ⨯=.(13) 主观评分法:设有N 个专家组成专家组},,,{21N p p p ,让每一位专家对所研究的对象i x 与j x 相似程度给出评价,并对自己的自信度作出评估.如果第k 位专家k p 关于对象i x 与j x 的相似度评价为)(k r ij ,对自己的自信度评估为),,2,1,)((n j i k a ij =,则相关系数定义为()),,2,1,()()()(11n j i k ak r k ar Nk ijNk ij ijij =⋅=∑∑==则()nn ij r R ⨯=. 综上所述,以上给出了实际中能够使用的一些方法,具体地选择要根据具体问题的性质和使用的方便来确定.19.3.3 聚类所谓的聚类方法就是依据模糊矩阵将所研究的对象进行分类的方法,对于不同的置信水平]1,0[∈λ,可得不同的分类结果,从而可以形成动态聚类图.常用的方法可以分为两类,一类是基于模糊等价矩阵的聚类方法,另一类是直接聚类方法.(1) 传递闭包法用上节的方法所建立的模糊矩阵R 一般只是一个模糊相似矩阵,即R 不一定是模糊等价矩阵.为此,首先需要由R 来构造一个模糊等价矩阵*R ,根据传递闭包的性质,可以用平方法求出R 的传递包*=R R t )(,即为一模糊等价矩阵.然后,由大到小取一组]1,0[∈λ值,确定相应的λ-截矩阵,则可以将其分类,同时也可构成动态聚类图〔1〕.(2) 布尔矩阵法设论域为},,,{21n x x x U =,R 是U 上的模糊相似矩阵,对于确定的λ水平要求U 中元素的分类.首先,由于模糊相似矩阵R 作出其λ-截矩阵))((λλij r R =,即λR 为布尔矩阵.然后,依据λR 中的1元素可以将其分类. 如果λR 为等价矩阵,则R 也为等价矩阵,即可以直接将其分类. 如果λR 不是等价矩阵,则首先按一定的规则将λR 改造成一个等价的布尔矩阵,然后再进行分类.例如:0元素和1元素互换方法等.(3) 直接聚类法所谓直接聚类法是一种直接由模糊相似矩阵,求出聚类图的方法,具体步骤如下:1) 取11=λ(最大值),对每个i x 作相似类:{}1|][==ij j R i r x x ,即将满足1=ij r 的i x 与j x 视为一类,构成相似类.相似类与等价类有所不同,不同的相似类可能有公共元素,即可能有Φ≠R j R i x x ][][ ,实际中,对于这种情况可以将R i x ][与R j x ][合并为一类,即可得到11=λ水平上的等价分类.2) 取)(12λλ<为次大值,从R 中直接找出相似程度为2λ的元素对),(j i x x (即2λ=ij r ),并相应地将对应于11=λ的等价分类中i x 与j x 所在的类合并为一类,即可得到2λ水平上的等价分类.3) 依次取 >>>321λλλ,按第2)步的方法依次类推,直到合并到U 成为一类为止,最后可以得到动态聚类图.19.4 模糊模式识别方法将事物的整体划分为若干类型而得到一组标准模式,对于一个确定的对象识别它属于哪一类的问题称为模式识别.如果整体被划分的类型与被识别的对象之中至少有一个是用模糊集表示的模式识别问题,则称为模糊模式识别.实际中有很多问题都属于这一类问题,例如:像自动分拣机对信件上邮政编码的识别;医生针对病人的主要症状诊断过程;根据学生的德、智、体等因素对学生进行分类;对某种产品等级的分类,以及指纹识别和汽车车牌号码的识别等问题.这里主要介绍两种最基本的模糊模式识别方法――最大隶属原则和择近原则.19.4.1 模式识别中的最大隶属原则定义19.8 设论域},,,{21n x x x U =上的m 个模糊子集m A A A ,,,21 ,其隶属度函数为),,2,1)((m i x iA =μ,而模糊向量集合族),,,(21m A A A A =对于普通向量),,,()0()0(2)0(1)0(m x x x x =,则称{})()()0(1)0(i A mi x x iμμ=∧=为)0(x 对模糊向量集合族A 的隶属度.实际中向量)0(x 对模糊向量集合族A 的隶属度也可以定义为∑==m i i A x n x i 1)0()0()(1)(μμ.1. 最大隶属原则Ⅰ 设在论域},,,{21n x x x U =上有m 个模糊子集m A A A ,,,21 (即m 个模式)一起构成一个标准模式库,若对任一个U x ∈)0(,存在)1(00m k k ≤≤使得{})()()0(1)0(0x x kA mk k μμ=∨=,则可视为)0(x 相对隶属于0k A.2. 最大隶属原则Ⅱ设在论域},,,{21n x x x U =上确定一个标准模式0A ,对于n 个待识别的对象U x x x n ∈,,,21 ,如果有某个k x 满足)1()(1)(00n k i x A mi k x A ≤≤⎭⎬⎫⎩⎨⎧=∨=μμ,则k x 优先隶属于0A .19.4.2 模式识别中的择近原则设论域},,,{21n x x x U =,由U 上的m 个模糊子集m A A A ,,,21 (即m 个模式)构成一个标准模式库,对U 上的另一个模糊子集0A ,问题是0A 与),,2,1(m i A i=中的哪一个最贴近?这是另一类模式识别问题,主要是研究两个模糊集的贴近程度.1. 贴近度的概念设论域U 上的模糊子集)(,21U F A A ∈,则定义))()((2121x x A A A A Ux μμ∧=∨∈为1A 与2A 的内积;类似的定义 ))()((2121x x A A A A Ux μμ∨=⊗∧∈为1A 与2A 的外积.定义19.9 设有论域U 上的模糊子集)(,21U F A A ∈,则称[])1(21),(212121A A A A A A N ⊗-+=为1A 与2A 的贴近度. 显然的,如果1A 与2A 的贴近度),(21A A N 越大,则说明1A 与2A 越贴近.而且贴近度有下列性质:(1) 1),(021≤≤A A N ;(2) 0),(=ΦU N ,))((1),(U F A A A N ∈∀=.实际中,可以用贴近度来描述模糊集之间的贴近程度,但是,根据所研究问题的性质,还可以给出其它形式的贴近度定义.2. 单个特性的择近原则设论域U 上的m 个模糊子集m A A A ,,,21 (m 个模式)构成一个标准模式库{}m A A A ,,,21 ,模糊子集0A 为待识别的模式,若存在)1(00m k k ≤≤使得),(),(0100A A N A A N k mk k ∨==则0A 与0k A 最贴近,或者说把0A 可归并到0k A类.3. 多个特性的择近原则根据实际问题的需要,依据对象的多个特性的模式识别问题,即要研究两个模糊向量集合族的贴近度问题,可以有多种不同的定义,常用的有以下几种形式:对于论域U 上的两个模糊向量集合族),,,(),,,,(2121m m B B B B A A A A ==,则A 与B 的贴近度可定义为(1) ),(),(1k k mk B A N B A N ∧==; (2)),(),(1k k mk B A N B A N ∨==;(3)),(),(1k k mk k B A N a B A N ∑==,其中]1,0[∈k a ,且11=∑=mk k a ;(4)()),(),(1k k k mk B A N a B A N ⋅=∨=,其中]1,0[∈k a ,且11=∑=mk k a ;(5)()),(),(1k k k mk B A N a B A N ∧=∨=,其中]1,0[∈k a ,且11=∑=mk k a .实际中,选择哪一种形式,完全根据实际问题的需要确定,也可以用其它更合适的形式. 多个特性的择近原则:设由论域U 上的n 个模糊子集n A A A ,,,21 构成一个标准模式库{}n A A A ,,,21 ,每个模式k A 都可用m 个特性描述,即),,2,1)(,,,(21n k A A A A km k k k ==待识别的模式为),,,(002010m A A A A =.如果两个模糊向量集合族的贴近度最小值为),,2,1)(,(01n k A A N n i ki mi k ==∧=并有自然数)1(00n k k ≤≤使得knk k n n ∧==10,则模式0A 隶属于k A.最后值得我们注意的是模式识别与模糊聚类分析的关系和区别.首先,二者都是研究模糊分类问题的方法,但二者既有关联,又有差别.模糊聚类分析所研究的对象是一组样本,没事先确定的模式标准,只是根据对象的特性进行适当的分类.而模糊模式识别所讨论的问题事先已知若干标准模式,或标准模式库,据此,对要待识别的对象进行识别,看它应属于哪一类.因此,模糊聚类分析是一种无标准模式的分类方法,而模糊模式识别是一种有标准模式的分类方法.另一方面,模糊聚类分析与模糊模式识别也是有关系的.实际中,我们用模糊聚类分析法进行判别、预测的过程,事实上就是模糊聚类与模糊识别综合运用的过程.模糊识别中的标准模式就是在模糊聚类分析过程中得到的,即模糊聚类为模糊识别提供了标准模式库.19.5 模糊综合评判方法模糊综合评判是模糊决策中最常用的一种有效方法.在实际中,常常需要对一个事物做出评价(或评估),一般都涉及到多个因素或多个指标,此时就要求我们根据这些因素对事物做出综合评价,这就是所谓的综合评判,即综合评判就是要对受多个因素影响的事物(或对象)做出全面的评价,故模糊综合评判又称为模糊综合决策或模糊多元决策.传统的评判方法有总评分法和加权评分法.总评分法:根据评判对象的评价项目),,2,1(n i u i =,首先,对每个项目确定出评价的等级和相应的评分数),,2,1(n i s i=,并将所有项目的分数求和∑==ni is S 1,然后,按总分的大小排序,从而确定出方案的优劣.加权评分法:根据评判对象的诸多因素(或指标)),,2,1(n i u i =所处的地位或所起的作用一般不尽相同.因此,引入权重的概念,求其诸多因素(指标)评分),,2,1(n i s i=的加权和∑==ni ii s w S 1.其中i w 为第),,2,1(n i i =个因素(指标)的权值.19.5.1 模糊综合评判的一般方法1. 模糊综合评判的一般提法 设},,,{21n u u u U =为研究对象的n 种因素(或指标),称之为因素集(或指标集).},,,{21m v v v V =为诸因素(或指标)的m 种评判所构成的评判集(或称语集、评价集、决策集等),它们的元素个数和名称均可根据实际问题的需要和决策人主观确定.实际中,很多问题的因素评判集都是模糊的,因此,综合评判应该是V 上的一个模糊子集)(),,,(21V F b b b B m ∈=其中k b 为评判k v 对模糊子集B 的隶属度:),,,2,1()(m k b v k k B ==μ,即反映了第k 种评判k v 在综合评价中所起的作用.综合评判B 依赖于各因素的权重,即它应该是U 上的模糊子集)(),,,(21U F a a a A n ∈= ,且11=∑=ni ia,其中i a表示第i 种因素的权重.于是,当权重A 给定以后,则相应地就可以给定一个综合评判B .2. 模糊综合评判的一般步骤(1) 确定因素集},,,{21n u u u U =; (2) 确定评判集},,,{21m v v v V =;(3) 确定模糊评判矩阵mn ij r R ⨯=)(:首先,对每一个因素i u 做一个评判),,2,1)((n i u f i =,则可以得U 到V 的一个模糊映射f ,即)(),,,()()(:21V F r r r u f u U F U f im i i i i ∈=→然后,由模糊映射f 可以诱导出模糊关系)(V U F R f ⨯∈,即),,2,1;,,2,1())((),(m j n i r v u f v u R ij j i j i f ====因此,可以确定出模糊评判矩阵mn ij r R ⨯=)(.而且称),,(R V U 为模糊综合评判模型,R V U ,,称为该模型的三要素.(4) 综合评判:对于权重)(),,,(21U F a a a A n ∈= ,用模型),(∨∧M 取最大-最小合成运算,可以得到综合评判),,2,1),((1m j r a b R A B ij i ni j =∧=⇔=∨=注意到:关于评判集V 的权重),,,(21n a a a A =的确定在综合评判中起重要的作用,通常情况下可以由决策人凭经验给出,但往往带有一定的主观性.要从实际出发,或更客观地反映实际情况可采用专家评估法、加权统计法和频数统计法,或更一般的模糊协调决策法、模糊关系方法等来确定.19.5.2 综合评判模型的构成如果模糊综合评判模型为),,(R V U ,对于权重)(),,,(21U F a a a A n ∈= ,模糊评判矩阵为mn ij r R ⨯=)(,则用模型)(∨∧,M 运算得综合评判为)(),,,(21V F b b b R A B m ∈== ,其中),,2,1()(1m j r a b ij i n i j =∧=∨=.事实上,由于11=∑=ni ia,对于某些情况可能会出现iji r a ≤,即iij i a r a =∧.这样可能导致模糊评判矩阵R 中的许多信息的丢失,即人们对某些因素i u 所作的评判信息在决策中未得到充分的利用.从而导致综合评判结果失真.为此,实际中可以对模型)(∨∧,M 进行改进.(1) 模型)(∨∙,M 法:对于)(),,,(21U F a a a A n ∈= 和m n ij r R ⨯=)(,则用模型)(∨∙,M 运算得R A B *=,即),,2,1()(1m j r a b ij i ni j =∙=∨=.(2) 模型)(+∧,M 法:对于)(),,,(21U F a a a A n ∈= 和m n ij r R ⨯=)(,则用模型)(+∧,M 运算得R A B *=,即),,2,1()(1m j r a b ni ij i j =∧=∑=.(3) 模型)(+∙,M 法:对于)(),,,(21U F a a a A n ∈= 和m n ij r R ⨯=)(,则用模型)(+∙,M 运算得R A B *=,即),,2,1()(1m j r a b ni ij i j =∙=∑=.在实际应用时,主因素(即权重最大的因素)在综合中起主导作用时,则可首选“主因素决定型”模型)(∨∧,M ;当模型)(∨∧,M 失效时,再来选用“主因素突出型”模型)(∨∙,M 和)(+∧,M ;当需要对所有因素的权重均衡时,可选用加权平均模型)(+∙,M .在模型的选择时,还要特别注意实际问题的需求.19.5.3 多层次模糊综合评判对于实际中的许多问题往往都是涉及因素多,各因素的权重分配较为均衡的情况,此时,可采用将诸因素分为若干个层次进行研究.即首先分别对单层次的各因素进行评判,然后再对所有的各层次因素作综合评判.这里仅就两个层次的情况进行说明,具体方法如下:(1) 将因素集},,,{21n u u u U =分成若干个组)1(,,,21n k U U U k ≤≤ 使得ki iU U 1==,且)(j i U U j i ≠=Φ ,称},,,{21k U U U U =为一级因素集.不妨设);,,2,1}(,,,{1)()(2)(1n n k i u u u U k i i i n i i i i===∑= ,称之为二级因素集.(2) 设评判集},,,{21m v v v V =,对二级因素集},,,{)()(2)(1i n i i i i u u u U =的i n 个因素进行单因素评判,即建立模糊映射),,2,1)(,,,()()(:)()(2)(1)()(i i jm i j i j i j i i j i i n j r r r u f u V F U f ==→于是得到评判矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)()(2)(1)(2)(22)(21)(1)(12)(11i m n i n i n i mi i i mi i i i i i r r r r r r r r r R 不妨设},,,{)()(2)(1i n i i i iu u u U =的权重为},,,()()(2)(1i n i i i ia a a A =,则可以求得综合评判为),,2,1)(,,,()()(2)(1k i b b b R A B i m i i i i i ===其中)(i j b 由模型)(∨∧,M ,或)(∨∙,M 、)(+∧,M 、)(+∙,M 确定. (3) 对于一级因素集},,,{21k U U U U =作综合评判,不妨设其权重),,,(21k a a a A =,总评判矩阵为T k B B B R ],,,[21 =.按模型)(∨∧,M ,或)(∨∙,M 、)(+∧,M ,、)(+∙,M 运算得到综合评判)(),,,(21V F b b b R A B m ∈== .19.6 中介服务机构的信誉评估问题[10]19.6.1问题的提出近年来,社会上出现了很多不同规模、不同性质的中介服务机构,但目前还缺少规范统一管理的政策和法规,有些地方由此产生了许多社会问题.为了加强对这些机构的管理,政府有关部门需要对这些机构的“信誉”做出客观地评价,以便制定相应的政策和法规.表19-1:各级因素及其权值 主要因素二级因素 权 重 模糊矩阵 三 级 因 素权 重 (A) 法 纪 情 况 0.3(A 1)遵纪 守法情况 a 1=0.3 R A1 (A 11)经营活动 a 11=0.5 (A 12)财务制度a 12=0.5 (A 2) 纳 税 情 况 a 2=0.5R A2(A 21)所纳税与应纳税的比率 a 21=0.6 (A 22)逃税次数a 22=0.2 (A 23)逃税罚金与所纳税的比率a 23=0.2 (A 3)奖惩 情 况 a 3=0.1R A3 (A 31)奖励的次数 a 31=0.5 (A 32)惩罚的次数a 32=0.5 (A 4)治安 情 况a 4=0.1R A4 (A 41)发生治安案件的次数 a 41=0.4 (A 42)发生行事案件的次数 a 42=0.6 (B)(B 1)履行 合同情况 b 1=0.2 R B1 (B 11)履行合同与全部合同比率 b 11=0.6 (B 12)主动违约占合同的比率 b 12=0.4 (B 2)(B 21)中介服务的成功率b 21=0.6。
模糊数学(第六讲)
A1 × A2 ×L × An = Π Ai ∈ F Π U i i =1 i =1 定义为∀ ( u1 , u2 ,L , un ) ∈ U1 × U 2 ×L × U n,
n n
Π Ai ( u1 , u2 ,L , un ) = i∧1 Ai ( ui ) = i =1
11
性质2.3.1 A∈F(R)为凸模糊集当且仅当∀λ∈[ 0,1 ], 为凸模糊集当且仅当∀ 性质 ∈ 为凸模糊集当且仅当 ∈ Aλ为区间 包括空区间 为区间(包括空区间 包括空区间). 证明:必要性 设 为凸模糊集 ∈ 为凸模糊集, 证明 必要性:设A为凸模糊集 λ∈[ 0,1 ], x, z ∈Aλ且x<z, 必要性 则∀y∈[ x, z ],有 ∈ 有 A(y)≥min( A(x), A(z))≥λ , 故y∈Aλ. 这说明若两点在 λ中,则以这两点为端点的整个 这说明若两点在A ∈ 则以这两点为端点的整个 区间包含在A 因此, 是一个区间. 区间包含在 λ中. 因此 Aλ是一个区间 充分性: 为区间, 对任意实数x<y<z,取 充分性 设∀λ∈[ 0,1 ], Aλ为区间 对任意实数 ∈ 取 λ= min( A(x), A(z)), 则x∈Aλ且z∈Aλ. 因为 λ为区间 故 因为A 为区间,故 ∈ ∈ y∈Aλ, 即 ∈ A(y)≥λ= min( A(x), A(z))
12
于是,由定义 知为凸模糊集. 于是 由定义2.3.1 知为凸模糊集 □ 由定义
性质2.3.2 若A, B∈F(R )均为凸模糊集 均为凸模糊集, 性质 ∈ 均为凸模糊集 也是凸模糊集. 则A∩B也是凸模糊集 也是凸模糊集 证明: 由定理1.4.2(2)知, ∀λ∈[ 0,1 ], 证明 由定理 知 ∈ (A∩B)λ= Aλ∩Bλ. 因为A, 均为凸模糊集 所以由性质2.3.1知 均为凸模糊集, 因为 B均为凸模糊集 所以由性质 知 Aλ和Bλ均为区间 而区间的交仍为区间 故 均为区间. 而区间的交仍为区间, (A∩B)λ为区间 于是由性质 为区间. 于是由性质2.3.1知A∩B为凸 知 为凸 模糊集. 模糊集 □
模糊数学综合评价法
模糊数学综合评价法
模糊数学综合评价法(FMEA)是一种多维度考量的前瞻性评价技术,它不仅可以预测未来可能发生的错误,也可以提出合理的解决方案以有效地解决这些错误。
模糊数学综合评价法是一种风险管理技术,它能够帮助企业评估可能出现的风险和潜在问题,并有效地将有关活动纳入企业框架中。
模糊数学综合评价法通常以一种金融机构的行为或作为起点,并将其中的多种可能的影响加以分析。
该方法是使用模糊数学原理来评估某项活动可能产生的风险。
它可以比较和综合多种不同方面的各种因素,考虑不确定性的影响。
模糊数学综合评价法是一个复杂的概念,它不仅需要对模糊数学理论进行深入的研究,而且还需要在特定情况下使用更加细节化的分析技术来识别可能存在的风险。
模糊数学综合评价法可以帮助企业以多维度考量可能存在的风险。
它可以从多个不同的角度考虑问题,以识别和评估与其相关的风险。
模糊数学综合评价法还可以帮助企业对未来可能发生的问题进行预测,并为解决这些问题提供合理的解决方案。
此外,模糊数学综合评价法还可以帮助企业制定有效的风险管理战略,采取有效的措施来降低风险,并尽快解决可能出现的问题。
总结而言,模糊数学综合评价法是一种有效的前瞻性评价方法,它可以识别和评估可能存在的风险,并有效地将有关活动纳入整个企业框架中。
当企业运用这种方法来管理风险时,可以有效地
提高效率,减少由风险引起的损失,从而促进企业的可持续发展。
模糊数学原理及应用
模糊数学原理及应用
模糊数学,又称模糊逻辑或模糊理论,是一种用于处理模糊和不确定性问题的数学方法。
它与传统的二值逻辑不同,二值逻辑中的命题只能有“是”和“否”两种取值,而模糊数学允许命题
取任意模糊程度的值,介于完全是和完全否之间。
模糊数学的基本原理是模糊集合论。
在模糊集合中,每个元素都有一个属于该集合的隶属度,代表了该元素与集合之间的模糊关系。
隶属度的取值范围通常是0到1之间,其中0表示不
属于该集合,1表示完全属于。
模糊集合的隶属函数则用来描
述每个元素的隶属度大小。
模糊数学的应用广泛。
在工程领域中,它常用于模糊控制系统的设计与分析。
传统的控制系统中,输入和输出之间的关系是通过确定性的数学模型来描述的,而模糊控制则允许系统中存在不确定性和模糊性,并通过模糊推理来实现系统的控制。
在人工智能领域中,模糊数学也有着重要的应用。
模糊逻辑可以用来处理自然语言的模糊性和歧义性,对于机器翻译、信息检索和智能对话系统等任务具有重要意义。
此外,模糊数学还可以应用于风险评估、决策分析、模式识别、数据挖掘等领域。
通过将模糊数学方法应用于这些问题,可以更好地处理不确定性和模糊性信息,并得到更准确的结果。
总而言之,模糊数学是一种处理模糊和不确定性问题的数学方法,通过模糊集合论和模糊推理来建模和分析。
它在各个领域
都有广泛的应用,可以帮助人们更好地处理现实世界中的复杂问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R= ( b1, b2,
b5)
( i = 1, 2, 3, 4; j= 1, 2, 3, 4, 5)
0. 248, 0. 276, 0. 284, 0. 116)
b2= ( 0. 064, 0. 096, 0. 224, 0. 340, 0. 276)
b3= ( 0. 040, 0. 152, 0. 268, 0. 330, 0. 240)
磨浆比 Ratio of milling to plasm
18
18 18
18 18
1. 2. 4 建立数学模型 以色泽、质地、豆香味、豆腥味为因素集, 以差、较差、一般、较好、好为评语集,
根据感官评定结果, 建立 5 个单因素评价矩阵, 采用 M 评判模型对其进行分析。
2 结果与分析
表 2 黄豆豆浆感官评定结果
Sample Worst Worse Common Better Best Worst Worse Common Better Best Lightest Lighter Common Stronger Strongest Strongest Stronger Common Lighter No
1 1 9 21 14 5 2 12 15 17 4 4 13
色泽 Color and lustre
Table 2 Organoleptic assess of the beam milk
质感 Quality
豆香味 Flavor of bean milk
豆腥味 Fishy smell
样品 很差 较差 一般 较好 很好 很差 较差 一般 较好 很好 很淡 较淡 一般 较浓 很浓 很重 较重 一般 较淡 无
随着人们饮食观念的变化, 大豆制品越来越受到更多人的青睐。这是由于大豆及其制品是高营养的植物 性食品。大豆富含有近 40% 的蛋白质, 还有多种维生素和矿物质, 尤以钙、磷为多[1 ,2 ] 。此外, 大豆制品不 含胆固醇, 并且有降低人体血液中胆固醇含量的作用。因此我国人民自古就有喝豆浆的习惯。但传统的豆浆 在脂肪氧化酶的作用下带有明显的豆腥味, 给它的风味带来了很大的缺陷。关于大豆的脱腥技术, 国内外报 道很多, 根据现有条件, 选择 5 种方法对大豆进行脱腥处理[1 ,4] , 并进行感官评定。豆浆的感官评定是产品 开发的重要环节, 因感官评价依赖各种感官特征, 结构复杂, 使结果难于准确表达。而目前普遍采用的评分 法, 因实验条件有限和评分人员的不同, 使评分离散程度较大, 结果很难保持一致。模糊数学综合评判在食 品感官评定中的应用, 克服了以往的评分法给结果带来的主观性和片面性, 使模糊的问题数学化。使评定结 果更趋于合理性。本研究由于所研究的因素权重比较均衡, 故采用 M 评判模型对不同脱腥处理的大豆豆浆 进行感官评定, 目的在于为食品的感官评定提供更有效的方法。
0. 06 0. 08 0. 08 0. 42 0. 36 0. 06 0. 06 0. 20 0. 42 0. 26 0. 12 0. 10 0. 32 0. 30 0. 16 0. 04 0. 12 0. 26 0. 28 0. 30
0. 02 0. 10 0. 24 0. 30 0. 34 0. 06 0. 12 0. 38 0. 30 0. 14 R3= 0. 00 0. 22 0. 36 0. 22 0. 20 0. 06 0. 16 0. 18 0. 34 0. 26
Abstract: The organoleptic quality of been milk mder different treatments for taking off the fishy smell were judged synthetically with
the method of the fuzzy mathematics. the result showed that the method of hot water soaking to handle soybean bean milk was the best, followed by the microwave killing enzyme method, dry heat killing enzyme method, lye soaking method, brine soaking method. The result obtained from this method not only increased the objectivity but also promoted the validity. Key words: fuzzy mathematics; bean milk; organoleptic assess
0. 06 0. 08 0. 34 0. 36 0. 16 0. 06 0. 10 0. 36 0. 32 0. 16 R4= 0. 08 0. 22 0. 36 0. 20 0. 14 0. 08 0. 26 0. 26 0. 22 0. 18
0. 06 0. 16 0. 30 0. 38 0. 10 0. 08 0. 08 0. 40 0. 32 0. 12 R5= 0. 06 0. 20 0. 32 0. 34 0. 08 0. 08 0. 24 0. 26 0. 20 0. 22
收稿日期: 2003- 07- 04 作者简介: 曹冬梅( 1969- ) , 女, 黑龙江八一农垦大学讲师, 从事畜产品加工和质量管理教学工作。
研究报告 RESEARCH REPORT
40
沈阳农业大学学报
第 35 卷
评价员应客观的进行评价, 不搀杂个人情绪, 在评价过程中, 避免讨论; 在试验前应避免接触强味物品, 吸
13 13 11 9 12 13 10 11
由表 2 可知, 在 50 人对豆浆色泽的评价结果中, 1 号样品有 1 人认为很差, 9 人认为较差, 21 人认为一 般, 14 人认为较好, 5 人认为很好, 则得到: A 色泽= [ 0. 02 0. 18 0. 42 0. 28 0. 10]
对质感的评价结果中, 有 2 人认为很差, 12 人认为较差, 15 人认为一般, 17 人认为较好, 4 人认为很 好, 则得到: A 质感= [ 0. 04 0. 24 0. 30 0. 34 0. 08]
85 以上热水浸 Soaked in hot water( above 85 ) 微波加热 4min Heated up by microwave for 4min 120 干热 30s Dry heat for 30s 0. 5% 碱水浸泡 Soaked in 0. 5% buck
30min 12h 12h 12h
摘要: 利用模糊评判方法对不同脱腥处理的豆浆感官质量进行了综合评定, 结果表明: 5 种脱腥方法中, 热水浸泡法对豆浆的 处理效果最好, 其次为微波灭酶法、干热灭酶法、碱水浸泡法, 盐水浸泡最差。采用热水浸泡法得到的结果是一个有效而比较
客观的评价。
关键词: 模糊数学; 豆浆; 感官评定 中图分类号: O159 文献标识码: A
沈阳农业大学学报, 2004- 02, 35( 1) : 39- 41 Journal of Shenyang Agricultural University, 2004- 02, 35( 1) : 39- 41
模糊数学在豆浆感官评定中的应用
曹冬梅, 王淑娟, 王 静
( 黑龙江八一农垦大学 食品学院, 黑龙江 大庆 163319)
1 材料与方法
1. 1 材料与设备 1. 1. 1 材料 精选大豆, 由校科研所提供 1. 1. 2 设备 电热恒温培养箱( 上海跃进医疗器械厂生产) ; FDM- Z 型浆渣自分离磨浆机( 江苏省丹徒县鑫鑫 五金食品机械厂生产) ; 微波炉( 青岛海尔微波制品有限公司生产) 。 1. 2 实验方法 1. 2. 1 工艺流程 选豆 清洗 浸泡 去皮 磨浆 煮沸 冷却 评定 分析。 1. 2. 2 操作要点 挑选 5 种优质大豆样品, 去除杂质、破损豆瓣及虫蛀豆。用清水清洗 3~ 4 遍, 以保证黄 豆的清洁。对样品采用不同的方法和时间进行浸泡( 表 1) , 浸泡用水量为豆重的 3 倍。浸泡后, 反复揉搓, 去除表皮。采用热磨法, 即用 85 热水进行磨浆。将豆浆煮至沸腾后保持 1~ 2min 后冷却至室温。组成由老 师、学生参加的 50 人评价小组, 进行评定。 1. 2. 3 评定方法 在评定之前, 将未经脱腥与煮沸处理的豆浆给评价员品尝, 以作为评定时豆腥味的对照。
同理得到: A 豆香= [ 0. 08 0. 26 0. 14 0. 40 0. 12]
A 豆腥味= [ 0. 12 0. 28 0. 26 0. 20 0. 14]
把上述得到的 4 个单因素的评价结果写成一个矩阵为:
同理得到: R2=
0. 02 0. 18 0. 42 0. 28 0. 10 0. 04 0. 24 0. 30 0. 34 0. 08 R1= 0. 08 0. 26 0. 14 0. 40 0. 12 0. 12 0. 28 0. 26 0. 20 0. 14
表 1 5 个样品的处理方法
Table 1 Five treating methods of samples
脱腥方法
浸泡时间
Method of taking off fishy smell 1. 5% NaCl 溶液浸泡 Soaked in 1. 5% NaCl solution
Soaking time 12h
研究报告 RESEARCH REPORT
第 1期
曹冬梅等: 模糊数学在豆浆感官评定中的应用
41
消费者一般对豆浆色泽、质感、豆香味、豆腥味 4 个因素的偏好为:
a= ( 0. 2 , 0. 2 , 0. 2 , 0. 4)
模糊综合评价矩阵: 即:
ቤተ መጻሕፍቲ ባይዱB=
n