人教版七年级上数学《余角与补角》课件.ppt

合集下载

人教版七年级上:余角与补角PPT课件

人教版七年级上:余角与补角PPT课件

感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
认真观察下面的图形,回答下列问题:
(1)图中有哪几对互余的角? C
∠A与∠B互余 ∠A
与∠2互余
21
∠1与∠B互余 ∠1
与∠2互余
A
DB
(2)图中哪几对角是相等的角(直角除外)?
说明它们相等的原因。
∠B=∠2 (同角的余角相等) ∠A=∠1 (同角的余角相等)
如图,已知∠AOB=90°, ∠AOC= ∠BOD, 则与∠AOC互余的角为__B_O__C_和____A_O_D_.
DC
E
1
23 4
A
O
B
已知,点A,O,B在同一直线上,OE,OF分别为
∠AOC和∠BOC的角平分线,找图中互余和互
补的角。
C
F
E
A
O
B
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
一个角的补角是否一定是钝角?
帮找朋友 的余角 的补角
80
10
100
45
70 39'
x
45
19 21' 90 x
135
109 21' 180 x
例1:
若一个角的补角是它的3倍,求这个角的 度数?
变式:若一个角的补角等于它的余角的4 倍,

人教版七年级上册数学4.3.3余角、补角的概念与性质课件(23张ppt)

人教版七年级上册数学4.3.3余角、补角的概念与性质课件(23张ppt)
(简称互余)
2、什么叫互为补角?
如果两个角的和等于 180 ° ,那么这两个角互为补角。
(简称互补)
反之也成立
1、什么叫互为余角?
如果两个角的和等于 90°,那么这两个角互为余角 (简称互余)
几何语言: ∵∠1+∠2 = 90°, ∴∠1、∠2互为余角
2、什么叫互为补角? 如果两个角的和等于 180∠°1,+那∠么2 这= 两90个°角互为补角
180 ° - ∠AOC
= =
180 °- 115 °
65答° :这个角为
60°。90
°-
∠AOD
答:∠ BOC 的度数为 115 °
能力提升
如图,将两块三角板的直角顶点重叠在一起。
AD
C
20°
70 ° 70 °
O 图1 B
AD
C 40 °50°
40 °
O 图2 B
A
x 90C°- x
D
90 °- x
2、如图,点O为直线AB上的一点,OD平分∠AOB,
∠COE = 90 ° , 则∠BOC = ∠DOE ,
∠COD = ∠AOE .
E
D
C
A
O
B
D
C
1 2 34
E
A
O
B
综合运用
方程的思想
1、一个角的补角是它的余角的 4 倍,求这个角?
2、如图,A、O、B三点在一条直线上, 已知∠ AOD=25 ° ,∠COD=90 °, 求∠ BOC的度数?
D
25 ° O
A
B
C
强化练习,巩固提高
2、1已、如知图一∠,个AA、O角DO=、2的5B三°补点,在角∠一是C条OD直它=9线0的上°,余, 角的 4 倍,

人教版七年级数学上册4.余角和补角课件

人教版七年级数学上册4.余角和补角课件
A
D
解:OC平分AOB,
AOC BOC
C O
B
又AOC AOD 180,
BOC BOD 180
AOD BOD(等角的补角相等)
2、如图,EDC CDF 90 , 3 4, 1和2相等吗?为什么?
解:1 3 90, 2 4 90 3 4 1 2(等角的余角相等)
例1.如图,A,O,B在同一直线上,射线OD 和射线OE分别平分∠AOC和∠BOC,图中哪 些角互为余角?
探究 22:.已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,
那么∠2和∠4 有什么关系?为什么?
1
2
3
4
等角的补角相等.
归纳
补角的性质: 同角(等角 ) 的补角相 等.
探究3:
已知∠AOC=90°,∠BOD=90°,说出∠AOB的余角?
∠AOB的余角间有什么关系? C
B
∠BOC=∠AOD=90°-∠AOB O
若一个角的补角等于它的余角的4倍, 求这个角的度数。
解:设这个角的度数是 x ° ,
180-x = 4(90-x) x = 60
答:这个角的度数是60 °。
合作探究:
1、如图,已知 AO,B 利用直尺在图中画
出 AOB的补角?
A
2. AOB 的补角间有什么关系?
3.你能得到什么结论?
O
B
同角的补角相等.
32
4
1
如图,有两堵墙,小明想测量底面上所形成的 ∠AOB的度数,但他又不能进入围墙,只能站在 墙外,你能帮助他完成测量吗?
B B
O
O
这节课你收获了什么?
A
D
同角的余角相等.
探究 4:

人教版《余角和补角》PPT优质课件初中数学ppt

人教版《余角和补角》PPT优质课件初中数学ppt

所以∠AOC和∠BOC互为补角.
∠(21)已+ ∠知2∠=19与0 ∠°2互补,∠3与∠4互补.
∠所3以=∠128=0º-∠3∠. 1,
对∠1于+ ∠余2角= 是90否°也有类似性质?
(由2)∠已3知与∠∠14与互∠补2,互得补∠,3∠+3∠与4∠=41互80补º,.所以∠4=180º-∠3.
再 见 同且理∠3,=∠6A,O则D +_∠__B_O_E=,______,
由180º- ∠α=3 ∠α,
∠对1于+ ∠余2角=是90否°也有类似性质?由∠3与∠4互补,得∠3+∠4=180º, 所以∠4=180º-∠3.
等角
的余角相等.
有的角与∠1的和等于180º,例如(

又因为∠1=∠3,180º-∠1=180º-∠3,所以∠2=∠4.
归纳
等角(同角)的补角相等. 对于余角是否也有类似性质?
所以∠2=∠3.
由∠1与∠2互补,得∠1+∠2=180º,所以 根据是__________.
(2)∠1=90º-∠2,则∠1与∠2的关系为___________.
∠2=180º-∠1.
例 如图,货轮O在航行过程中,发现灯塔A在它南偏东60º的方向上,同时,在它北偏东40º、南偏西10º、西北(即北偏西45º)方向上又分别发现了客轮B,货轮C和海岛D.
∠由3∠=11与8∠0º2-互∠补1,得∠1+∠2=180º,所以 ∠2=180º-∠1.
由∠1830与º-∠4∠互α补=3,∠α得,∠3+∠4=180º, 所以∠4=180º-∠3.
它(2)的已补知角∠1是与1∠802互º-补70,º3∠93′=与10∠94º互21补′. .
由根∠据3是与_∠4_互_补_,_得_∠_3+_∠_4=_1.80º, 所以∠4=180º-∠3.

人教版数学七年级上册4.余角和补角课件

人教版数学七年级上册4.余角和补角课件

16 . (8 分 ) 如 图 , 已 知 直 线 AB 和 CD 相 交 于 点 O , OM 平 分 ∠ BOD , ON⊥OM,∠AOC=50°. (1)求∠AON的度数; (2)写出∠DON的余角.
解:(1)65° (2)∠DOM,∠MOB
17.(10分)如图,AB是一条直线,OC是一条射线,∠AOC=2∠AOF, ∠BOC=2∠BOE. (1)∠1与∠2互余吗?
解:如图:
19.(12分)如图甲所示,∠AOB,∠COD都是直角. (1)试猜想∠AOD与∠COB在数量上是相等、互余、还是互补的关 系,你能用推理的方法说明你的猜想是否成立吗? (2)当∠COD绕点O旋转到图乙的位置时,你本来的猜想还成立吗?
方位的表示方法
在表示方向时,要先在观测点画出方位图,然后测量出角度并在图 上表示出来,注意表示时要先写北还是南,再写偏东或偏西,偏多
少度,如图4-3-28,OA是表示北偏东30°的 一条射线,OB是表示南偏西50°的一条射线; 特别地,射线OC表示北偏西45°可写成西北 方向,OD表示东南方向.
例题
小结
1. 余角和补角的定义:
如果两个角的和等于
,就说这两个角互为余角;如果两个
角的和为
,就说这两个角互为补角.
2. 余角和补角的性质: 同角(等角)的补角________,同角(等角)的余角_________.
3. 如图,O是直线AB上的点,OC是∠AOB的平分线. (1)∠AOD的补角是__∠__B_O__D___,余角是__∠__C_O__D__; (2)∠DOB的补角是__∠__A__O_D_____. 4. 已 知 ∠ α = 20° , 则 ∠ α 的 余 角 为 _______70,° ∠ α 的 补 角 为 ______1_6_0.° 5. ∠A的补角为130°,则∠A的余角为________4.0°

人教版七年级数学上册4.余角和补角课件

人教版七年级数学上册4.余角和补角课件
∠的补角是(180 °—∠ )
5、如图,O是直线AB上一点,OC是∠AOB的平分线 ①∠AOD的补角是_____∠__B_O_D___ ②∠AOD的余角是____∠__C__O_D___ ③∠DOB的补角是_____∠__A_O__D__
2
13
3
3
3
4
∠1与∠2互余,∠3与∠4互余,如果∠1=∠3,那么∠2 与∠4相等吗?为什么?
x
∠α的余角
85°
58° 45° 13°
27°37′ 90° x
∠α的补角
175°
148°
135°
103°
117°37′ 180° x
从上面这张表格中,你还能得到什么信息?
若一个角的补角等于它的余角的3倍,求这 个角的度数。
1.
对应图形 数量关系 性质
互为余角
互为补角
1 2
21
∠1+ ∠2 = 90 ° ∠1+ ∠2 = 180 °
14
4
4
4
2
3
∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与 ∠4相等吗?为什么?
分析:由∠1与∠2互余,可得∠2=90°-_____ ∠1
由∠3与∠4互余,可得∠4=90°-_____ ∠3
答:因为∠1=∠3, 这就是∠2=∠4
所以90°-∠1= 90°-∠3,
等角的余角相等
分析:由∠1与∠2互补,可得∠2=180°-_____∠1

B
D

40°

西O 60°
A

西O 60°
A
南 C南
一艘渔船从O 点沿北偏东30°的方向以8千米/时的速度 行驶3小时到达A 处后,接到风浪警报,欲立即调头以16 千米/时的速度向正西方向行驶,争取1.5小时到达小岛B 处.A、B两处的距离是多少?B处在O点北偏西多少度? O、B两点的距离是多少?

6.3.3 余角和补角 课件(共21张PPT) 人教版七年级数学上册

请同学们完成课本177页练习2,3题.
小组展示
我提问
我回答
我补充
我质疑
提疑惑:你有什么疑惑?
越展越优秀
1.余角:(1)定义:如果两个角的和等于90°(直角),就说这两个角互为余角,简称这两个角互余,其中一个角是另一个角的余角.(2)数学语言:若∠1+∠2=90°,则说∠1是∠2的余角或∠2是∠1的余角或∠1与∠2互余.
1.我们学习了哪些知识?
余角
补角
定义
如果两个角的和为90°,就说这两个角互余,其中一个角是另一个角的余角
如果两个角的和为180°,就说这两个角互补,其中一个角是另一个角的补角
性质
同角(等角)的余角相等
同角(等角)的补角相等
常见图形
作用
说明两个角相等的重要依据
2.用到了哪些方法和思想?
知识点2:余角和补角的性质(难点)
【题型一】余角和补角的定义
例1:若∠A=23°,则∠A的余角的度数是( ) A.57° B.67° C.77° D.157°
B
变式:已知一个角的余角是这个角的补角的 ,求这个角的度数以及这个角的余角和补角的度数.
例2:如图所示,直线AB,CD相交于点O,因为∠1+∠3= 180°,∠2+∠3=180°,所以∠1=∠2.其推理依据是( )A.同角的余角相等 B.等角的余角相等C.同角的补角相等 D.等角的补角相等
请同学们准备一张长方形纸片,沿一个角折叠后,找出折痕与长方形的边形成的角。例:如图长方形纸片的折痕与长方形的边形成了4个角,思考:(1)∠1与∠2有什么数量关系?(2)∠3与∠4有什么数量关系?
活动导入
同学们,你们打过台球吗?请同学们观看一段视频:
视频导入

人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件


理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m

人教版数学七年级上册 4.余角与补角课件(24张)

解得: x =60 答:这个角的度数是60 °。
已知一个角的补角是它的3倍,这个角是多度?
解:设这个角为x°, 则这个角的补角是(180-x)° 由题意得180-x=3x 解得 x = 45 则这个角的度数为45°
变式训练: 已知一个角的补角是这个角的余角的4倍,求这个 角的度数
探究:余角和补角的性质 如图∠1 与∠2互余,∠3 与∠4互余 , 如果∠1=∠3,那么∠2与∠4相等吗?为 什么?
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
注意点
1 互余、互补是两角之间的数量关系,只与他们的 度数和有关,与位置无关。
2 互余、互补概念中的角是成对出现的。
3 角 的余角是 90 ,补角是 180 ,
同一个锐角的补角比90余。角大 90 。
4 只有锐角才有余角。 5 同角的余角(补角)相等;

2.对于这种能力,人们普遍存在一种 疑问, 即为什 么只有 一部分 人会发 生联觉 现象。 一些人 用基因 来解释 这个问 题。有 研究者 已经注 意到, 如果一 个家族 中有一 人具有 联觉能 力,那 么很可 能会出 现更多 这样的 人。

3.科学研究指出,联觉现象大多出现 在数学 较差的 人身上 ,此外 ,左撇 子、方 向感较 差以及 有过预 知经历 的人也 通常会 出现联 觉现象 。也有 人认为 ,联觉 能力与 一个人 的创造 力有关 ,许多 著名的 科学家 和艺术 家都具 备联觉 能力。
DC
E
1
23 4
A
O
B
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
小结
互余
互补
两角间 1 2 90 1 2 180

余角和补角的性质人教版七年级数学上册精品课件PPT



3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。

4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。
重难易错
6. (例3)如图,将一副直角三角尺的直角顶点C叠放 在一起,若∠ECD比∠ACB的 小6°,则∠BCD的度 数为 65° .
第4章第13课 余角和补角的性质-2020秋人教版七 年级数 学上册 课件
第4章第13课 余角和补角的性质-2020秋人教版七 年级数 学上册 课件
7. 如图,一副三角板按不同的位置摆放,摆放位置中 ∠1≠∠2的是( C )

5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。

6、我就经历过许多大大小小的挫折。 大海因 为有了 狂风的 袭击, 才显示 出了它 顽强的 生命力 ,它把 狂风化 成了朵 朵浪花 ,给人 们带来 美丽;
感谢观看,欢迎指导!
第4章第13课 余角和补角的性质-2020秋人教版七 年级数 学上册 课件
第4章第13课 余角和补角的性质-2020秋人教版七 年级数 学上册 课件
三级拓展延伸练 12. 如图所示,已知O是直线AB上一点,
∠BOE=∠FOD=90°,OB平分∠COD(图中所有的角均 指小于平角的角). (1)图中与∠DOE互余的角是 ∠EOF,∠BOD,∠BOC ; (2)图中是否有与∠DOE互补的角?如果有,直接写出
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果两个角的和等于180°, 如果两个角的和等于 90°, 用量角器量出∠1、∠2、∠3的度数, 就说这两个角互为余角,简称互 就称这两个角互为补角,简称互 分别仔细观察∠1、∠2、∠3每两个角的度 余 .也可以说其中一个角是另一 补.也可以说其中一个角是另一 个角的补角. 个角的余角 . 数和,你有什么发现?
• ②一个角的补角一定是钝角.( )
×
• ③若∠1+∠2+∠3=90°,那么∠1、∠2、∠3互 为余角.( )
×
• ④两个角互补,那么这两个角中,必定一个是 锐角,另一个是钝角. ( )
×
如右图:O是直线AB上一点,OC是∠AOB 的角平分线 。
①∠AOD的余角是 ②∠AOD的补角是 ③∠DOB的补角是 ∠COD ;D ; 。
2
1
∵∠1+∠2=90°,∠3+∠4=90° ∴∠2=90°-∠1, ∠4=90°-∠3 ∵∠1=∠3 ∴∠2=∠4 等角的余角相等
4
3
已知:如图吗,∠2与∠3 都是∠1的补角。 问: ∠2与∠3的大小关 系。
1
2
已知:∠1与∠2互为补角, ∠3与∠4互为补角, 且∠1=∠3。 问: ∠2与∠4的大小关系
已知:一个角的补角比它的余角大20°。求:这个角是多少?
已知:∠2与∠3都是∠1的余角。 利用三角尺画出∠1的余角 问: ∠2与∠3的大小关系。
解:∠2=∠3
2
1
3
∵∠1+∠2=90°, ∠1+∠3=90° ∴∠2=90°-∠1, ∠3=90°-∠1 ∴∠2=∠3
同角的余角相等
已知∠1与∠2互为余角,∠3 与∠4互为余角,若∠1=∠3则∠2 与∠4是什么关系?
∴∠AOD=∠BOD(等(同)角的补角相等)
等(同)角的余角相等; 等(同)角的补角相等。
• 如图 ,已知 AOC BOD 90 • 请问∠1与∠3相等吗?并说明理由。
D 2 1 A
C
B 3
O
推导性质,理解运用
例 如图,A,O,B在同一直线上,∠AOC= ∠BOD,试判断∠AOD与∠BOE的大小关系,并 说明理由。
互为余角(互余)
定义
互为补角(互补)
如果两个角的和为90°, 如果两个角的和为180°,我 我们就说这两个角互为余角, 们就说这两个角互为补角,简称 简称互余。 互补。
数量关系
1+ 2=90°
1+ 2=180°
对应图形 性质 注意
等(同)角的余角相等
等(同)角的补角相等
①互余、互补都是指两个角; ②互余、互补只与角度大小有关,与位置无关。
这两角还是互为补角吗?把下图中∠1和∠2经过多次变换 位置,这两个角还是互为余角吗?
D
F
1
A
两个角互余(或者互补)与它们的位置关系无关
1
2
如果两个锐角的和是一个直角,就称这两个角互为余角 如果两个角的和是一个平角,就称这两个角互为补角
图中给出的各角,那些互为补角?
10o
30o
60
o
80o
100o 120o 150o
170o
我来试一试:
∠α
5° 32° 45°
∠α的余角
∠α的补角
77°
62°23′ x
85° 58° 45° 13° 27°37′ 90° x
175° 148° 135° 103° 117°37′
180° x
同一个锐角的补角比它的 结论: 90° 余角大 ____
若两角之和为 °,就称这两个角互为补角。 若两角之和为180 90°,就称这两个角互为余角。
A
O B C
∠BOD
∠AOD
已知:一个角的补角是它的余角的4倍。 求: 这个角是多少度。
分析:可设这个角为x°,则它的补角可表示为 180 x , 它的余角可表示为 90 x ,它们之间有怎么样的等量关系?
解:设这个角为 x。 180-x 4(90-x) 解之得:x 60 答:这个角为 60
已知:∠1=27°,∠2是
分析:因为∠2是∠1的余角,所以∠1+∠2=90°, 所以∠2=90°-∠1。 解: ∠2=90°- ∠1=90°-27°=63° ∠3=180°-∠1=180°-27°=153°
• ①一个角的余角一定是锐角.( √ )
重要提醒:(如何表示一个角的余角和补角) 锐角∠的余角是(90 °—∠ )
∠的补角是(180 °—∠ )
理解定义,巩固运用
4.定义中的“互为”是什么意思? 互为余角只是对两个角而言的。
例:如果 1=300, 2=250, 3=350, 那么它们互为余角。这种说话对吗?
5.把下图中∠1与∠ADF分离并多次变换位置,如图,
等 角 的 补 角 相 等
2 1 4 3
3
同 角 的 补 角 相 等
等(同)角的余角相等; 等(同)角的补角相等。
如图,直线CD经过点O,且OC平分∠AOB。 试判断∠AOD与∠BOD的大小关系,并说明理由。
A C D O B 解:∠AOD=∠BOD 理由如下: ∵OC平分∠AOB (已知) ∴∠AOC=∠BOC(角平分线定义) ∵∠AOD+∠AOC=180° ∠BOD+∠BOC=180°(平角定义)
40°
1
50°
2
140°
3
∠1+∠2= 90°
∠1与∠2互余,即: ∠1是∠2的余角, ∠2是∠1的余角。
∠1+∠3= 180°
∠1与∠2互补,即: ∠1是∠2的补角, ∠2是∠1的补角。
练习
一、填空
1、70°的余角是
20° ,补角是
110 °

2、 ∠ ( ∠ <90 ° )的余角是 90°- ∠ ,它的补 角是 180°-∠ 。
相关文档
最新文档