人教版七年级数学上册 有理数 精ppt课件

合集下载

人教版七年级数学上册第1章第2节有理数(共38张PPT)

人教版七年级数学上册第1章第2节有理数(共38张PPT)
• 最大的自然数. • 2.自然数与整数的关系:自然数(都是)整数,但
整数(不都是)自然数. • 3.分数的概念:把(单位“1)”平均分成若干份,表
示这样的一份或几份的数,叫做(分数 ).
一、相反意义的量
在日常生活中我们会遇到这样一些量:
前进100米和后退70米;收入700元和支出600 元;零上6℃ 和零下6℃ …… 这里出现的每一对量,虽然有着不同的内容,但有着一个 共同的特点:
则早晨6时温度为___4__℃,若早晨4时气温比中午11时低13℃, 则早晨4时温度为___—__2__℃。
1、如果全班某次数学测试的平均成绩为83分,某同学考
了85分,记作+2分,得90分应记作_+_7__分__,得80分应 记作_—___3_分_ 。
2、若将28计为0,则可以将27计为-1,试猜想若将27计
• 2.下列说法正确的是( C )
• A.整数包括正数和负数 • B.有理数包括正有理数和负有理数 • C.负整数是整数也是有理数 • D.有理数就是分数
例 1 下列说法正确的是( ) A.一个有理数不是整数就是分数 B.正整数和负整数统称整数 C.正整数、负整数、正分数、负分数统称有理 数 D.0不是有理数
负分数:如,
1 2
,-3.5,…
整数与分数统称为有理数
按数系扩张的自然顺序
有理数还可以这样分类: (按认识有理数的先后顺序) 正整数
有理数
正有理数

负有理数
正分数 负整数 负分数
注意:
1.正数与整数的区别:正数是相对负数 而言的,而整数是相对于分数而言的.
2.0既不是正数也不是负数,而是整数.
(3)在某次乒乓球质量检测中,一只乒乓球超出 标准质量0. 02克记作+0.02,那么-0.03克表示什么?

2.1.1 有理数的加法 第2课时课件 (共16张PPT) 数学人教版七年级上册

2.1.1 有理数的加法 第2课时课件 (共16张PPT) 数学人教版七年级上册
典例精析
使用运算律通常有下列情形:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加。
归纳总结
例2 小明遥控一辆玩具赛车,让它从A地出发,先向东行驶15m,再向西行驶25m,然后又向东行驶20m,再向西行驶35m,问玩具赛车最后停在何处?一共行驶了多少米?




拓展探究
一、加法的运算律1、加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变.2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=a+(b+c)二、使用运算律通常有下列情形:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加。
(1)[8+(-5)]+(-4)(2)8+[(-5)+(-4)](3)[(-7)+(-10)]+(-11)(4)(-7)+[(-10)+(-11)](5)[(-22)+(-27)]+(+27)(6)(-22)+[(-27)+(+27)]
= -1
= -1
= -28
= -28
= -22
= -22
计算并观察下列各式
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变
(a+b)+c=a+(b+c)
一般地,任意若干个数相加,无论各数相加的先后次序如何,其和都不变。
例1 计算(1)15+(-13)+18(2)(-2.48)+4.33+(-7.52)+(-4.33)

第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)

第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)

知识点四:有理数的混合运算 有理数的运算有加法、减法、乘法、除法和乘方.进行混合 运算时,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,按从左到右的顺序进行; (3)如有括号,先做括号内的运算,按小括号、中括号、大 括号依次进行.
13.【例1】下面的说法正确的是( D ) A.有理数的绝对值一定比0大 B.有理数的相反数一定比0小 C.若两个数的绝对值相等,则这两个数相等 D.互为相反数的两个数的绝对值相等
20.【例8】(创新题)观察下列所给的式子,解答下列问题: 1+3=22; 1+3+5=32; 1+3+5+7=42; 1+3+5+7+9=52;…. (1)1+3+5+7+…+29= 225 ; (2)1+3+5+…+(2n-1)= n2 ;(n为正整数) (3)21+23+25+…+57+59= 800 .
16.【例4】(创新题)若x为有理数,式子2 023-|x+2|存在最
大值,则这个最大值是( B )
A.2 022
B.2 023
C.2 024
D.2 025
小结:直接利用绝对值的性质得出|x+2|的最小值为0.
小结:明确有理数混合运算的计算方法,并合理运用运算律.
18.【例6】(全国视野)(2022泸州改编)若(a-2)2+|b+3|=0, 求ab的值. 解:由题意得a-2=0,b+3=0, 可得a=2,b=-3, 所以ab=2×(-3)=-6.
(3)相反数:只有符号不同的两个数叫做互为相反数,0的相 反数是0. 互为相反数的两个数到原点的距离相等.
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这 个数的绝对值. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0. (5)倒数:乘积是1的两个数互为倒数.

人教版七年级数学上册有理数的乘法精品课件PPT

人教版七年级数学上册有理数的乘法精品课件PPT

判断下列各式的积是正的还是负的?
2×3×4×(-5)

2×3×(-4)×(-5)

2×(-3)×(-4)×(-5)

(-2)×(-3)×(-4)×(-5) 正
思考:
几个不是0的数相乘,积的符号与负因数的个数之间有什 么关系?
知识讲解
归纳
几个不是0的数相乘,积的符号由_负__因__数__的__个__数__决定. 当负因数有_奇__数__个时,积是负数;
1, 6
-1, 6
4, -3 7
知识讲解
3.有理数乘法的应用
例3 用正负数表示气温的变化量,上升为正,下降为负.登 山队攀登一座山峰,每登高1km,气温的变化量为-6℃,攀登 3km后,气温有什么变化?
解:(-6)×3=-18 答:气温下降18℃.
随堂训练
1.填表:
被乘数
-4 9
-3 4
乘数
7 6 -6 -25
3×3=9; 3×2=6; 3×1=3; 3×0=0.
3×3=9; 2×3=6; 1×3=3; 0×3=0.
正数乘正数,积为正数;正数乘 负数,积是负数; 负数乘正数,积也是负数。积的 绝对值等于各乘数绝对值的积。 0乘正数或负数,积都是0
知识讲解
问题3 根据上面得出的结论计算下面的算式,你发现有什么规律? (-3)×3= -9 ; (-3)×2= -6 ; (-3)×1= -3 ; (-3)×0= 0 .
随堂训练
1.下列各式变形各用了哪些运算律?
(1) 1.25×(-4)×(-25)×8=(1.25×8)×[(-4)×(-25)]
(乘法交换律和结合律)
(2) ( =(
1 4 1
+ 2 - 6 )×(-8)

人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第3课时绝对值)

人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第3课时绝对值)

探究新知
素养考点 3 利用绝对值求字母的值
例3 已知|x–4|+|y–3|=0,求x+y的值.
解:根据题意可知 x - 4=0,y - 3=0,
所以x=4,y=3,故x+y=7. 归纳总结: 几个非负数的和为0,则这几个数都为0.
巩固练习
已知|x-6|+|y-3|=0,求
x y
的值.
解:由绝对值的非负性得|x-6| ≥ 0,|y-3| ≥ 0,
互为相反数的两个数的绝对值相等.
绝对值相等
|+5|=5 |-5|=5
互为相反数,符号相反
绝对值相等,符号相反的两个数互为相反数.
探究新知
素养考点 1 求已知数的绝对值
例1 求下列各数的绝对值. 12, - 3 , -7.5, 0.
5
解: |12|=12; 正数的绝对值等于它本身.
-3 3;
55
负数的绝对值等于它的相反数.
…..
|3.5|= 3.5 |50|=50
|0|=0
探究新知
【思考】 一个正数的绝对值是什么? 一个负数的绝对值是什么? 0的绝对值是什么?
探究新知
结论1:一个正数的绝对值是正数. 一个负数的绝对值是正数. 0的绝对值是0.
|a|≥0
任何一个有理数的绝对值都是非负数!
结论2:一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数.
探究新知
归纳总结 绝对值的性质
(1)任何有理数都有绝对值,且只有一个. (2)由绝对值的几何定义可知,数的绝对值是两点间的距离,因此,任 何一个数的绝对值都是非负数;在数轴上,一个数离原点的越近,绝 对值越小,离原点越远,绝对值越大. (3)互为相反数的两个数的绝对值相等. (4)绝对值相等的两个数相等或互为相反数.

人教版初中数学七年级上册第一章有理数ppt课件

人教版初中数学七年级上册第一章有理数ppt课件

乘 方
求n个相同因数的积 的运算,叫做乘方, 乘方的结果叫做幂。 在an中,a叫做底数, n叫做指数,当an看 作a的n次方的结果时, 也可读作“a的n次 幂”。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

对值相加;符号相反的两 个数相加,结果的符号与

绝对值较大的加数的符号

相有理数加法中可以使用

加法交换律、结合律
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
有理数的乘法
负数乘负数,积为正数,乘积的 绝对值等于各乘数绝对值的积。
有理数乘法法则: 两数相乘,同号得正,异号得负,
并把绝对值相乘。 任何数与0相乘,都得0.
注意:有理数的乘法可以使用: 乘法交换律、结合律、分配律
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
有 理 数 知 识 结 构 图
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
正 数 和 负 数
正数:大于0的数叫做正数
负数:小于0的数叫做负数
数0既不是正数,也不是 负数,它是正、负数的届限, 表示“基准”的数,零不是 表示“没有”,它表示一个 实际存在的数量。正数负数 的“+”“-”的符号是表示 性质相反的量,符号写在数 字前面,这种符号叫做性质 符号。

人教版七年级数学上册 有理数ppt课件

人教版七年级数学上册 有理数ppt课件
4、若2mn (3n6)2 0, 则( 2 mn)的值是多少?
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
的最大整数;
(2)不大于
9 4
的最大整数;
(3)不小于-3.14的最小整数。
例5计算: (1) 10010
(2)
2 5
11 3
例6:比较下列各对数的大小:
(1)-0.1与-2;
(2)
1 3

3
实践应用
例7:课桌的高度比标准高度高2毫米,记作+2 毫米,那么比标准高度低3毫米,记作什么? 现在有5张课桌,量得它们的高度比标准高+1 毫米,-1毫米,0毫米,+3毫米,-1.5毫米,若 规定课桌的高度比标准高度最高不能超过2毫 米,最低不能超过2毫米,就算合格,问上述5 张课桌中有几张合格?
32 mam xa3 2 x,(1)m , in 4 3, (3 2) =
选一选:
(1)、-3不是( C ) A、有理数 B、整数 C、自然数 D、负有理数 2、一个数的绝对值等于它的本身,这个数必定是( D ) A、0 B、负数 C、非正数 D、非负数 3、某人第一次向南走了40千米,第二次向北走了30千 米,第三次向北走了40千米,最后相当于这人( D )
4
负数: 2,4,11,40.03
33
例2:求-3,0,+1.5的相反数,并把这 些数及其相反数表示在数轴上。
解:-3的相反数是3; 0的相反数是0;
+1.5的相反数是-1.5
. -1。.5 . 1.5
-3
3
例3:填空题
2
2
5
2
5
5
2

有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)

有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)

这两个法则分别在什么情况下使用?
如果两数相除,能够整除的就选择法则2,不能够整除的就选择用法则1.
总结归纳
思考:
到现在为止我们有了两个除法法则,那么两
个法则是不是都可以用于解决两数相除呢?
要点归纳:
1.两个法则都可以用来求两个有理数相除.
2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.







(3)原式=1 8÷(-54)=- ;(4)原式=-[(-9)÷3 6 ]=-(- )= .
练一练
4.化简:

(1)
; 解:原式=-9;


(2)


56 7
原式=48=6;

(3)
; 原式=-30=-2;

45
3

(4) ;
.
原式=-30.
总结归纳

一般地,根据有理数的除法,形如 (p,q 是整数, q ≠0)的数都是
4/5
(-12/25)×(-5/3)=___
-8
-72×(1/9)=___
问题:上面各组数计算结果有什么关系?由此你能
得到有理数的除法法则吗?
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)(+6)÷(+2)= +3
6
1
=
2
+3
互为倒数
“÷”变“×”
(2)(+6)÷(-2)= -3

分层练习-巩固
11. 下列四名同学的说法中,正确的是(
A
)
A. 墨墨:0除以任何一个不等于0的数都得0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)-0.1与-2;
(2)
1 3

3
精选ppt课件
9
实践应用
例7:课桌的高度比标准高度高2毫米,记作+2 毫米,那么比标准高度低3毫米,记作什么? 现在有5张课桌,量得它们的高度比标准高+1 毫米,-1毫米,0毫米,+3毫米,-1.5毫米,若 规定课桌的高度比标准高度最高不能超过2毫 米,最低不能超过2毫米,就算合格,问上述5 张课桌中有几张合格?
4
分数:2,0.5,3.1,411,0.0,33
正数:0.35,3.14,15, 33,2
4
4
负数: 2,4,11,0.03
33
精选ppt课件
5
例2:求-3,0,+1.5的相反数,并把这 些数及其相反数表示在数轴上。
解:-3的相反数是3; 0的相反数是0;
+1.5的相反数是-1.5
. -1。.5 . 1.5
精选ppt课件
10
超越自我
1、如图,圈中有6个数,按一定的规律填
入,后因不慎,一滴墨水涂掉了一个数,
你认为这个数是5或26 ,理由
是 后一个数比前一个。数大 一个自然数
86
11
15 20
精选ppt课件
11
2、min(a,b)表示a,b两数中的较小者, max(a,b)表示a,b两数中的较大者, 如min(-3,5)=-3,max(-3,5)=5,则
例 9、若 2mn( mn) 20,m 则 的值是多少
6、利用绝对值比较有理数的大小:
将下列各数从列 小: 到大排 0.25,2.3,0.15,0,2,3,1,0.05
322
精选ppt课件
15
五、倒数
乘积是1的两个数互为倒数。0没有倒数。
1、会求一个数的倒数:如2的倒数是______;
2
2 3
的倒数是ห้องสมุดไป่ตู้_____.
有理数
精选ppt课件
1
一、知识要点
1、用正数、负数表示具有相反意义的量; 正数和负数的概念。
2、有理数的分类 正整数
自然数
整数

有理数
负整数
分数 正分数
负分数
精选ppt课件
2
2、规定 原点 、 正方向 和 单位长度 的直 线,叫做数轴,
如果两个数只有符号不同,那么我们称 这两个数 互为相反数 ,零的相反数 是 0。 在数轴上,表示互为相反数的两个数(零除外) 位于原点的 两侧,并且到 原的点距离相等
(3)两个正数比较大小,绝对值 大 的数大;
两个负数比较大小,绝对值
大 的数反而小。
精选ppt课件
4
例题讲解:
例1:下列给出的数,哪些是整数?哪些是分数?哪些是 正数?哪些是负数?
2,0 .5 , 4 ,0 ,3 .1, 4 11, 1, 5 0 .0,3 3 ,2
解3 :整数:-4,0,+15,-3 2
2、倒数是本身的数是_________.
精选ppt课件
16
3、a是一个负整数,且满 4足a, 在数轴上表a可 示能取的所有值
4、若2mn (3n6)2 0, 则( 2 mn)的值是多少?
精选ppt课件
17
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
32 mam xa3 2 x,(1)m , in 4 3, (3 2) =
精选ppt课件
12
选一选:
(1)、-3不是( C ) A、有理数 B、整数 C、自然数 D、负有理数 2、一个数的绝对值等于它的本身,这个数必定是( D ) A、0 B、负数 C、非正数 D、非负数 3、某人第一次向南走了40千米,第二次向北走了30千 米,第三次向北走了40千米,最后相当于这人( D )
-3
3
精选ppt课件
6
例3:填空题
2
2
5
2
5
5
2
5
0
无 0
1
1
1
3
3
3
精选ppt课件
7
例4:按要求写数:
(1)不大于
2
3 4
的最大整数;
(2)不大于
9 4
的最大整数;
(3)不小于-3.14的最小整数。
精选ppt课件
8
例5计算: (1) 10010
(2)
2 5
11 3
例6:比较下列各对数的大小:
在数轴上,一个数的绝对值就是表示这 个数的点到原点的 距离 。
精选ppt课件
3
正数的绝对值是 本身,负数的绝对值是 它的相反,数 零的绝对值是 0 。
3、有理数的大小比较法则 (1)利用数轴比较:在数轴上表示的两个数,右边的数 总比左边的数 大 。
推论:(于20)正。数都大于 负数 ,负数都小于 0 ,正数大
A、向南走了110千米 B、向北走了50千米 C、向南走了30千米 D、向北走了30千米
精选ppt课件
13
4、数轴上A,B两点分别是 8.2,6 3 ,则A,B两点间的距离为( A ) 5
A、14.8 B、14.4 C、-1.9 D、1.9
做一做:
1、-4的倒数是
1 4
,相反数是 4
, 2 2。
2、数轴上到原点的距离等于3的点所表示的数是 3。
3、最大的负整数是 -1 ,最小的正整数是 1 ,
绝对值最小的数是 0 ,最小的自然数 0 。
4、绝对值小于4的所有整数
是 1,02,3。
精选ppt课件
14
例 7、若 2a43b10,a则 b的值是多
例 8、2若 a43b2a10,1则 ab的值是 3
相关文档
最新文档