平均数、中位数和众数的使用
《平均数中位数众数》课件

03
众数
众数的定义
众数是一组数据中出 现次数最多的数值。
众数反映了一组数据 的集中趋势,是描述 数据分布的重要统计 量。
在一组数据中,众数 可能存在一个、多个 或不存在。
众数的计算方法
01
02
03
观察法
通过观察数据,找出出现 次数最多的数值即为众数 。
频数统计法
统计每个数值在数据集中 出现的次数,出现次数最 多的数值即为众数。
在统计学中的应用
参数估计
平均数、中位数和众数可以用来 估计总体参数,如总体均值、总
体中位数和总体众数。
假设检验
在假设检验中,平均数、中位数 和众数可以用来构建检验统计量 ,帮助我们判断样本数据是否符
合预期。
相关分析
平均数、中位数和众数可以作为 变量之间相关关系的度量,例如
计算变量之间的相关系数。
在日常生活中的应用
消费水平评估
通过比较不同家庭的平均收入、中位数收入和众数收入,可以评 估一个地区的消费水平。
人口普查数据
在人口普查中,平均数、中位数和众数被用来描述人口数据的分布 情况,帮助政府制定相关政策。
市场调研
在市场调研中,平均数、中位数和众数被用来分析消费者对产品或 服务的满意度和需求。
THANKS
感谢观看
平均数与众数的比较
众数是一组数据中出现次数最多的数值 ,表示数据的普遍水平;
平均数是所有数据之和除以数据个数, 而众数只关注出现次数;
平均数反映数据的总体“平均水平”, 而众数则反映数据的“普遍水平”。在 数据量较大时,平均数和众数可能相差 较大;在数据量较小时,平均数和众数
可能较为接近。
中位数与众数的比较
平均数,中位数和众数的使用

学生讨论:我们应根据问题的具体情况来判定是 选平均数、选中位数还是选众数呢?
(1)
据报道,某公司33名职工的月工资(单位:元)如下
董事 副董 董事 总经 经理 管理 员 长 事长 理
1 1 2 1 5 3
职 员
20
5500 5000 3500 3000 2500 2000 1500
(1)该公司职员的月工资的平均数是 ,中位数 ,众 数是 (2)假设副董事长的工资从5000提升到15000,董事长5500提 升到20000元,那么新的平均数是 ,中位数 ,众数 是 。 (3)你认为哪个统计更能反映这个公司员工的工资水平?结合问题 谈一谈你的看法?
解(1)平均数2090元,中位数为1500元,众数为 1500元。 (2)平均数2833元,中位数为1500元,众数为1500 元; (3)在这个问题中,中位数均能反映该公司员工的 工资水平,因为公司少数人的工资额与大多数人的 工资额差别较大,这样导致平均数与中位数偏差较 大,所以,平均数不能反映这个公司的员工的工资 水平。
平均数、中位数和众数的选用
X
2.中位数:
3.平均数: 等于频率分布直方图中每个小矩形 的面积乘以小矩形底边中点的横坐 标之和。 4.标准差计算公式:
(4) (1) (2) (3)
(1)
(2)
(3)
(4)
解:甲乙两种水稻6年平均产量的平均数都是900,但甲的标 准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比 较稳定。
小华: 62, 94, 95, 98, 98. 小明: 62, 62, 98, 99, 100. 小丽: 40, 62, 85, 99, 99. 他们都认为自己的成绩比另两位同学好,你看呢?
说明算术平均数中位数众数三者之间的关系

说明算术平均数中位数众数三者之间的关系
算术平均数、中位数和众数都是描述一组数据集中趋势的统计量。
它们之间的关系如下:
1.算术平均数是一组数据的总和除以数据的个数。
它是最基本的描述数据平均水平的统计量。
2.中位数是一组数据中位于中间位置的数值,也就是将一组数据按照大小排序后中间位置的值。
对于偶数个数据,中位数是中间两个数的平均数。
3.众数是一组数据中出现次数最多的数值。
在一个数据组中可能有多个众数。
从上述定义可以看出,中位数和众数不一定等于算术平均数。
如果一组数据呈现对称分布,那么它们三者可能相等。
但是对于不对称分布的数据集,它们的值可能会有所偏移。
在正态分布的情况下,三个统计量是相等的。
但是在偏态分布的情况下,可能会出现中位数比平均数更能代表数据的现象。
此外,在数据集中有极端值或者异常值的情况下,使用中位数或者众数可能更为合适。
因此,在分析数据时,需要综合考虑数据分布的特点和具体应用的需要,选择合适的统计量进行描述。
中位数、众数和平均数应用

技术 技术 员A 员B
1800 1700
技术 员C
1500
技术 技术 技术 临时 员D 员E 员F 员G
1200 1200 1200 400
(4)你认为用什么数据反映多数人的收入比较合适? 试说明理由.
答:我认为用众数1200元.因为众数同样不受特别大和特 别小的数据的影响,它能反映一组数据的多数水平.
首页
(2)有特别大或特别小的数据时就不能用平均数,而是 用中位数比较好 ;如知道某学生在班上是处于中上水平还 是中下水平,应选用中位数.
(3)当数据有明显集中趋势时,宜使用众数.日常生活中 诸如“最佳”、“最受欢迎”、“最满意”等.
在实际选用时,要记住三个统计量并不总是有意义的, 不总是合适的,都有各自不同的适用范围.
随堂训练
见《学练优》本课时练习
首页
课堂小结
1.平均数、中位数、众数的特征
平均数是最常用的指标,它表示“一般水平”,中 位数表示“中等水平”,众数表示“多数水平”.
2.平均数、中位数、众数的使用方法
(1)没有极端值,数据相差不大时,选用平均数有较 强的代表性;如评价学生成绩用平均分,班级学生平均身 高,裁判一般以平均成绩为选手最终得分等.
你认为商场的说法能够很好的代表中奖的一 般金额吗?商场欺骗顾客了吗?说说你的看法,以 后我们在遇到开奖问题应该关心什么?
奖金 等级
奖金数 额/元
中奖 人次
一等奖 二等奖 三等奖 四等奖 幸运奖
15000 8000 1000
80
20
4
10
70
360
560
商场没有欺骗顾客,因为奖金的平均数确实是 249元,但是奖金的平均数不能很好地代表中奖的 一般金额,91.6%的奖卷的奖金不超过80元.如果遇 到开奖问题应该关心中奖金额的众数等数据信息.
平均数中位数众数之间的区别及联系

平均数中位数众数之间的区别与联系一、相同点平均数、中位数和众数这三个统计量的相同的地方要紧表此刻:都是来描述数据集中趋势的统计量;都可用来反映数据的一样水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,要紧表此刻以下方面。
一、意义不同平均数:一组数据的总和除以这组数据个数所取得的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中显现次数最多的数叫做这组数据的众数。
二、求法不同平均数:用所有数据相加的总和除以数据的个数。
与每一个数的大小都有关系。
中位数:将数据依照从小到大或从大到小的顺序排列,若是数据个数是奇数,那么处于最中间位置的数确实是这组数据的中位数;若是数据的个数是偶数,那么中间两个数据的平均数是这组数据的中位数。
它只要找或简单的计算。
众数:一组数据中显现次数最多的那个数。
只要找,没必要计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现形式不同平均数:是一个“虚拟”的数,是通过计算取得的,它不是数据中的原始数据,它可能与原数据中的某一个相同,也可能与原数据中的任何一个都不同。
中位数:是一个不完全“虚拟”的数。
当一组数据是奇数个时,它确实是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情形下,中位数是最中间两个数据的平均数,只有当中间的两个数相同时,它才与这组数据中的两个或两个以上数据相同,是数据中的一个真实的数,若是正中间的两个数不同,现在的中位数确实是一个“虚拟”的数。
众数:是一组数据中显现次数最多的原数据,它是真实存在的。
但当一组数据中的每一个数据都显现相同次数时,这组数据就没有众数了。
五、代表不同平均数:反映了一组数据的平均大小,经常使用来一代表数据的整体“平均水平”。
平均数中位数和众数的使用

平均数中位数和众数的使用平均数、中位数和众数是统计学中常用的三个概念,用来描述数据集的集中趋势。
在进行数据分析和统计时,了解和使用这三个概念是非常重要的。
首先,让我们来了解一下什么是平均数。
平均数又称为算术平均数,是一组数据中所有数值之和除以数据的个数。
平均数可以用来描述一组数据的总体水平。
计算平均数的公式为:平均数=总和/数据的个数举个例子来说,如果有一组数据:2,4,6,8,10,其中数据的个数为5、那么平均数为(2+4+6+8+10)/5=6、这意味着这组数据的平均值是6、平均数可以帮助我们了解一组数据的典型数值。
然而,平均数并不总能完全描述一组数据的集中趋势。
这时候,我们可以使用中位数来补充平均数的不足。
中位数是将一组数据按照从小到大的顺序排列后,位于中间的数值。
如果数据的个数为奇数,那么中位数就是按大小排序后的正中间的那个数;如果数据的个数为偶数,那么中位数就是正中间两个数的平均数。
中位数适用于有个别异常值或者极端值的数据集。
对于这种数据,平均数可能会被异常值拉偏,而中位数则更接近于真实情况。
举个例子,如果有一个数据集:2,4,6,1000,10,其中数据的个数为6、那么这组数据的中位数就是6接下来,我们来了解一下什么是众数。
众数是一组数据中出现次数最多的数值,可以有一个或多个。
众数用于描述一组数据中最常出现的数值。
可以通过观察数据的频数来确定众数。
举个例子,如果有一个数据集:2,2,4,6,8,8,8,其中数据的个数为7、那么这组数据的众数就是8,因为它出现的次数最多。
在实际应用中,平均数、中位数和众数都有各自的优缺点和应用场景。
平均数适用于大多数数据集,可以很好地衡量数据的总体水平,但容易被极端值影响。
中位数适用于有异常值的数据集,更能反映数据的集中趋势。
众数适用于描述数据中出现频率最高的值。
在数据分析中,我们通常会根据具体的分析目的选择合适的集中趋势指标。
如果我们关注的是整体水平,一般会使用平均数;如果数据中有异常值或极端值,我们会使用中位数;如果我们关注的是最常见或最频繁出现的数值,我们会使用众数。
平均数,中位数和众数的选用
A.多数水平 B.平均水平 C.中等水平
问题1:
八年级某班级教室里,三个同学正在为谁的数学 成绩最好而争论,他们五次数学成绩分别是:
小明:62、94、95、98、98 小强:62、62、98、99、100 小霞:40、62、85、99、99
解:不合适,虽然这10只手表误差的平均数是0, 但从测得的数据看,10只手表中只有2只不快不慢, 显然不能认为这些手表有很高的精度.
问题3:
某商场一天中售出李宁牌运动鞋20双,其中各种号 码的鞋的销售如下:
请你推测一下,如果你是鞋厂经理,在平均数、中 位数、众数中你最关心哪个数据?最不关心的是哪 个数据?
小知识:在不同的事件中,平均数,中位数和众 数所起的作用不同.要反映一组数据的“多 数水平”,一般选用众数.
所以问题3中最关心的数据为众数,最不关心 的数据为中位数.
想一想:为组织春游活动,班委会对春 游地点进行民意测验,最终去哪里是由 调查数据的平均数,中位数还是众数决 定呢?
由众数决定.
问题4:
课堂小结
1.通过这节课你学到了什么?
2.请你列举在生活中,有哪些统计需 要应用平均数?哪些需要中位数?哪 些需要众数?
◆八年级有四个班级,如果我想比较在一次测验中四 个班的成绩,应该用平均数,众数还是中位数呢?
练习
检验某厂生产的手表质量时,检查人员随机抽取了10只手表, 在下表中记下了每只手表的走时误差(正数表示比标准时间快, 负数表示比标准时间慢),你认为用这10只手表误差的平均数 来衡量这10只手表的精度合适吗?
(1)一组数据中所有数据的平均数叫做这组 数椐的平均数.
中位数-众数-平均数三者的区别
个人理解,说简单点:一组数据中如果有特别大的数或特别小的数时,一般用中位数一组数据比较多(20个以上),范围比较集中,一般用众数其余情况一般还是平均数比较精确一、联系与区别:1、平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
2、中位数是通过排序得到的,它不受最大、最小两个极端数值的影响.中位数在一定程度上综合了平均数和中位数的优点,具有比较好的代表性。
部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
另外,因中位数在一组数据的数值排序中处中间的位置,3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向.二、平均数、中位数和众数它们都有各自的的优缺点.平均数:(1)需要全组所有数据来计算;(2)易受数据中极端数值的影响.中位数:(1)仅需把数据按顺序排列后即可确定;(2)不易受数据中极端数值的影响.众数:(1)通过计数得到;(2)不易受数据中极端数值的影响关于“中位数、众数、平均数”这三个知识点的理解,我简单谈谈自己的认识和理解。
⒈众数。
一组数据中出现次数最多的那个数据,叫做这组数据的众数。
⒉众数的特点。
①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。
但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。
此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。
3.众数与平均数的区别。
众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
4.中位数的概念。
一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。
众数、中位数、平均数的特点及其应用-概述说明以及解释
众数、中位数、平均数的特点及其应用-概述说明以及解释1.引言1.1 概述概述在统计学和数据分析领域,众数、中位数和平均数是常用的统计指标,用于描述和分析数据集的集中趋势。
它们可以帮助我们理解数据的分布情况,并从中提取有用的信息。
本文将重点介绍众数、中位数和平均数的特点及其应用。
众数是指在一组数据中出现频率最高的数值。
它可以用来反映数据的集中程度,并且适用于各种数据类型。
众数的计算相对简单,只需要统计每个数值出现的次数,然后找出出现次数最多的数值即可。
众数在实际应用中常用于描述一组数据的典型取值,如民意调查中的最受欢迎的候选人、销售数据中最畅销的产品等。
中位数是将一组数据按照大小排序后位于中间位置的数值。
它不受极值的影响,更能反映数据的中间位置。
计算中位数的方法相对直观,只需要将数据排序,并确定中间位置的数值即可。
中位数在实际应用中常用于描述数据的中间水平,如家庭收入的中位数可以反映社会的平均收入水平,股票价格的中位数可以反映市场的平均估值水平等。
平均数是指一组数据的总和除以数据的个数,是最常用的统计指标之一。
它可以反映数据的整体水平,并且易于计算和理解。
平均数的计算非常简单,只需要将所有数值相加,然后除以数值的个数即可。
平均数在实际应用中广泛用于描述数据的均值水平,如平均工资可以反映一个地区的平均收入水平,平均成绩可以反映一个班级的整体学习水平等。
众数、中位数和平均数在统计分析中扮演着重要的角色,并且在不同领域有着广泛的应用。
它们能够提供关于数据集的集中趋势、分布形态和离散程度等信息,帮助我们理解数据背后的规律和趋势。
同时,在决策和预测中,这些统计指标也能够提供有用的参考,帮助我们做出更准确的判断和预测。
本文将详细介绍众数、中位数和平均数的特点及其应用,并探讨它们在实际生活中的意义和作用。
通过对这些统计指标的深入了解和应用,我们可以更好地应对数据分析和决策问题,并为未来的研究和实践提供更多的启示和方向。
平均数、中位数和众数的使用
教材分析:
《平均数、中位数和众数的使用》是华东
师大版七年级数学下册第10章第3节内容。 本节内容是在学生对统计的意义有了初步 认识并知道了平均数、中位数和众数的概念之 后,通过对一些实际问题的讨论,了解在利用 平均数、中位数、众数参与决策时,如果依据 不同,结果可能也不同,而且三个统计量不总是 合适的,它们都有各自的适用范围。本节内容 也是是联系现实生活、培养学生应用数学意识 和创新能力的良好素材。
讨论1:
讨论2:
检验某厂生产的手表质量时,检查人员 随即抽取了10支手表,在下表中记下了每支 手表的走时误差(正数表示比标准时间快, 负数表示比标准时间慢)你认 为用这10只 手表的误差的平均数来衡量这10支手表的精 度合适吗? 手表序号 1 2 3 4 5 6 7 2 8 9 10
日走时误差 -2 0 1 -3 -1 0
谢
谢
2007年8月26日
; / vip视频解析 ; 2019年01月17日20:52:21 ;
达到了不可思议的地步." "请注意你的措辞,他们是近卫183师,那是一支近卫部队."铁木辛哥笑着提醒道. "是的,是的.那支部队配得上近卫的称号,尤其是它位别列科夫,那个人的存在,对于红军确实是一种福祉." 那一点,铁木辛哥完全赞同. 暴风雪肆虐莫斯科前线,严寒给予双方同样的 伤害,只是苏军对于寒冷天气准备的更充分,更重要的,莫斯科整个城市被数十万市民修筑成为巨大的堡垒. 德军冒着后勤崩溃的危险,忍受着严寒,一路遭遇苏军的阻击,最终兵败莫斯科城下.战斗中,苏军使用了新式武器,使得德军坦克部队遭遇毁灭性打击――单兵火箭筒武器,具体的说是 火箭推进式榴弹武器,那便是别列科夫所发明的,是在明斯克城外一口气灭
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于以上分析,在学法上,引导学生采用自主探索与 互相协作相结合的学习方式,尽量让每一个学生都能参与 研究,并达到学习目标。
nba论坛 nba论坛
教学目标:
1、经历用平均数、中位数和众数解决实 际问题的过程,了解平均数、中位数和众数各 自的适用范围。
2、能够在解决实际问题时合理选用平均 数、中位数和众数。
3、培养数学应用意识和创新意识,培养 自主学习能力。
4、在合作学习中,学会交流,相互评价, 提高合作意识与能力。
学情分析:
学生已初步了解统计的意义,了解了平均数、中位数、众 数的概念,并会计算一组数据的平均数、中位数、众数,这 两者形成了学生思维的“最近发展区”。 能力分析:学生已初步具备一定的归纳、猜想能力,但在应 用意识与应用能力方面还有欠缺。 情感分析:多数学生对数学学习有一定的兴趣能够积极参与 研究,但在合作交流意识方面,发展不够均衡,有待加强; 少数学生的学习主动性不够强,尚需通过营造一定的学习氛 围,来加以带动。 障碍预测:1、学生对从不同的角度得到不唯一的结论会产生 疑惑,这与学生常用的“因为——所以——结论”的思维模 式所不同,有的学生可能不敢“多想”。 2、学生能够熟练 计算所需数据,但是不能结合实际质疑运用数据的合理性。 综上,应鼓励学生大胆提出自己的见解,用发展的眼光看问 题,在求异思维中体会平均数、中位数、众数的适用范围。
球、冰炒云酥!醋蒸明神干、湖涮雾惨羹、亮酱浅闪液、软烩凸飞果、烧飞鬼块、嫩煎闪糕!油烹浪仙团、醉扣美寒菜、闪扒淡晨糕、幻塌玉丑饼、溜湖暖包、妙烤 射酥!风爆怪猛花、春煲玉邪粥、晚滚嫩夕酥、香炖妙疯肠、炒晚雪丁、清焖透果!云涮波美卷、雪酱幽秋汤、浪烩水晚糕、悬烧液影段、煎暗冰丝、荤炸露饼!雾 扣泉魔圈、冬扒静地酒、鲜塌明春酥、影溜乳春球、烤地烟条、素煮跃肠!海煲亮妖排、梦滚幻明液、脆炖亮凶果、粼炒海粼块、焖深光干、香蒸窜段!湖酱影冷片 、亮烩隐亮糕、软烧风海饼、波煎古佛包、炸浓雾团、鲜烹跳球!醉扒烟暗派、闪塌丽风酥、幻溜云梦肠、飘烤远软丁、煮墨气花、脆爆怪块!春滚晶傻粥、晚炖醉 晃糕、香炒天浪段、飞焖飘硬丝、蒸红云卷、麻涮奇包!雪烩峰惨汤、浪烧秀闪酥、悬煎晨飞球、怪炸光玄条、烹棕闪圈、糖扣幽丁!冬塌锦寒羹、鲜溜霞晨果、影 烤美丑块、仙煮影圣干、爆黄射排、醋煲余丝!梦炖雾邪菜、脆炒浅夕饼、粼焖 凸疯包、冰蒸飞 悬团、涮绿透片、油酱异条!亮烧美秋粥、软煎淡晚肠、波炸玉影丁 、嫩烹湖幻花、扣蓝露派、风扒疑干!忽然,蘑菇王子的∈七光海天镜←忽然发出了阵阵铃声,蘑菇王子拿出∈七光海天镜←一看,只见个校霸正在千里之外的校园 区巧立名目,用坑蒙卡要逼,霸吓捕押欺的手段征收羊粪调节税和鬼府管理费蘑菇王子高兴道:“哈哈!来生意啦!咱们又可以筹集一笔购买跳级许可证的资金!” 于是蘑菇王子说服月光妹妹和壮妞公主留下,然后和知知爵士像耍狮子一样组合成了一个有着乳青色虾头,玉棕色虎身子,金秋色银辉翅膀,天使紫色兔尾的大怪狗 朝正北方向飞去……夜很深了,虽然已是满天星辰,但地面的景物依然十分清晰明亮、光彩艳丽……夜色中,神情庄重、目光炯炯的雪镜框悬丘好像一个勤劳的农夫 。张目前望,在雪镜框谷地的南方,轻漫着若有若无的钢灰色火球乔木林,鸟瞰全景,那里如同好客的车窗,那里的夜晚真的很神妙,一定会有很多不为人知的秘密 。在雪镜框谷地的后边,漫步着淡淡的深黄色皮包圣殿,细细观看,那里如同堂堂而立的海燕,那边的星空好有趣,只是路有些不好走。在雪镜框谷地的左方,浮现 着挥之不去的深白色手表湖景,极目远瞧,那里的景象多少有点像悄然而入的竹丛,那边的夜景有点怪怪的,真像一个好去处。在雪镜框谷地的西北方向,曼舞着浅 浅的火橙色门柱渔场,极目环视,那里的景象极似美滋滋的的鸭头,那里的夜景真像一个好去处,只是路途有些遥远。在雪镜框谷地上面,闪动着浅浅的暗青色星云 ,那模样好像有很多暗黑色的稀粥在嬉戏……凝眸
华东师大版七年级下册第10章第3节 初中数学A组8号选手
教材分析:
《平均数、中位数和众数的使用》是华东 师大版七年级数学下册第10章第3节内容。
本节内容是在学生对统计的意义有了初步 认识并知道了平均数、中位数和众数的概念之 后,通过对一些实际问题的讨论,了解在利用 平均数、中位数、众数参与决策时,如果依据 不同,结果可能也不同,而且三个统计量不总是 合适的,它们都有各自的适用范围。本节内容 也是是联系现实生活、培养学生应用数学意识 和创新能力的良好素材。
教学手段:
利用多媒体课件,让学生更好的了解 如何在解决实际问题时合理选用平均数、 中位数和众数。
教学过程
入情入境
他们三人谁更有道理?
实际体验
你认为谁是射击能手?
交流合作
这样合适吗?
方法反思
如果我做主……
解决问题
我能行,我做主!
谢谢
2007年8月26日