知识总结平均数中位数与众数

合集下载

人教版初二上册数学知识点归纳:平均数中位数众数(第六章)

人教版初二上册数学知识点归纳:平均数中位数众数(第六章)

人教版初二上册数学知识点归纳:平均数中位数众数(第六章)
3.中位数仅与数据的排列有关,一般来说,部分数据的变动对中位数没有影响,当一组数据中个别数据变动较大时,可用中位数来描述其中集中的趋势。

三、平均数、中位数、众数的联系
众数、中位数及平均数都是描述一组数据的集中趋势的量,其中以平均数最为重要,其应用也最为广泛。

通过对人教版初二上册数学知识点归纳:平均数中位数众数(第六章)的学习,是否已经掌握了本文知识点,更多参考资料尽在查字典数学网!。

平均数、中位数、众数的区别与联系

平均数、中位数、众数的区别与联系

平均数、中位数、众数的区别
与联系
平均数、中位数、众数三者都可以用来表示一组数据的总体水平。

1、当数据都比较均匀时,用平均数表示比较合适。

如:7、8、7、8.5、7.
2、6、9,这组数据用平均数表示比较合适。

平均数表示一般水平,受每一个数据的影响,当一组数据出现个别偏大或偏小的数据时,用平均数表示就不合适。

生活中往往去掉最高或最低的数据再进行求平均数。

2、当数据个别不均匀,出现偏大或偏小时,往往用中位数来代表这组数据的中等水平。

如:30、8、7、8.5、7.2、6、9。

求中位数时,将数据有序排列,奇数个取中间数,偶数个取中间两数的平均数。

3、当数据较多部分出现偏大或偏小时,就要用到众数来表示多数水平。

如较多偏大:27、28、27、8.5、27、7.2、6、9,27。

众数是27
较多偏小:2、3、2、35、2、34、2、3、2、20、2、众数是2
一组数据,众数可能有一个、两个、多个,或者没有众数。

如1、2、3、4、5、便没有众数。

2、3、2、15、6、3、2、3,众数是2和3。

“平均数、中位数与众数”的知识点辨析

“平均数、中位数与众数”的知识点辨析
这组数据的一般水平.因为有异常数据,其平
3.求众数
均数可能相差较大.
确定一组数据的众数,首先找出这组数
例 8 据报道,某公司的 33 名职工的月工
据中的各数据出现的次数,其中出现次数最

(以元为单位)
如下:
多的数据就是众数.
职务
董事长 副董事长
董事
例 6 在一次数学考试中,10 名学生的得
人数
1
12学思导引“平均数、中位数与众数”
的知识点辨析
新疆乌鲁木齐 朱绍文
数学篇
平均数、众数、中位数都是描述一组数据
集中趋势的量,但它们的定义、求法以及描述
的角度和适用的范围又不尽相同,同学们常
常将它们弄混淆.那么在具体问题中,
应采用哪
个量来描述一组数据的集中趋势呢?下面对
它们的特征及正确的适用范围进行分析说明.
f1 + f 2 + ⋯ + f k = n.
例 3 在一次体检中,测得八年级(1)班第
一小组 10 名同学的身高情况是:有 2 人是
145cm,3 人 是 148cm,4 人 是 156cm,1 人 是
160cm,
则这 10 位同学的平均身高是( ).
A.150.8cm
B.151cm
C.151.8cm
现1次,
故80分和90分是这组数据的众数.
(1)求该公司职工月工资的平均数、中位
三、
适用范围不同
数、众数;
(精确到个位数)
平均数是最常用的一个代表值.它充分
(2)假设副董事长的工资从 5000 元提升
利用了全部数据的信息,计算方便,但易受极
到 20000 元,董事长的工资从 5500 元提升到

中位数平均数众数之间的关系

中位数平均数众数之间的关系

中位数平均数众数之间的关系中位数、平均数、众数是描述数据集的重要统计量,它们在数据分析、数据挖掘、机器学习等领域中都具有重要的作用。

那么,中位数、平均数、众数之间究竟有什么联系与区别呢?本文将从三种统计量的概念、求法、使用场景等方面探讨它们之间的关系,并指出它们的优劣与互补性。

一、中位数:把一组数据从小到大排列,位置处于中间的数即为该组数据的中位数,如果数据总个数为奇数,则中位数就是该组数据中间的那个数,反之,如果数据总个数为偶数,则中位数就是中间两个数的平均数。

中位数适用于数据分布不均匀或存在极端值的情况,它可以有效地减少异常值的影响,具有很强的稳定性和代表性。

二、平均数:一组数据的平均数就是所有数据之和除以数据的个数。

如果样本是随机且均匀的,那么样本平均值应该能够代表该组数据的中心点。

平均数在数据分布比较均匀的情况下能够体现数据的大小关系,并且在某些场景中能够更好地评估相关变量的趋势和大小。

三、众数:一组数据中出现最频繁的数即为该组数据的众数,一个数据集可以有一个或多个众数,也有可能不存在众数。

众数在数据分布比较集中和单峰的情况下具有最好的代表性,能够体现数据分布的最高峰位置和分布密度的峰度,通常用于分类型变量的数据分析,如性别、年级、工作岗位等。

通过以上对中位数、平均数、众数的概念描述,我们可以发现它们有一些相同的特点,特别是在一些基础统计分析场景中它们也是在数据描述和分析中最容易想到的统计量;还有一些存在明显的差异,它们有各自的适用范围、含义和统计意义。

同时它们之间也存在着某些联系与互补性。

在数据集的分布比较对称或数据相对均匀的情况下,中位数和平均数比较接近;在数据分布比较集中和单峰的情况下,众数和中位数比较接近。

所以,只有综合分析这三种统计量,才能更加全面地了解数据分布的情况,避免由某一种统计量的缺陷导致的误解和错误分析。

总之,中位数、平均数、众数三者之间既有相似性又有差异性,在实际应用时需要根据具体情况综合选择。

平均数、中位数、众数的联系和区别

平均数、中位数、众数的联系和区别

一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。

二、不同点它们之间的区别,主要表现在以下方面。

1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。

众数:在一组数据中出现次数最多的数叫做这组数据的众数。

2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。

中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。

它的求出不需或只需简单的计算。

众数:一组数据中出现次数最多的那个数,不必计算就可求出。

3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。

在一组数据中,可能不止一个众数,也可能没有众数。

4、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。

中位数:是一个不完全“虚拟”的数。

当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。

众数:是一组数据中的原数据,它是真实存在的。

5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。

中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。

众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。

这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。

6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。

简述众数 中位数 和平均数的特点

简述众数 中位数 和平均数的特点

简述众数中位数和平均数的特点众数、中位数和平均数是统计学中常用的描述数据集中趋势的统计量。

它们的特点如下:
1. 众数:众数是数据中出现次数最多的数值,可以是一个数值,也可以是多个数值。

众数的特点是能够反映数据的最常见取值,常用于描述数据集中的典型值。

例如,对于数据集{1,2,2,3,4,4,4,5},众数为4。

2. 中位数:中位数是把数据按照大小顺序排列后,位于中间位置的数值。

如果数据集中的数据个数为奇数,那么中位数就是唯一的中间数;如果数据集中的数据个数为偶数,那么中位数是中间两个数的平均值。

中位数的特点是不受极端值的影响,所以比平均数更能反映数据集的整体情况。

例如,对于数据集{1,2,2,3,4,4,4,5},中位数为。

3. 平均数:平均数是数据集中所有数值的总和除以数据的个数。

平均数的特点是能够反映数据的总体水平,常用于描述数据的集中程度。

然而,平均数容易受极端值的影响,因此在有偏数据或异常值较多的情况下,平均数可能不太准确。

例如,对于数据集{1,2,2,3,4,4,4,5},平均数为3.125。

- 1 -。

中位数 众数 平均数三者的区别

中位数 众数 平均数三者的区别
有个顺口溜 分析数据平中众,比较接近选平均,相差较大看中位,频数 较大用众数;
所有数据定平均,个数去除数据和,即可得到平均数;大小排列知 中位;
整理数据顺次排,单个数据取中问,双个数据两平均;频数最大是 众数。
众数:(1)通过计数得到;
(2)不易受数据中极端数值的影响
关于“中位数、众数、平均数”这三个知识点的理解,我简单谈谈自己的认 识和理解。
⒈众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。
⒉众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋 势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它 能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同, 差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众 数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可 靠的。
中位数在一组数据的数值排序中处于中间的位置,故其在统计学分析中 也常常扮演着“分水岭”的角色,人们由中位数可以对事物的大体趋势进行 判断和掌控。
众数着眼于对各数据出现的频数的考察,其大小仅与一组数据中的部分
数据有关,当一组数据中有不少数据多次重复出现时,它的众数往往是我 们关心的一种统计量。
在这部分知识的教学中,要注意讲清上述三个量的联系与区别。使学生 知道它们都是描述一组数据集中趋势的统计量,但描述的角度和适用范围 有所不同,在具体的问题中究竟采用哪种统计量来描述一组数据的集中趋 势,要根据数据的特点及我们所关心的问题来确定。”
3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常 生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了 一种最普遍的倾向.
二、平均数、中位数和众数它们都有各自的的优缺点.

众数、中位数、平均数

众数、中位数、平均数

中位数:中位数左边和右边的直方图的面积相等。
频率 组距
数据值为2.03t
0.5 0.4 0.3 0.2 0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
说明:
2.03这个中位数的估计值,与样本 的中位数值2.0不一样,这是因为样本数 据的频率分布直方图,只是直观地表明 分布的形状,但是从直方图本身得不出 原始的数据内容,所以由频率分布直方 图得到的中位数估计值往往与样本的 实际中位数值不一致.
平均数:
x x1 s1 x 2 s 2 x n s n
x 1 . 973
频率 组距
0.5 0.4 0.3
0.2
0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
三、三种数字特征的优缺点 1、众数体现了样本数据的最大集中点,但它对其它数据信息的 忽视使得无法客观地反映总体特征.如上例中众数是2.25t,它告诉 我们,月均用水量为2.25t的居民数比月均用水量为其它数值的居 民数多,但它并没有告诉我们多多少. 2、中位数是样本数据所占频率的等分线,它不受少数几个极端 值的影响,这在某些情况下是优点,但它对极端值的不敏感有时 也会成为缺点。如上例中假设有某一用户月均用水量为10t,那 么它所占频率为0.01,几乎不影响中位数,但显然这一极端值是不 能忽视的。 3、由于平均数与每一个样本的数据有关,所以任何一个样本 数据的改变都会引起平均数的改变,这是众数、中位数都不具 有的性质。也正因如此 ,与众数、中位数比较起来,平均数可 以反映出更多的关于样本数据全体的信息,但平均数受数据中 的极端值的影响较大,使平均数在估计时可靠性降低。
四、众数、中位数、平均数的简单应用 例、某工厂人员及工资构成如下: 人员 周工资 经理 2200 管理人员 250 高级技工 220 工人 200 学徒 100 合计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平均数、中位数与众数
描述一组数据的“平均水平”的特征数最基本、最常用的是平均数、中位数和众数。

现对它们的各自的特征作如下分析:
【平均数】平均数的大小与一组数据里每个数据都有关系,其中任何数据的变动都会相应引起平均数的变动。

因此,表明平均数能较充分地反映一组数据的“平均水平”,但它容易受极端值的影响。

【中位数】中位数的大小仅与数据的排列位置有关,将一组数据按从小到大的顺序排列后,最中间的数据或最中间两个数据的平均数为中位数。

因此,部分数据变动对中位数没有影响,当一组数据中的个别数据变动较大时,一般用中位数来描述“平均水平”。

【众数】众数着眼于各数据出现的次数,其大小与该组的部分数据有关,求一组数据的众数既不需要计算,也不需要排列,只要找出该数据中出现次数最多数据即为众数。

因此,当一组数据中有不少数据重复出现时,一般用众数来描述“平均水平”.
注意:(1)平均数、中位数和众数描述的角度和适用范围不同。

(2)一组数据中平均数和中位数是惟一的,而众数则不一定惟一。

在特殊情况下,三个数可能是同一个数据。

(3)在实际问题中三者都有单位。

(4)在具体问题中采用哪个特征数来描述一组数据的“平均水平”,就要看数据的特点和我们所关系问题而定。

例1 某班有7名同学参加校“综合素质只能竞赛”,成绩(单位:分)分别是87,92,87,89,91,88,76.则它们成绩的众数是分,中位数是分。

解析:本题的这组数据已按从大到小的顺序排列好,即76,87,87,88,89,91,92。

出现次数最多的数是87,所以众数是87;由于排在中间的数据为88,所以中位数是88。

例2 某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:
年龄组 13岁 14岁 15岁 16岁
参赛人数 5 19 12 14
(1)求全体参赛选手年龄的众数、中位数;
(2)小明说,他所在年龄组的参赛人数占全体参赛人数的。

你认为小明是哪个年龄组的选手?请说明理由。

解析:(1)出现次数最多的数是14,所以众数是14岁;这组数据有50个数,将这组数按从小到大的顺序排列,第25、26个数都是15,所以中位数是15岁。

(2)全体参赛选手的人数为:5+19+12+14=50名
50×=14(名)
小明是16岁年龄组的选手。

例3 现有7名同学测得某大厦的高度如下:(单位:m)
(1)在这组数据中,中位数是,众数是,平均数是;
(2)凭经验,你觉得此大厦大概有多高?请简要说明理由。

解析:(1)将这组数据按从小到大的顺序排列,即,,,,,,,由于排在中间的数据有一个,即,所以中位数是;出现次数最多的数有一个,即出现了4次,所以众数是。

这组数据的平均数:
(++++++)÷7= ;
(2)凭经验,大厦高约m。

原因是数据44.0误差太大或测量错误,从而导致平均数的数值偏大,因此按照中位数和众数而定。

相关文档
最新文档