第2讲 乘除法的速算与巧算(教师版)
乘除法的速算与巧算

• 观察发现“发现:三位数 与1001相乘,积是把这个 三位数连续写两遍。
针对训练六:与101的巧算
(1) 136×1001 (2) 258×1001
② 25×125×8×9×4
基础计算1:
1,计算面各题:
(1):328 ×2
(2):328 ×10
(3):501×20
基础计算2:
三位数相乘计算:
(1):328 ×110 (2):206 ×895 (3):531 ×101
例5 一个数×10,数后添0; 一个数×100,数后添00;
以此类推。
一个数×1000,数后添000; 如:15×10=150
针对训练四:×11的巧算
如 2222×11=
2456×11=
巧算两位数与101相乘
• 一:算一算: • (1) 101 ×43
竖式:
(2)101 ×89
101 × 43 303 404 4343
101 × 89 909 808 8989
» 观察发现“4343、8989”, 两位数与101相乘,积是把这 个两位数连续写两遍。
针对训练五:与101的巧算
(1) 36×101 (3) 39×101 (2) 58×101 (4)42×101
巧算两位数与1001相乘
一:算一算:
(1) 1001 ×132 (2)1001 ×436
竖式:
1001 × 132 2002 3003 1001 132132 1001 × 436 6006 3003 4004 436436
速算与巧算 (一 )
专题简析:
乘、除法的巧算方法主要是利用 乘、除法的运算定律和运算性质以及 积、商的变化规律,通过对算式适当 变形,将其中的数转化成整十、整百、 整千…的数,或者使这道题计算中的 一些数变得易于口算,从而使计算简 便。
(完整)三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。
例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。
例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。
四年级乘法除法速算巧算(最新整理)

第2讲:乘除法巧算速算本讲,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。
对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。
实际进行乘法、除法以及乘除法混合运算时,可利用以下性质进行巧算:①乘法交换律:A×B=B×A②乘法结合律:A×B×C=A×(B×C)③乘法分配律:(A+B)×C=A×C+B×C由此可以推出:A×B+A×C=A×(B+C)(A-B) ×C =A×C-B×C④除法的性质:A÷B÷C=A÷C÷B=A÷(B×C)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。
例1:计算236×37×27分析:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。
例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
解:原式=236×(37×3×9)=236×(111×9) =236×999=236×(1000-1) =236000-236 =235764随堂小练:计算下面各题:(1)132×37×27 (2)315×77×13例2:计算333×334+999×222分析:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
上海小升初三公上外上实浦外口奥模拟第二讲 计算专题2——整数巧算 (教师版)

脱口秀数学第二讲计算专题2——整数巧算第一部分:速算与巧算基本运算律及公式加法:加法交换律、加法结合律减法:在连减或者加减混合运算中,去括号、添括号的规则乘除法:乘法交换率、乘法结合率、乘法分配率(反过程是提取公因数)、积不变性质商不变性质在乘除混合运算中,去括号、添括号的规则加减法中的速算与巧算1、分组凑整法2、加补凑整法3、位值原理法4、“基准数”法乘除法中的速算与巧算1、乘法凑整:⨯=,81251000⨯⨯=⨯=,711131001⨯=,42510025102、乘法其他速算方法:(详细例子见第一讲)20以内的两位数相乘、首同尾非十的两位数相乘、首同尾十的两位数相乘、首十尾同的两位数相乘、任意多位数数x11。
3、在连除时,可以交换除数的位置,商不变.即:a b c a c b÷÷=÷÷两个数之积除以两个数之积,可以分别相除后再相乘,即()()()()()()a b c d a c b d a d b c⨯÷⨯=÷⨯÷=÷⨯÷计算的应用1、定义新运算:定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
2、平均数计算:平均数问题的数量关系式,总数量÷总份数=平均数,平均速度=总路程÷总时间.解平均数问题,关键是要找准总数量及对应的总份数。
【例1】计算:11+192+1993+19994所得和数的数字之和是多少?【考点】加补凑整【解析】观察后三位数,可分别补上8,7,6使得凑成整百整千整万的数11+192+1993+19994=200+2000+20000-10=22200-10=22190最终所得数的数字和是14【答案】14【例2】计算:(1+3+5+…+1989)-(2+4+6+8+1988)=()。
(完整版)整数乘除法速算巧算教师版

本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家). 例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.二、乘除法巧算与速算(1)凑整:2×5;4×25;8×125……;知识点拨教案目标整数乘除法速算与巧算(2)构造整数:99999......9101k =-k 个;(3)乘法分配律:()a b c a b a c ⨯+=⨯+⨯; (4)提取公因数:()a b a c a b c ⨯+⨯=⨯+; 注意:除法算式中公因数只能用为除数。
三年级思维拓展- 速算与巧算(二)

速算与巧算(二)知识要点上一章我们学习了加减法的运算技巧,本章我们将学习乘除法的巧算方法。
下面,我们介绍乘法的一些运算定律,它们是乘法巧算的理论依据,并给出一些巧算方法。
一、乘法运算定律1.乘法交换律:两个数相乘,交换因数的位置,积不变。
即:a×b=b×a。
2.乘法结合律:三个数相乘,可以先把前两个数相乘,再与后一个数相乘,或者先把后两个数相乘,再与第一个数相乘,积不变。
即:(a×b)×c=a×(b×c)。
3.乘法分配律:两个数的和与一个数相乘,可以用这两个数分别与这个数相乘,再把所得的积相加。
即a×(b+c) =a×b+a×c变式:a×(b-c) =a×b-a×ca×b+a×c = a×(b+c)a×b-a×c = a×(b-c)二、乘除混合运算中的巧算技巧1. 带着符号搬家:在乘除混合运算中,运算的次序可以交换,运算的结果不会改变。
但必须在交换位置时,连同前面的运算符号一起“搬家”。
2. 去括号:乘除混合运算中,如果括号前面是“×”号,去掉括号的时候不改变括号里面的符号;如果括号前面是“÷”号,去掉括号的时候要改变括号里面的符号:即“×”变“÷”,“÷”变“×”。
3. 添括号:乘除混合运算中,可通过添加括号来改变运算顺序,添加括号时,如果括号前面是“×”号,不改变括号里面的符号;如果括号前面是“÷”号,要改变括号里面的符号:即“×”变“÷”,“÷”变“×”。
三、除法中的特殊的性质1. 商不变性质:除法算式中,被除数和除数同时扩大或缩小相同的倍数,商不变。
即:a÷b=(a×n)÷(a×n) ,a÷b=(a÷n)÷(a÷n) (n≠0)2. 运用除法的性质进行巧算:(a±b)÷c=a÷c±b÷c四、乘法中的好朋友同学们应该记住一些特殊的乘积,他们的结果为整十、整百……,我们称这些数为乘法中的好朋友:2×5=10 4×25=1008×125=1000 16×625=10000精选例题☝【例1】:请用简便方法计算下列各题。
四年级·乘法巧算

20与4的差,再将两数的差16写成4×4的形式,最后利用乘法结合律简算。
(20-4)×25 (20-4)×25=20×25-4×25 =16×25=500-100 或 =4×(4×25)=400 =4×100=400例2、用简便方法计算下面各题。
(1)6666×2222+4444×6667(2)81×35+21×35-2×35【思路导航】观察上面的两道算式,算式(1)可以根据积不变的规律先变形,再反用乘法分配律,使计算简便。
6666×2222+4444×6667=3333×4444+4444×6667=4444×(3333+6667)=4444×10000=44440000算式(2)可以反用乘法分配律,使计算简便。
81×35+21×35-2×35=35×(81+21-2)=35×100=3500例3、用简便方法计算下面各题。
(1)3100÷25÷4 (2)325÷25(3)(360-108)÷36 (4)920×8÷40【思路导航】在用一个数连续除以几个数时,可以用这个数去除以另外几个数的乘积,结果不变。
算式(1)是用3100连续除以25和4这两个数,而25与4的乘积正好是100,因此,用3100除以25和4的乘积100,可以使计算简便。
随堂笔记:__________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ 3100÷25÷4成2400+36,而2400与36都是12的倍数,可以用简便方法计算。
乘除法中的速算与巧算

乘除法中的速算与巧算知识储备整数乘除法的速算与巧算,一条最基本的原则就是“凑整”。
要达到“凑整”的目的,就要将一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某些数组合到一起,使复杂的计算过程简便化。
1、乘法的运算定律乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc2、除法的运算性质(1)a÷b=(a×c)÷(b×c) (c≠0)(2)a÷b=(a÷c)÷(b÷c) (c≠0)(3)a÷b÷c=a÷(b×c)(4)a÷(b÷c)=a÷b×c3、乘除分配性质(1)(a+b)×c=a×c+b×c(2)(a-b)×c=a×c-b×c(3)(a+b)÷c=a÷c+b÷c(4)(a-b)÷c=a÷c-b÷c注意:除数不能为零。
4、两数之和乘以这两数之差的积等于这两个数的平方差。
(a+b)×(a-b)=a2-b25、乘法凑整法:这是利用特殊数的乘积特性进行速算,如5×2=10,25×4=100,125×8=1000,625×8=5000,625×16=10000等等。
大家要记住这些结果。
思维引导例1、计算:(1)999+999×999 (2)1111×9999(3)125×25×32 (4)576×422+576+577×576跟踪练习:计算:(1)9999+9999×9999 (2)140×299(3)808×125 (4)461+5×4610+461×49例2、计算:34×172-17×71×2-34跟踪练习:计算:42×68+61×2×34-3×68例3、用简便方法计算:8700÷25÷4跟踪练习:9600÷25÷4例4、用简便方法计算:625÷25跟踪练习:42800÷25例5、简算:29×31跟踪练习:简算:68×72例6、计算:11111×11111跟踪练习:计算:22222×22222例7、计算:63×275÷7÷11跟踪练习:计算:123×456÷789÷456×789÷123例8、计算:1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)跟踪练习:计算:15÷(9÷11)÷(11÷34)÷(34÷63)例9、计算:99999×22222+33333×33334跟踪练习:计算:9999×7778+3333×6666例10、计算:98989898×÷÷跟踪练习:计算:199999998×2200220022÷18÷100010001例11、计算:19981999×19991998-19981998×跟踪练习:计算:1997×1999-1996×2000例12、末尾有几个零?跟踪练习:计算:能力对接1、 将相应的序号填入括号中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲速算与巧算(二)一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的式:5×2=1025×4=100125×8=1000【例 1】计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。
【例2】计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。
【例 3】计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67 可看成67×1)【例 4】计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。
【例 5】一个数×10,数后添 0;一个数×100,数后添 00;一个数×1000,数后添 000;以此类推。
如:15×10=15015×100=150015×1000=15000【例 6】一个数×9,数后添 0,再减此数;一个数×99,数后添 00,再减此数;一个数×999,数后添000,再减此数;…以此类推。
如:12×9=120-12=10812×99=1200-12=118812×999=12000-12=11988【例 7】一个偶数乘以5,可以除以 2 添上 0。
如:6×5=3016×5=80116×5=580。
【例 8】一个数乘以 11,“两头一拉,中间相加”。
如2222×11=244422456×11=27016【例 9】一个偶数乘以15,“加半添0”.24×15=(24+12)×10=360 因为24×15=24×(10+5)=24×(10+10÷2)=24×10+24×10÷2(乘法分配律)=24×10+24÷2×10(带符号搬家)=(24+24÷2)×10(乘法分配律)【例 10】个位为5 的两位数的自乘:十位数字×(十位数字加1)×100+25 如15×15=1×(1+1)×100+25=22525×25=2×(2+1)×100+25=62535×35=3×(3+1)×100+25=122545×45=4×(4+1)×100+25=202555×55=5×(5+1)×100+25=302565×65=6×(6+1)×100+25=422575×75=7×(7+1)×100+25=562585×85=8×(8+1)×100+25=722595×95=9×(9+1)×100+25=9025 还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看《算得快》一书。
二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。
【例 11】计算①110÷5②3300÷25③44000÷125解:①110÷5=(110×2)÷(5×2)=220÷10=22②3300÷25=(3300×4)÷(25×4)=13200÷100=132③44000÷125=(44000×8)÷(125×8)=352000÷1000=3522.在乘除混合运算中,乘数和除数都可以带符号“搬家”。
【例 12】864×27÷54=864÷54×27=16×27=4323.当n 个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。
【例 13】①13÷9+5÷9②21÷5-6÷5③2090÷24-482÷24④187÷12-63÷12-52÷12解:①13÷9+5÷9=(13+5)÷9=18÷9=2②21÷5-6÷5=(21-6)÷5=15÷5=3③2090÷24-482÷24=(2090-482)÷24=1608÷24=67④187÷12-63÷12-52÷12=(187-63-52)÷12=72÷12=64.在乘除混合运算中“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。
即a×(b÷c)=a×b÷c从左往右看是去括号,a÷(b×c)=a÷b÷c从右往左看是添括号。
a÷(b÷c)=a÷b×c【例 14】①1320×500÷250②4000÷125÷8③5600÷(28÷6)④372÷162×54⑤2997×729÷(81×81)解:①1320×500÷250=1320×(500÷250)=1320×2=2640②4000÷125÷8=4000÷(125×8)=4000÷1000=4③5600÷(28÷6)=5600÷28×6=200×6=1200④372÷162×54=372÷(162÷54)=372÷3=124⑤2997×729÷(81×81)=2997×729÷81÷81=(2997÷81)×(729÷81)=37×9=333习题二一、用简便方法求积:①17×100②1112×5③23×9④23×99⑤12345×11⑥56789×11⑦36×15二、速算下列各题:①123×25×4②456×2×125×25×5×4×8③25×32×125三、巧算下列各题:①15000÷125÷15②1200÷25÷4③27000÷(125×3)④360×40÷60四、巧算下列各题:①11÷3+4÷3②19÷5-9÷5③234×11+234×88习题二解答一、用简便方法求积:①17×100=1700②1112×5=5560③23×9=230-23=207④23×99=2300-23=2277⑤12345×11=135795⑥56789×11=624679⑦36×15=(36+18)×10=540二、速算下列各题:①123×25×4=123×(25×4)=12300②456×2×125×25×5×4×8=456×(2×5)×(25×4)×(125×8)=456000000③25×32×125=(25×4)×(125×8)=100000三、巧算下列各题:①15000÷125÷15=15000÷15÷125=8②1200÷25÷4=1200÷(25×4)=12③27000÷(125×3)=27000÷3÷125=9×(1000÷125)=9×8=72④360×40÷60=360÷60×40=240四、巧算下列各题:①11÷3+4÷3=(11+4)÷3=5②19÷5-9÷5=(19-9)÷5=2③234×11+234×88=234×(11+88)=234×99=234×100-234=23166。