线粒体电子传递链
第二节:电子传递链

Cys S
S
S Cys
Fe3+
Fe3+
Cys S
S
S Cys
+e-e-
Cys S
S
S Cys
Fe3+
Fe2+
பைடு நூலகம்Cys S
S
S Cys
NADH-Q还原酶先与NADH结合并将NADH上的两个 氢转移到 FMN辅基上,
NADH + H+ + FMN
FMNH2 + NAD+
e铁硫络合物
e-
CoQ
NADH-Q还原酶各辅基(辅酶)的氧化还原循环
• 功能基团是苯醌,通过
醌/酚的互变传递氢,Q (醌型结构) 很容易接受2 个电子和2个质子,还原 成QH2(还原型);QH2也 容易给出2个电子和2个质 子,重新氧化成Q。因此, 它在线粒体呼吸链中作为 电子和质子的传递体。
3、琥珀酸-Q还原酶(复合体Ⅱ )
琥珀酸脱氢酶也是此复合体的一部分,其辅基包 括FAD和Fe-S聚簇。
用已经分离出来的电子传递体进行体外重组
氧化还原反应只能在相邻的的传递体间发生
用分光光度法测得各个传递体发生吸收光谱的变化
完整的线粒体当电子传递体处于氧化状态时,悬浮液浑浊,光吸收不能直接 测出;但当之处于还原态时,即可以氧化态为对照测出。游离的线粒体在有 氧下进行电子传递时,NADH一端还原性最强,而靠近氧一端电子传递体几乎 处于氧化态,由此判断电子的流向。当向完全处于还原状态的电子传递体中 加入氧时,最先被氧化的是细胞色素aa3,其次是cytC-cytC1-cytb-…..NADH
以FMN或FAD为辅基的蛋白质统称黄素蛋白。 FMN通过氧化还原变化可接收NADH+H+的氢以及 电子。
生物化学:第二节 电子传递链

4.辅酶Q(CoQ)
辅酶Q属于醌类,由于它广泛存在于生物系统中,所 以又叫泛醌(UQ)。
辅酶Q是呼吸链中唯一的非蛋白质组分。它分子小 ,且呈脂溶性,可以在线粒体内膜的磷脂双分子层的 疏水区自由扩散,往返于比较固定的蛋白质类的电子 传递体之间进行电子传递。
5、细胞色素
细胞色素是以铁卟啉(血红素)为辅基的蛋白质,红 色,广泛存在于生物细胞中。
由NADH开始的呼吸链 —— NADH呼吸链; 由FADH2开始的呼吸链 —— FADH2呼吸链。
2、电子传递链分布 原核细胞存在于质膜上 真核细胞存在于线粒体的内膜上
二. 呼吸链的组成
电子传递中有四个复合体参与:
NADH-CoQ还原酶(复合物I) 琥珀酸-CoQ还原酶(复合物Ⅱ ) CoQ-细胞色素c还原酶(复合物III ) 细胞色素氧化酶(复合物Ⅳ)
五. 呼吸链的电子传递过程
呼吸链各复合体在线粒体内膜中的位置
呼吸链中的电子传递体:
1. 烟酰胺脱氢酶
是指以NAD+或NADP+为辅酶的脱氢酶, 属于烟 酰胺的衍生物。以NAD+为辅酶的脱氢酶主要参与线 粒体底物到分子氧的传递, 以 NADP+为辅酶的脱氢 酶主要参与将电子传给生物合成过程.
呼吸链中的电子传递体:
琥珀酸脱氢酶催化琥珀酸氧化为延胡索酸,同时其辅基FAD 还原为FADH2,然后FADH2又将电子传递给Fe-S聚簇。
最后电子由Fe-S聚簇传递给琥珀酸-Q还原酶的辅酶CoQ。 这一步不能形成的ATP.
功能 :将电子从琥珀酸传递给泛醌
三、CoQ-细胞色素c还原酶 (复合体Ⅲ)
功能:将电子从泛 醌传递给细胞色素 C
2. 黄素脱氢酶 以FMN,FAD为辅酶
证明线粒体的电子传递和氧化磷酸化是由两2个不同的结构.

前言
三羧酸循环等呼吸代谢过程中脱下的氢被NAD+或FAD所接受。 细胞内的辅酶或辅基数量是有限的,它们必须将氢交给其它受 体之后,才能再次接受氢。在需氧生物中,氧气便是这些氢的 最终受体。这种有机物在生物活细胞中所进行的一系列传递氢 和 电 子 的 氧 化 还 原 过 程 , 称 为 生 物 氧 化 ( biological oxidation)。生物氧化与非生物氧化的化学本质是相同的,都 是脱氢、失去电子或与氧直接化合,并产生能量。然而生物氧 化与非生物氧化不同,它是在生活细胞内,在常温、常压、接 近中性的pH和有水的环境下,在一系列的酶以及中间传递体的 共同作用下逐步地完成的,而且能量是逐步释放的。生物氧化 过程中释放的能量可被偶联的磷酸化反应所利用,贮存在高能 磷酸化合物(如ATP、GTP等)中,以满足需能生理过程的需要。
2.抑制剂(depressant)
抑制剂与解偶联剂的区别在于,这类试剂不仅抑
制ATP的形成,还同时抑制O2的消耗。这是因 为像寡霉素(oligomycin)这一类的化学物质可以 阻止膜间空间中的H+通过ATP合成酶的Fo进入 线粒体基质,这样不仅会阻止ATP生成,还会 维持和加强质子动力势,对电子传递产生反馈抑 制,O2的消耗就会相应减少。
泛醌︰线粒体复合物Ⅲ(细胞色素c 氧化还原酶)的假想构成和膜局部构造
4.复合体Ⅳ
又称Cyt c∶细胞色素氧化酶(Cyt c∶cytochrome oxidase)分 子量约 160 ~ 170 × 10 3 ,含有多种不同的蛋白质,主要成分是 Cyta和 Cyta3 及2个铜原子,组成两个氧化还原中心即 Cyta CuA 和Cyta3 CuB,第一个中心是接受来自Cyt c 的电子受体,第二 个中心是氧还原的位置。它们通过Cu+ Cu2+ 的变化,在Cyta 和Cyta3间传递电子。其功能是将 Cyt c中的电子传递给分子氧, 氧分子被 Cyta3、CuB 还原至过氧化物水平;然后接受第三个电 子,O-O键断裂,其中一个氧原子还原成 H2O;在另一步中接受 第四个电子,第二个氧原子进一步还原。也可能在这一电子传 递过程中将线粒体基质中的 2个H+转运到膜间空间。CO、氰化 物(cyanide,CN-)、叠氮化物(azide,N3-)同 O2 竞争与 Cytaa3 中 Fe的结合,可抑制从Cytaa3到O2的电子传递。
线粒体内atp合成机制

线粒体内atp合成机制
线粒体是细胞内的一个重要器官,它是能量代谢的中心,也是细胞内ATP的主要合成场所。
ATP是细胞内的重要能量分子,提供了细胞进行各种代谢反应所需的能量。
线粒体内的ATP合成机制是一个复杂的过程,包括三个重要部分:电子传递链、ATP合成酶和质子梯度。
电子传递链是ATP合成的第一步,通过线粒体内的膜系,将电子从NADH和FADH2等电子供体传递到氧分子,释放出能量。
在这个过程中,电子通过多个电子载体,逐渐降低能量,同时也释放出大量的质子(H+)。
这些质子会积累在线粒体内膜的内侧,形成一个质子梯度。
ATP合成酶则是将电子传递链中释放的能量转化为ATP的关键酶。
它存在于线粒体内膜上,由一个旋转的轴和一个静止的酶头组成。
当质子从线粒体内膜的内侧流向外侧时,它们会通过旋转的轴驱动酶头进行旋转。
在这个过程中,ADP和磷酸根离子(Pi)结合成ATP,完成了ATP的合成。
一个ATP合成酶分子可以合成3个ATP 分子。
质子梯度是ATP合成的第三个关键部分。
当质子在电子传递链中逐渐积累时,它们会形成一个质子梯度,这个梯度可以驱动ATP合成酶进行ATP的合成。
同时,质子梯度也可以驱动其他重要的细胞过
程,比如线粒体内的钙离子传递和脂质合成等。
总体来说,线粒体内的ATP合成机制是一个复杂而高效的过程。
通过电子传递链、ATP合成酶和质子梯度的协同作用,线粒体能够快速地合成ATP,为细胞提供所需的能量。
这个过程不仅是细胞代谢的重要组成部分,也为我们深入了解细胞内生物化学反应的机制提供了重要线索。
第六章 线粒体

第六章线粒体名词解释1、电子传递链electron-transport chain膜上一系列由电子载体组成的电子传递途径。
这些电子载体接受高能电子,并在传递过程中逐步降低电子的能量,最终将释放的能量用于合成ATP或以其他能量形式储存。
2、化学渗透学说chemiosmosis氧化磷酸化的耦联机制。
电子经电子传递链传递后,形成跨线粒体内膜的质子动力势,用以驱动ATP合成酶合成ATP。
3、结合变构模型binding change model利用质子动力势驱动ATP合成酶构象发生改变,将ADP和无机磷合成ATP的模型。
4、孔蛋白porin存在于线粒体和叶绿体外膜上的整合膜蛋白,形成非选择性的通道。
5、内共生学说endosysmbiont theory关于叶绿体和线粒体起源的假说,认为叶绿体和线粒体起源于被原始真核细胞吞噬的共生原核生物。
6、线粒体mitochondrion将储存在有机物中的能量通过氧化磷酸化过程形成ATP的细胞器。
线粒体是一种能量转换细胞器,还参与细胞凋亡等重要生理过程。
7、氧化磷酸化oxidative phosphorylation底物在氧化过程中产生高能电子,通过线粒体内膜电子传递链,将高能电子的能量释放出来转换成质子动力势进而合成ATP的过程。
8、ATP合酶ATP synthase位于线粒体内膜或叶绿体的类囊体膜上,通过氧化磷酸化或光合磷酸化催化ADP和无机磷合成ATP的酶,由F1头部和嵌入膜内的F0基部组成,也常见于细菌膜上。
9、线粒体膜间隙intermembrane space线粒体内膜和外膜之间的间隙,约6~8nm,其中充满无定形的液体,含有可溶性的酶、底物和辅助因子。
膜间隙的标志酶是腺苷酸激酶。
10、嵴cristae线粒体内膜向基质折褶形成的结构称作嵴(cristae), 嵴的形成使内膜的表面积大大增加。
11、电子载体electron carriers在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。
线粒体与过氧化物酶体词汇解释

线粒体与过氧化物酶体词汇解释过氧化物酶体又称微体,过氧化物酶体在1954年被发现时, 由于不知道这种颗粒的功能,将它称为微体。
接下来小编为大家整理了线粒体与过氧化物酶体词汇解释,希望对你有帮助哦!1. 线粒体(mitochondrion)线粒体是1850年发现的,1898年命名。
线粒体由两层膜包被,外膜平滑,内膜向内折叠形成嵴,两层膜之间有腔,线粒体中央是基质。
基质内含有与三羧酸循环所需的全部酶类,内膜上具有呼吸链酶系及ATP酶复合体。
线粒体是细胞内氧化磷酸化和形成ATP的主要场所,有细胞"动力工厂"(power plant)之称。
另外,线粒体有自身的DNA和遗传体系,但线粒体基因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。
线粒体的形状多种多样,一般呈线状,也有粒状或短线状。
线粒体的直径一般在0.5~1.0 μm,在长度上变化很大,一般为1.5~3μm,长的可达10μm ,人的成纤维细胞的线粒体则更长,可达40μm.不同组织在不同条件下有时会出现体积异常膨大的线粒体,称为巨型线粒体(megamitochondria)在多数细胞中,线粒体均匀分布在整个细胞质中,但在某些些细胞中,线粒体的分布是不均一的,有时线粒体聚集在细胞质的边缘。
在细胞质中,线粒体常常集中在代谢活跃的区域,因为这些区域需要较多的ATP,如肌细胞的肌纤维中有很多线粒体。
另外,在精细胞、鞭毛、纤毛和肾小管细胞的基部都是线粒体分布较多的地方。
线粒体除了较多分布在需要ATP的区域外,也较为集中的分布在有较多氧化反应底物的区域,如脂肪滴,因为脂肪滴中有许多要被氧化的脂肪。
2. 外膜(outer membrane)包围在线粒体外面的一层单位膜结构。
厚6nm,平整光滑,上面有较大的孔蛋白,可允许相对分子质量在5kDa左右的分子通过。
外膜上还有一些合成脂的酶以及将脂转变成可进一步在基质中代谢的酶。
外膜的标志酶是单胺氧化酶。
第一题线粒体内的两条电子传递链及三类氧化磷酸化抑制的作用原理

16
氧化磷酸化的机制.
Peter Mitchell于1961年创立的化学渗透学 说chemiosmotic theory
电子经过呼吸链传递的同时,可将质子从线粒体 内膜的基质侧排到内膜外,线粒体内膜不允许质 子自由回流,因此造成膜内外的电化学梯度(有 H+的浓度梯合成ATP。
CO、CN-、 N3-及H2S
×
×
×
鱼藤酮 粉蝶霉素A 异戊巴比妥
原理:能在特异部位阻断 氧化呼吸链中电子的传递。
2、解偶联剂破坏电子传递建立的跨膜质子电化学梯度
解偶联蛋白作用机制(棕色脂肪组织线粒体)
热能
H+
胞液侧
Cyt c
解偶联 蛋白
Ⅰ
基质侧
Q
Ⅱ
Ⅲ
F
0
Ⅳ
F1
ADP+Pi ATP
H+
3、ATP合酶抑制剂同时抑制电子传递和ATP的生成
4
一、呼吸链由4种具有传递电子能力的复合体组成
酶复合体是线粒体内膜氧化呼吸链的天然存 在形式,所含各组分具体完成电子传递过程。电 子传递过程释放的能量驱动H+移出线粒体内膜, 转变为跨内膜H+梯度的能量,再用于ATP的生物 合成。
5
人线粒体呼吸链复合体
复合体
酶名称
复合体Ⅰ NADH-泛醌 还原酶
复合体Ⅱ 琥珀酸-泛醌 还原酶
复合体Ⅲ 泛醌-细胞色 素C还原酶
细胞色素c
质量 (kD) 850
多肽 链数
39
功能辅基 FMN,Fe-S
140 4
FAD,Fe-S Cytb560
线粒体电子传递呼吸链及其生物学意义的研究进展

干预 有望成 为 完善线 粒 体 电子呼 吸链 的传递 和 能量 生成 的特效 治疗 手 段 , 从 而 完 成 各脏 器 细胞 的基 础 能 量代 谢 。 参 考 文 献
[1 ] C a r r o l l J , F e a r n l e y I M, S k e h e l J M, e t a 1 . B o v i n e c o mp l e x I i s a c o mp l e x o f 4 5 d i f f e r e n t s u b u n i t s [ J ] . J B i o l C h e m,
变 引起 亨 廷 顿 蛋 白 ( Ht t ) N一 端 的 多 聚 谷 氨 酰 胺 延
活性 呈早 期升 高后 下 降 的抛 物 线趋 势 , 这 为 临床 上 诊断 与治 疗早 期心 衰患 者提 供 了崭新 的思 路 。随着
细胞 分子 生物 学研 究 的 不 断 深入 , 外 源 性 替 代 或 者
[ 4 ] Wa l k e r J E .T h e NA D H: u b i q u i n o n e o x i d o r e d u c t a s e
( c o m p l e x I )o f r e s p i r a t o r y c h a i n s [ J ] . Q R e v B i o p h y s ,
u ni d e n t i f i e d r e a d i n g f r a me s o f h u ma n mi t o c ho n d r i a l DNA
e n c od e c o mp o n e n t s o f t h e r e s pi r a t o r y - c h a i n NAD H
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线粒体电子传递链
线粒体电子传递链是生物体有机分子的一种代谢途径,它可以帮助生物体获取能量。
线粒体电子传递链是一种酶介导的反应过程,由一系列的电子捕获剂组成,接收线粒体内
的电子并将其依次传输到后面的反应载体,它能够有效地将反应本身的能量转化为可变电
子和质子。
线粒体电子传递链分为两个主要步骤:电子转移阶段和磷酸化阶段。
在电子转移阶段,线粒体内的化学键经由连续的一系列的电子载体而传输电子,例如NADH或FADH2的反应
能量将逐步释放,释放电子功能转移到结果产物之前的另一个空位上。
随后,电子转移将
再次进行以便将电子传递到另一反应载体。
在磷酸化阶段,能量被集中在微观水分子与磷
酸击穿反应中形成聚合物,同时释放大量的能量供其他作用如运输小分子等使用。
电子转
移和磷酸化过程是惰性耦合的,若有一个步骤受损,则会对线粒体电子传递链产生负面影响,从而影响到细胞的能量累积。
在线粒体电子传递链的结构中,还存在一个唯一的反应:氧化-还原反应。
这一反应
在将反应中的氧份与终止反应载体ATP结合到一起时产生,并将能量和质子同步释放到自
然环境中。
线粒体电子传递链是最终终止反应,有助于催化前驱物所存储的能量的释放,
从而向生物体提供能量。
线粒体电子传递链的突出的特点是它穿越膜的能力,使生物膜可以位于膜外和膜内。
此外,线粒体电子传递链的另一个重要机制是通过甲烷氧化而生成的活性氧的稳定性,活
性氧这种物质有害于细胞的健康。
因此,线粒体电子传递链本身可以起到调节活性氧水平
的作用,从而防止细胞中活性氧水平过高引起的损伤。