ansysworkbenchmeshing网格划分总结(1)
01网格划分方法(ANSYSMeshing)

01网格划分方法(ANSYSMeshing)专注于仿真分析和振动分析00 导读本文主要介绍 ANSYS Meshing 局部控制的网格划分方法。
01 研究背景ANSYS Meshing 网格划分可以分为全局控制和局部控制。
局部控制的优先级高于全局控制。
当划分对象缺少局部控制时,软件会执行全局控制。
02 局部控制局部控制选项如下图所示。
03 实体网格实体几何模型的网格划分方法如下图所示。
Automatic:自动,首先对实体尝试扫掠(Sweep)方法划分网格,如果不适合则采用四面体(Tetrahedrons)方法划分网格。
Tetrahedrons:四面体,该方法对实体形状规则性基本无要求。
包含两种算法。
Patch Conforming 算法先在实体上生成面网格,然后再生长为体网格。
Patch Independent 算法先在实体内生成体网格,然后再蔓延到表面。
Hex Dominant:六面体为主,该方法对实体形状规则性要求不高。
生成以六面体为主的体网格,其中可能会存在四面体网格等。
Sweep:扫掠,该方法要求实体形状规则。
先在源面上生成面网格,然后沿着实体的某个方向扫掠成体网格,主要生成六面体网格,其中可能会存在三棱柱网格。
MultiZone:多区域,该方法要求实体形状大致规则。
多区域划分方法自动将实体进行虚拟切分成规则实体以适合扫掠。
Hexa-生成纯六面体网格。
Hexa/Prism-生成六面体和三棱柱网格。
Prism-生成纯三棱柱网格。
Program Controlled-自动使用Uniform或Pave。
Uniform-生成均匀的体网格。
Pave-会考虑曲率。
Not Allowed-不允许。
Tetra-允许使用四面体网格划分。
Tetra/Pyramid-允许使用四面体网格划分,并且在表面一层为金字塔网格。
Hexa Dominant -允许使用六面体为主网格划分。
Hexa Core-允许使用六面体核心网格划分。
Meshing网格划分方法_ANSYS Workbench 16.0超级学习手册_[共3页]
![Meshing网格划分方法_ANSYS Workbench 16.0超级学习手册_[共3页]](https://img.taocdn.com/s3/m/920841db844769eae109edb6.png)
3.2 Meshing网格划分详解89
图3-25 网格划分物理参照设置
(4)Explicit:为显示动力学分析软件提供网格划分,如AUTODYN及LS-DYNA 求解器。
3.2.2 Meshing网格划分方法
对于三维几何体来说,ANSYS Mesh有以下几种不同的网格划分方法。
(1)Automatic(自动网格划分)。
(2)Tetrahedrons(四面体网格划分)。
当选择此选项时,网格划分方法又可细分为两种。
①Patch Conforming法(Workbench自带功能):其特点如下。
●默认时考虑所有的面和边(尽管在收缩控制和虚拟拓扑时会改变且默认损伤外貌
基于最小尺寸限制);
●适度简化CAD(如native CAD,Parasolid,ACIS等);
●在多体部件中可能结合使用扫掠方法生成共形的混合四面体/棱柱和六面体网格;
●有高级尺寸功能;
●表面网格→体网格。
②Patch Independent法(基于ICEM CFD软件):其特点如下。
●对CAD有长边的面、许多面的修补、短边等有用;
●内置defeaturing/simplification基于网格技术;
●体网格→表面网格。
(3)Hex Dominant(六面体主导网格划分)。
当选择此选项时,Mesh将采用六面体单元划分网格,但是会包含少量的金字塔单元和四面体单元。
Ansys网格划分详解01

12
B 网格划分控制
尺寸控制
由于结构形状的多样性,在许 多情况下,由缺省单元尺寸或 智能尺寸产生的网格并不合适, 在这些情况下,进行网格划分 时必须做更多的处理。可以通 过指定下述的单元尺寸来进行 更多的控制。
13
B 网格划分控制
尺寸控制
改变总体单元尺寸 Main Menu > Preprocessor > Meshing > MeshTool > Global 1.指定线上的单 元边长或者每条 线上划分控制
网格划分器选择-映射网格划分
若指定线的分割数, 切记: 对边的分割数必须匹配, 但只须指定一边的分割数. 映射网 格划分器将把分割数自动传送到它的对边. 如果模型中有连接线, 只能在原始(输入)线上指定分割数, 而不能在合成线上指定分割数.
每条初始线上指定6份分割.
此线上将自动使用12 份分 割 (合成线的对边). 其它两条线上会采用4 份分 割.
10
B 网格划分控制
2、Smartsize高级控制
【EXPAND】:网格划分膨胀因子。 该值决定了面内部单元尺寸与边缘处的单元尺寸的比例关系。 取值范围0.5~4。
11
B 网格划分控制
2、Smartsize高级控制
【TRANS】:网格划分过滤因子。 该值决定了从面的边界上到内部单元尺寸涨缩的速度。该值 必须大于1而且最好小于4。 【ANGL】:对于低阶单元,该值设置了每单元边界过渡中 允许的最大跨越角度。ANSYS默认为22.5度(Smartsize的水 平值为6时)。
3
B 网格划分控制
Smartsize网格划分控制
在进行自动网格划分时,智能网格给网格划分器创造合 理的单元形状提供一个好的选择。 在进行自由网格划分时,建议采用Smartsize控制网格的 大小。 智能网格创建自由网格划分的初始单元尺寸。 为了得到更好的网格,应将所有的面或体放在一起划分 网格。
ansys_workbench_15.0_网格划分讲解

Advanced Contact & Fasteners
基于网格相关度控 制网格密度的方法 ,设置的单元尺寸 对于网格密度有着 重要的影响!
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
Advanced Sizing Functions (ASF) -该项功能用于控制接近表面区域和具有高曲 率区域的网格生长和分布 高级尺寸函数有五个选项: -关闭高级尺寸函数(off) -Proximity and Curvature -Curvature -Proximity -Fixed
Training Manual
Advanced Contact & Fasteners
1. Meshing网格划分概述
Training Manual
Advanced Contact & Fasteners
Workbench中的Meshing应用程序的目标是提供通用的网 格划分格局。网格划分工具可以在任何分析类型中使用:
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
Curvature尺寸控制函数
-该函数基于模型中的曲率信息控制网格,主要 作用于模型中的孔,洞和缺陷处。 该函数有5个控制参数: Curvature Normal Angle-曲率法向角度 Min Size-总体最小尺寸 Max Face –面上最大尺寸 Max Size-总体最大尺寸 Growth Rate-网格生长率
ansys workbench 15.0 网格划分

1.Meshing网格划分概述
网格划分目的: • 在节点处建立方程 – 求解域被划分成有限个离散的单元。 网格划分的基本要求: • 网格划分效率与求解精度 —对于模型中应力集中处和几何特征细 节处需要进行网格细化。 网格划分质量: —网格划分质量直接影响到求解的精度 和求解的稳定性。
Training Manual
Automatic 根据几何模型复杂 Nhomakorabea度联合使用四面 体划分方法和扫描方法实现。
Training Manual
Advanced Contact & Fasteners
Training Manual
Advanced Contact & Fasteners
2.单元
3.网格控制
1、Physics Based Settings -设置网格划分的物理环境 2、Global Mesh Sizing Controls -Relevance and Relevance Center (网格相关度和相关度中心) -Advanced Size Functions (高级尺寸函数) -Smoothing and Transition (网格平滑和过渡) -Span Angle Center (跨度角中心) 3、Inflation(膨胀率) 4、Patch Confirming Options(网格修补选项) 5、Advanced(网格高级选项) 6、Defeaturing(模型修正) 7、Statistics(网格信息统计)
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
ansysworkbenchmeshing网格划分总结(1)

ansysworkbenchmeshing⽹格划分总结(1)Base point and delta创建出的点重合时看不到⼤部分可划分为四⾯体⽹格,但六⾯体⽹格仍是⾸选,四⾯体⽹格是最后的选择,使⽤复杂结构。
六⾯体(梯形)在中⼼质量差,四⾯体在边界层处质量差,边界层处⽤棱柱⽹格prism。
棱锥为四⾯体和六⾯体之间的过渡棱柱由四⾯体⽹格被拉伸时⽣成3DSweep扫掠⽹格划:只有单⼀的源⾯和⽬标⾯,膨胀层可⽣成纯六⾯体或棱柱⽹格Multizone多域扫掠⽹格:对象是多个简单的规则体组成时(六⾯体)——mapped mesh type映射⽹格类型:包括hexa、hexa/prism——free mesh type⾃由⽹格类型:包括not allowed、tetra、hexa dominant、hexa core(六⾯体核⼼)——src/trg selection源⾯/⽬标⾯选择,包括automatic、manual source⼿动源⾯选择patch conforming:考虑⼀些⼩细节(四⾯体),包括CFD的膨胀层或边界层识别patch independent:忽略⼀些⼩细节,如倒⾓,⼩孔等(四⾯体),包括CFD 的膨胀层或边界层识别——max element size 最⼤⽹格尺⼨——approx number of elements⼤约⽹格数量mesh based defeaturing 清除⽹格特征——defeaturing tolerance 设置某⼀数值时,程序会根据⼤⼩和⾓度过滤掉⼏何边Use advanced size function ⾼级尺⼨功能——curvature['k??v?t??]曲率:有曲率变化的地⽅⽹格⾃动加密,如螺钉孔,作⽤于边和⾯。
——proximity[pr?k's?m?t?]邻近:窄薄处、狭长的⼏何体处⽹格⾃动加密,如薄壁,但花费时间较多,⽹格数量增加较多,配合min size使⽤。
ANSYSWorkbenchMesh网格划分(自己总结)

ANSYSWorkbenchMesh网格划分(自己总结)Workbench Mesh网格划分分析步骤网格划分工具平台就是为ANSYS软件的不同物理场和求解器提供相应的网格文件,Workbench中集成了很多网格划分软件/应用程序,有ICEM CFD,TGrid,CFX,GAMBIT,ANSYS Prep/Post等。
网格文件有两类:①有限元分析的结构网格:结构动力学分析,电磁场仿真,显示动力学分析;②计算流体力学分析的网格:用于ANSYS CFX,ANSYS FLUENT,Polyflow;这两类网格的具体要求如下:结构网格:①细化网格来捕捉关心部位的梯度,例如温度、应变能、应力能、位移等;②大部分可划分为四面体网格,但六面体单元仍然是首选;③有些显示有限元求解器需要六面体网格;④结构网格的四面体单元通常是二阶的;CFD网格:①细化网格来捕捉关心的梯度,例如速度、压力、温度等;②于是流体分析,网格的质量和平滑度对结果的精确度至关重要,这导致较大的网格数量,经常数百万的单元;③大部分可划分为四面体网格,但六面体单元仍然是首选,流体分析中,同样的求解精度,六面体节点数少于四面体网格的一半。
④CFD网格的四面体单元通常是一阶的一般而言,针对不同分析类型有不同的网格划分要求:①结构分析:使用高阶单元划分较为粗糙的网格;②CFD:好的,平滑过渡的网格,边界层转化;③显示动力学分析:需要均匀尺寸的网格;物理选项实体单元默认中结点关联中心缺省值Coarse Coarse Medium Coarse 平滑度过渡 Mechanical CFD Electromagnetic Explicit Kept Dropped Kept Dropped Medium Medium Medium Fine Fast Slow Fast Slow 注:上面的几项分别对应Advanced中的Element Midside Nodes,以及Sizeing中的Relevance Center,Smoothing,Transition。
meshing 网格化分总结

ansys网格划分总结(2007-12-09 15:12:14)转载▼分类:ANSYS学习标签:家居/装修ansys程序网格划分分为两种:映射网格划分和自由网格划分。
映射网格划分包括三角形单元、四边形单元和六面体单元。
映射网格划分要求具有规则形状的面和体。
自由网格划分对面和体没有特定的要求。
1、线单元的网格划分(beam188 beam4 pipe16 link8和link10)线单元网格划分时,除在分布荷载作用下的梁单元外,如没有特别要求,通常对每段线段不再进行细分,即一段线段只划分一个单元。
如果将一段线段划分多个单元,则降低了线段的刚性,反而不好。
因此,线单元网格划分实际上只是给线段赋属性,不进行划分。
但是其划分过程是不可缺少的。
(1)mesh attributes>picked lines 定义单元类型、实常数、截面类型(注意非完全对称单元还要通过定义主轴上的一点来定义截面方位)有时还需确定单元坐标系。
(2)size cntrls>manualsize>lines>picked lines 在[ndiv]项中输入划分数。
(3)meshtool>pickall。
如果梁单元上存在分布荷载,必须将梁单元进行细分,划分的段数需根据分布荷载儿定。
对于均布荷载一般以划分四段为宜。
2、面单元网格划分1.自由网格划分(1)mesh attributes>picked areas(2)meshtool>在“element attributes”中选择“areas”,激活“amart size”并设置尺寸。
在“mesh”中选择“areas”,激活“quad”和“free”。
单击【mesh】按钮,弹出拾取对话框后拾取要划分的面。
2.映射网格划分(1)mesh attributes(2)size cntrls>manualsize>lines>picked lines 在[ndiv]项中输入划分数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Base point and delta创建出的点重合时看不到
大部分可划分为四面体网格,但六面体网格仍是首选,四面体网格是最后的选择,使用复杂结构。
六面体(梯形)在中心质量差,四面体在边界层处质量差,边界层处用棱柱网格prism。
棱锥为四面体和六面体之间的过渡
棱柱由四面体网格被拉伸时生成
3D
Sweep扫掠网格划:只有单一的源面和目标面,膨胀层可生成纯六面体或棱柱网格
Multizone多域扫掠网格:对象是多个简单的规则体组成时(六面体)——mapped mesh type映射网格类型:包括hexa、hexa/prism
——free mesh type自由网格类型:包括not allowed、tetra、hexa dominant、hexa core(六面体核心)
——src/trg selection源面/目标面选择,包括automatic、manual source手动源面选择
patch conforming:考虑一些小细节(四面体),包括CFD的膨胀层或边界层识别
patch independent:忽略一些小细节,如倒角,小孔等(四面体),包括CFD 的膨胀层或边界层识别
——max element size 最大网格尺寸
——approx number of elements大约网格数量
mesh based defeaturing 清除网格特征
——defeaturing tolerance 设置某一数值时,程序会根据大小和角度过滤掉几何边
Use advanced size function 高级尺寸功能
——curvature['kɜːvətʃə]曲率:有曲率变化的地方网格自动加密,如螺钉孔,作用于边和面。
——proximity[prɒk'sɪmɪtɪ]邻近:窄薄处、狭长的几何体处网格自动加密,如薄壁,但花费时间较多,网格数量增加较多,配合min size使用。
控制面网格尺寸可起到相同细化效果。
hex dominant六面体主导:先生成四边形主导的网格,然后再得到六面体再按需要填充棱锥和四面体单元。
——此方法对于不可扫掠的体,要得到六面体网格时推荐
——对内部容积大的体有用
——对体积和表面积比小的薄复杂体无用
——对于CFD无边界层识别
——主要对FEA分析有用
Automatic自动网格:在四面体网格(patch conforming考虑细节)和扫掠网格(sweep)之间自动切换。
2D
Quadrilateral dominant [,kwɑdrɪ'lætərəl]四边形主导
triangles['traɪæŋg(ə)l]三角形
uniform quad/tri 均匀四边形或三角形
uniform quad 均匀四边形
膨胀
所有的方法可以应用到膨胀中除了六面体主导控制的薄壁结构的扫掠
可以扫掠(纯六面体或楔形)
网格质量mesh metrics:畸变度skewness,六面体节点数少于四面体的一半,边界层、高区率区域用六面体。
对任意几何,六面体网格划分需要多步,对简单几何,扫掠Sweep和Multizone 是一种简单方式。
几何体的不同部件可以使用不同的网格划分方法(能扫掠的部件扫掠,不能的部
件hex dominant,边界层棱柱)
——不同部件的体的网格可以不匹配或不一致
——单个部件的体的网格匹配或一致
四面体特点
自动、关键区域可细化、边界层,单元和节点数多
Physics preference物理场偏好
Tetrahedrons [,tetrə'hiːdrən; -'hed-] 四面体
Hexahedron[,heksə'hiːdrən; -'hed-]六面体
algorithm ['ælgərɪð(ə)m]算法
fixed:只以设定的大小划分网格,不会根据曲率大小自动细化
statistic (网格)统计数值
explicit 显式动力学分析
relevance 关联,相关。
值(-100—100)越大,网格越细
relevance center 关联中心
smoothing 平滑度
transition 过渡:控制临近单元增长比。
CFD、Explicit需要缓慢网格过渡,mechanical、electromagetics需要产生快速网格过渡
Element Midside Nodes 单元中间节点
Sizing(全局)尺寸控制
Initial Size Seed初始尺寸种子:用来控制每一部件的初始网格种子——active assembly有效组件:初始种子放入未一直部件
——full assembly 全部组件
——part
Span angle center 跨度中心角:网格在弯曲区域细分,直到单独单元跨越这个角
Inflation 膨胀:一般而言,这里的Inflation为整体控制,我们不用,后面可以利用Mesh-Insert-Inflation来设置具体的膨胀。
——use automatic tet inflation为program controlled时,膨胀层由所有没有指配named selection的边界形成。
膨胀层厚度是表面网格的函数,是自动施加的。
Contact size接触尺寸
Refinement细化:仅对边、面、顶点有效
Mapped face meshing映射面划分
Match control 匹配控制:旋转机械,取重复的一部分方便循环对称分析。
Pinch 收缩:可以在划分网格时自动去除模型上的一些小特征,如边、狭窄区等,从而减少网格数。
收缩只对顶点和边起作用,面和体不能收缩。
Mesh-右键-Create Pinch Controls可以让程序自动寻找并去除几何体上的一些小特征,之前要在Defeaturing(特征清除)中设置好Pinch Tolerance(收缩容差),收缩容差要小于局部最小尺寸(Minimum Edge Length)。
局部尺寸Sizing中的type通常采用如下两类:
——element size:用于设置所选中的具体,某单元(体、面、边、顶点)的平均边长
——sphere of influence:用球体来设置单元平均大小的范围,球体中心坐标采
用的是局部坐标系,所有包含在球体内的实体,其单元网格大小均按照设定的尺寸划分。
为了描述球所在位置,还对其它需要定义一个坐标系。
右击coordinate systems插入一个坐标系,定义origin x,y,z, insert-sizing, 设置type为sphere of influence,点击sphere center选择创建的坐标系,设置sphere radius和element size。
Inflation
——Smooth transition平滑过渡
——Total thickness总厚度:选项的膨胀其第一层和下列每一层的厚度是常量——first layer thickness第一层厚度
Transition ratio过渡比
Maximum layers边界层层数
Inflation algorithm膨胀运算法则
——pre前处理:tgrid算法,可以应用于扫掠和2D网格划分。
——post后处理:icem cfd算法,只对patch conforming和patch independent 四面体网格有效。
Inflation this method
Mapped face meshing映射面划分
①在面上允许产生结构网格
②映射面划分的内部圆柱面有更均匀的网格模式
③如果选择的映射面划分的面是由两个回线定义的,就要激活径向的分割数。
扫掠时指定穿过环形区域的分割数(radial number of divisions:这用来产生多层单元穿过薄环面)。
多体部件:一个part由多个solid组成,即多个body
mesh的整体思路是“先进行整体和局部网格控制,然后对被选的边、面进行网格细化”
问题
同一部件能不能用不同网格
需在DM中用slice分割划分,流体是否可用类似icem
面网格作用
Insert-Sizing-face-element size面尺寸,细化面网格起到细化体网格作用(四面体的一个面组成了面网格)
Sweep和multizone区别:
Sweep不能手动选多个源面,multizone可以选多个源面,sweep要想选多个源面需要slice成多体部件,multizone相当于将part分割了,适用于未分割且各个部分均可扫掠的。
有不可扫掠部分和可扫掠部分的,先用slice分割为多体部件,再用sweep手动选择各个body的源面,其余部分tetra。
Sweep的边界层需选择源面上的edge
通过扫掠网格的映射面划分的使用和作用,强迫薄环厚度上的径向份数,在源面和目标面的边上设置边尺寸,有助于生成高质量的网格。
多体部件:
①Sweep手动源面+tetra分别划分最好(sweep自动和手动效果相同)
②Multizone自动源面 hexa/prism、tetra差
③Multizone手动指定源面最差
④割后automatic同①
影响网格质量的因素:
几何模型:小边、狭长面、缝隙、尖锐角等(“虚拟拓扑”虚拟地把小边、狭长面等合并,避免质量差的网格出现)
网格划分方法的选择
网格尺寸的设置(质量差的地方,进行局部网格加密)。