中国科学院大学-2019年-硕士研究生入学考试大纲-811量子力学
2019年硕士研究生入学考试专业课考试大纲

考试科目代码:716
考试科目名称:量子力学
一、考试要求
量子力学是近代物理的重要支柱,量子力学研究生入学考试是为所招收与量子力学有关专业(原子与分子物理、光学、计算物理)硕士研究生而实施的具有选拔功能的水平考试。它的主要目的是测试学生对量子力学核心内容波函数统计解释、薛定谔方程、算符化假设、展开假定、全同粒子的基本假设的掌握程度。要求学生对量子力学内容有比较系统和全面的了解和掌握,并能够运用量子力学的基本概念、基本理论、基本原理处理微观领域中规律性的问题。
4子力学,姚玉洁,高等教育出版社,2014年05月,第一版
2、量子力学教程,曾谨言,科学出版社,2014年01月,第三版
氢原子
6、量子力学的矩阵形式与表象变换
量子态的不同表象
幺正变换
力学量(算符)的矩阵表示
量子力学的矩阵形式
7、电子自旋
电子自旋态与自旋算符
总角动量的本征态
8、微扰论
非简并微扰论
简并微扰论
三、题型结构
1、判断题(共5题,每题2分,共10分)
2、简答题(共10题,每题8分,共80分)
3、证明题(共2题,每题10分,共20分)
二、考试内容
1、波函数与Schrodinger方程
波函数的统计论释
力学量的平均值与算符的引进
2、Schrodinger方程
能量本征方程
定态与非定态
量子态叠加原理
3、一维势场中的粒子
一维无限深势阱
一维线性谐振子
一维势垒隧穿
4、力学量用算符表达
算符的运算
对易关系
力学量完全集
5、中心力场
中心力场中粒子运动的一般性质
811《量子力学》 - 中国科学院

811《量子力学》中科院研究生院硕士研究生入学考试《量子力学》考试大纲本《量子力学》考试大纲适用于中国科学院研究生院物理学相关各专业(包括理论与实验类)硕士研究生的入学考试。
本科目考试的重点是要求熟练掌握波函数的物理解释,薛定谔方程的建立、基本性质和精确的以及一些重要的近似求解方法,理解这些解的物理意义,熟悉其实际的应用。
掌握量子力学中一些特殊的现象和问题的处理方法,包括力学量的算符表示、对易关系、不确定度关系、态和力学量的表象、电子的自旋、粒子的全同性、泡利原理、量子跃迁及光的发射与吸收的半经典处理方法等,并具有综合运用所学知识分析问题和解决问题的能力。
一.考试内容:(一)波函数和薛定谔方程波粒二象性,量子现象的实验证实。
波函数及其统计解释,薛定谔方程,连续性方程,波包的演化,薛定谔方程的定态解,态叠加原理。
(二)一维势场中的粒子一维势场中粒子能量本征态的一般性质,一维方势阱的束缚态,方势垒的穿透,方势阱中的反射、透射与共振,d--函数和d-势阱中的束缚态,一维简谐振子。
(三)力学量用算符表示坐标及坐标函数的平均值,动量算符及动量值的分布概率,算符的运算规则及其一般性质,厄米算符的本征值与本征函数,共同本征函数,不确定度关系,角动量算符。
连续本征函数的归一化,力学量的完全集。
力学量平均值随时间的演化,量子力学的守恒量。
(四)中心力场两体问题化为单体问题,球对称势和径向方程,自由粒子和球形方势阱,三维各向同性谐振子,氢原子及类氢离子。
(五)量子力学的矩阵表示与表象变换态和算符的矩阵表示,表象变换,狄拉克符号,谢振子的占有数表象。
(六)自旋电子自旋态与自旋算符,总角动量的本征态,碱金属原子光谱的双线结构与反常塞曼效应,电磁场中的薛定谔方程,自旋单态与三重态,光谱线的精细和超精细结构,自旋纠缠态。
(七)定态问题的近似方法定态非简并微扰轮,定态简并微扰轮,变分法。
(八)量子跃迁量子态随时间的演化,突发微扰与绝热微扰,周期微扰和有限时间内的常微扰,光的吸收与辐射的半经典理论。
《量子力学》课程考试大纲

《量子力学》课程考试大纲
一、课程的任务、性质和作用
本课程的性质:量子力学是物理学专业的一门重要专业必修课程,是物理相关专业本科生必修的四大理论课之一,是他们今后继续提高物理专业水平的一门专业基础理论课程。
同时,量子力学是近代物理学两大支柱之一,是描述微观世界运动规律的基础理论,已成为当今科学技术的基础,凡是涉及到微观粒子(比如分子、原子、电子等)的各门学科和新兴技术,都必须掌握量子力学。
本课程的任务是:(1)使学生了解微观世界的特殊性,了解经典物理不能正确描述微观粒子的运动规律,认识到创立微观世界的理论——量子力学的必然性。
(2)使学生初步掌握量子力学的基本概念、原理和基本方法,能求解量子力学的一些基本问题。
(3)使学生熟悉量子力学在现代科学技术中各种重大应用。
二、教材
周世勋.量子力学.高等教育出版社,1979年
三、试卷结构与题型
1.试题类型
填空题、选择题、证明题、计算题。
2.试卷难易比例
容易题约占40%,中等难度题约占40%,难题约占20%。
3.试卷内容比例
填空题约占15%,选择题约占15%,证明题约占20%,计算题约占50%。
四、考核的知识点及参考题型。
中科院量子力学超详细笔记

+ (hν )2 + (
′)2 − 2h2νν ′ = m2c4 hν ′)2 − 2h2νν ′ cosθ
+ m02c4 = m2c4
− 2mm0c − m02c4
4
后者减前者,得
( ) 2h2νν ′(1− cosθ ) = 2mm0c4 − 2m02c4 = 2m0c2 mc2 − m0c2
的。即必须假定,对所有频率相应的能量都是量子化的。
《光电效应问题》 自 1887 年 Hertz 起,到 1916 年 Millikan 为止,光电效应的实验 规律被逐步地揭示出来。其中,无法为经典物理学所理解的实验事实 有: 反向遏止电压(和逸出电子的最大动能成正比)和入射光强无关; 反向遏止电压和入射光的频率呈线性关系; 电子逸出相对于光的照射而言几乎无时间延迟。 它们难于理解是因为,按经典观念,入射光的电磁场使金属表面电子
射在金属表面的波场是一种微粒集合。沿着这一思路前进,人们甚至
可以引入光子的“有效”质量 m∗ ,即
m∗ = ε = hν c2 c2
于是,若在重力场中,一个光子垂直向上飞行了 H 距离,其频率要由
原来的ν 0 减小为ν :
hν 0
=
hν
+
hν c2
gH
,从而 ν
<
ν0
这说明垂直向上飞行的光子,其频率会产生红移1。这一现象在 1960
样的动能需要一定的时间。然而,实验却表明,这个弛豫时间很短,
它不大于10−9 秒。为了解决这些矛盾,1905 年,Einstein 在 Planck 的 能量子概念基础上,再大胆地前进一步,提出了光量子概念,并指出
光量子和电子碰撞并被电子吸收从而导致电子的逸出。他的光电效应
2019年硕士研究生招生考试大纲

2019年硕士研究生招生考试大纲考试科目名称:普通物理(力学、电磁学各占50%)考试科目代码:[613]力学部分一、考试要求1.基本概念质点,位矢,运动学方程,轨道方程,速度,加速度,位移,伽利略时空观;惯性质量,动量,主动力,被动力,非惯性系和惯性力,冲量,质点系,质心系;能量,机械能,动能,势能,功和功率,保守力,非保守力;质点和质点系对参考点或轴的角动量,力矩,守恒量和对称性,经典力学的适用范围;万有引力,引力质量,引力常数;刚体,平动和转动,角速度和角加速度,质心和重心,转动惯量,刚体的动量,转动动能,平面运动,刚体的平衡;简谐振动的运动学和动力学特征,简谐振动的运动学方程,简谐振动的合成,阻尼振动,受迫振动,位移共振;波的基本概念,平面简谐波方程,波动方程和波速,平均能流密度,半波损失,波的叠加和干涉,驻波,多普勒效应。
2.基本定理、定律牛顿运动定律,动量定理,动能定理,角动量定理,动量守恒定律,角动量守恒定律,机械能守恒定律,质心运动定理,功能原理,克尼希定理,开普勒定律和万有引力定律,刚体的质心运动定理,刚体定轴转动的角动量定理和转动定理,刚体定轴转动的动能定理。
3.基本方法利用加速度(或速度)和初始条件求解的质点的运动规律,利用运动学方程求解平面直角坐标系、自然坐标及极坐标系中质点的速度和加速度问题;利用牛顿运动定律求解基本的动力学问题,利用动量和动量守恒定律求解动力学基本问题;利用元功求解变力做功问题,利用动能定理和机械能守恒定律求解动力学问题,求解碰撞的问题;利用角动量和力矩的定义计算质点对轴和参考点的角动量和力矩,利用角动量定理和守恒定律解决基本的动力学问题;利用转动惯量定义计算刚体的转动惯量,利用刚体的运动学方程求解刚体的运动学问题,利用转动定理和角量与线量的关系求解刚体的动力学问题,利用刚体的动能定理求解刚体的动力学问题;根据简谐振动知识求解简谐振动方程、振动速度和振动加速度,利用简谐振动的运动学特征和动力学特征判断一个振动是否是简谐振动,会求解振动的合成问题;由振动方程求解平面简谐波波方程。
中国科学院811量子力学1997年(回忆版)考研专业课真题试卷

x >a (V > 0) 中运动: x <a 0
eB ˆy( s ˆy 为自旋算符的 y s mc
分量) ,如果 t = 0 时粒子的自旋指向正 x 轴方向,求粒子自旋平均值随时间的 演化。 (1999 年(理论型)第四题)
为在 6a 长的平坦势(即: V = 0, x < 3a; V → ∞, x > 3a )上的微扰,用一级微扰 方法求基态能量。
-中国科技大学 中国科学院 中国科学院1998 年招收攻读硕士研究生学位研究生入学考试试题 试题名称:量子力学(理论型)
一、质量为 m 的粒子在一维势场 V ( x) = ⎪ ⎨ (1)求基态能量 E0 满足的方程; (2)求存在且仅存在一个束缚态的条件。 (1999 年(理论型)第三题) 二、自旋为 的带电粒子(电荷为 q ,质量为 m )受到均匀磁场 B = Be y 的作
† † † † † ai a † j − a j ai = δ ij , ai a j − a j ai = 0, ai a j − a j a i = 0
ˆ = ℏω (a †a + a †a ) + i ℏω (a †a − a †a ) 的能谱。 试求哈密顿量 (ω0 > ω1 > 0) H 0 1 1 2 2 1 1 2 2 1
† ˆ 化为两个不耦合的谐 (提示:仅利用 a1 和 a2 , a1† 和 a2 之间的线性变换,可将 H
振子的哈密顿量之和)
ˆ 中与有 ω 关的部分当作微扰,请用定态微扰论求出第 五、将上题哈密顿量 H 1
量子力学考试大纲

《电动力学》考试大纲(2007年7月第一次修订,2008年12月第二次修订)《电动力学》考试大纲是根据我校物理学专业人才培养方案和《电动力学》教学大纲制定的。
课程性质、目的和教学内容参考我院物理学专业的《电动力学教学大纲》。
考核内容一般分为四个层次:I -识记、II -理解(或领会)、III -简单应用、IV -综合应用。
考核类型:闭卷考试。
考题类型:试题一般在以下题型中选择4-6种:简答、填空、判断(加“错改正”)、选择(单项、多项)、证明、计算等,题量在20—35小题,考试时间2小时。
注意:黑体字标注的为重点内容。
第一章 电磁现象的普遍规律考核要求:(一)需要掌握的主要数学公式1.识记:(1)矢量代数公式(2)梯度、散度和旋度定义及在直角坐标和球坐标中的表达式(3)矢量场论公式(4)积分变换公式(5)复合函数“三度”公式(6)有关x x r '-= 的一些常用公式2.理解:算符▽的矢量性和微分性3.简单应用:利用算符▽的矢量性和微分性证明矢量场公式4.所需要数学知识不单独出题考试,融合在课程内容中(二)麦克斯韦方程组建立的主要实验定律和假定1.识记:电磁场理论建立的几个重要实验规律2.理解:库仑定律,高斯定理磁场的实验定律――毕萨定律,安培环路定理电磁感应定律――涡旋电场假说,位移电流假说(三)真空中的麦克斯韦方程组1.识记:真空中的麦克斯韦方程组(微分形式、积分形式)2.简单应用:每个方程的物理意义(物理本质)麦克斯韦方程组在电磁学中的重要意义――电磁场理论的基础,揭示电和磁的内在联系,是应用的理论依据能够运用真空中的麦克斯韦方程组做简单的证明(四)介质中的电磁性质方程1.识记:(1)束缚体电荷、束缚面电荷的表达式(2)磁化体电流、磁化面电流和极化电流的表达式(3)电位移矢量和磁场强度的定义(4)均匀线性介质中电位移矢量、磁场强度和电场、磁感应强度的关系2.理解:公式的适用范围。
3.简单应用:能够简单运用上述公式求束缚体电荷密度、面电荷密度以及磁化体电流、面电流(五)介质中的麦克斯韦方程组1.识记:介质中麦克斯韦方程组的微分形式和积分形式2.简单应用:会利用介质中的麦克斯韦方程组做简单的证明题(六)洛仑兹力公式1.识记:单个带电粒子和电荷分布情况的洛仑兹力公式(七)电磁场的边值关系1.识记:(1)电磁场的边值关系(2)其它几个边值关系2.简单应用:利用边值关系做简单证明和计算(八)电磁场的能量1.识记:(1)电磁场能量守恒(2)电磁场的能量密度和玻印停矢量2.理解:能量在场中的传输第二章静电场考核要求:(一)有关静电场的几个定理和定律1.理解:库仑定律、静电场的概念、场的叠加原理、高斯定理(二)电场的基本方程1.理解:静电场下的电场散度和旋度方程(三)静电势及其满足的方程1.识记:(1)电势的表达式(2)点电荷电势(3)连续分布电荷的电势(4)均匀场的电势(5)偶极子电势2.理解:(1)静电势的引入、电势差,电势参考点的选取(2)泊松方程的解等于其特解加上拉谱拉斯方程的通解3.简单应用:已知电势求电场(四)唯一性定理1.识记:唯一性定理的内容2.理解:唯一性定理的意义3.简单应用:会用唯一性定理求解简单问题(五)静电势的边值关系1.理解:静电势的边值关系(介质和导体两种情况)2.简单运用:在求解中能熟练使用边值关系(六)静电场的能量1.理解:(1)静电场的能量密度(2)静电场的总能量(七)分离变量法1.识记:拉普拉斯方程在球、柱坐标中的表达式及解的形式(球对称和轴对称的情况)2.综合应用:(1)能正确给出边界条件和边值关系,在球坐标系中利用比较系数法熟练给出拉普拉斯方程的解(2)个别情况下泊松方程的解(3)由电势求电场及导体表面上的电荷分布(八)电像法1.识记:(1)无穷大导体板情况时的镜像电荷大小和位置(2)导体球情况下的镜像电荷的大小和位置2.理解:何种情况适合使用电象法3.综合应用:熟练掌握无穷大导体板及其组合(直角组合、成一定角度组合)、无穷大导体板与导体球相结合情况下电像法的使用(九)电多极矩1.识记:展开式中第一项(在原点的点电荷激发的电势)和第二项(电偶极矩产生的电势)2.理解:电荷在外电场中的能量第三章 静磁场考核要求:(一)有关静磁场的几个定理和定律1.识记:毕奥-萨伐尔定理2.理解:磁场的概念,毕奥-萨伐尔定理,安培环路定理,静磁场的通量(二)磁场的基本方程1.理解:静磁场下的电场散度和旋度方程(三)矢势及其满足的方程1.识记:(1)矢势泊松方程(2)矢势解的一般形式2.理解:矢势的引入、意义(四)磁标势1.识记: (1)引入条件:0=⋅⎰l d H L (无自由电流分布的单连通域) (2)束缚磁荷密度M m ⋅∇-=0μρ2.理解:ϕϕ与m (静电势)的比较(五)磁多极矩1.识记:(1)磁偶极矩的场和磁标势(2)小区域内电流分布在外磁场中的能量2.理解:磁多极展开(六)A-B 效应和超导体1.识记:超导体的基本电磁现象及电磁性质方程――零电阻效应、完全抗磁性,这两个效应的内容3.理解:(1)超导体作为完全抗磁体(2)超导环内的磁通量子化(3)非局域理论,第一类和第二类超导体第四章 电磁波的传播考核要求:(一)真空中电磁波的波动方程,介质的色散1.理解:(1)会导出真空中电磁波的波动方程,会推导出时谐波的亥姆霍兹方程(2)介质的色散(二)时谐电磁波(定态波、单色波)及其满足的方程1.理解:(1)时谐电磁波的定义(2)时谐电磁波的一般形式2.简单应用:会导出亥姆霍兹方程(对于导体情况 ωσεεi+=',而介质情况εε=')(三)平面电磁波1.理解:(1)平面电磁波的一般形式(2)平面电磁波的特点(3)平面电磁波的能量密度和能流密度 2.简单应用:会推导E ⊥B ,即,0=⋅=⋅=⋅B E k B k E (B E k ,,)构成右手关系,E 与B 同相(四)平面电磁波在介质界面上的反射和折射1.理解:(1)利用边值关系推导反射和折射、振幅关系、菲涅尔公式(2)全反射(五)平面电磁波在导体内的传播1.识记:(1)导体内自由电荷的分布(2)良导体的条件(3)穿透深度2.理解: (1)导体内,αβ i k +=波沿β 传播,沿α 衰减(2)趋肤效应(3)导体表面上的反射(六)谐振腔(1)理想导体的边界条件(2)谐振腔的本征频率2.理解:会推导谐振腔内的电磁波形式,电磁波波模(七)波导管1.识记:波导管的截止频率2.理解:(1)高频电磁能量传输(2)会推导波导中的电磁波形式,电磁波波模第五 电磁波的辐射考核要求:(一)电磁场的矢势和标势1.识记:(1)势函数的引入:tA E AB ∂∂--∇=⨯∇= ϕ, (2)规范变换: ψ∇+='A A ,t ∂ψ∂-='ϕϕ (3)库伦规范0A ∇⋅=,它使规范变换的ϕ满足20ϕ∇=(4)洛伦兹规范210A c t ϕ∂∇⋅+=∂,它使规范变换的ϕ满足222210c tϕϕ∂∇-=∂ 2.简单应用:推导达朗贝尔方程(二)推迟势1.识记:推迟势的形式(表示式)2.理解:推迟势的重要意义(物理意义)(三)电偶极辐射1.识记:(1)矢势展开的条件(小区域的电流)(2)近区、感应区和远区(3)电流是一定频率的交流电时矢势的形式2.理解:(1)矢势的展开及展开式中各项的意义(重点第一项偶极辐射)(2)会计算辐射能流及总辐射功率(四)电磁场的动量(1)电磁场的动量密度和能流密度表达式(2)辐射压力公式2.理解:(1)动量守恒(2)动量密度、动量流密度第六章 狭义相对论考核要求:(一)历史背景和实验基础1.理解:(1)经典时空理论主要特征:绝对时间和空间,时空独立性,伽利略变换(2)对麦克斯韦方程可变性的几种观点――以太(3)麦克尔逊-莫雷实验:目的,实验中的假定,实验装置,结果及意义(二)狭义相对性基本原理1.识记:(1)狭义相对性的两个基本原理及其基本内容(2)洛伦兹变换形式2.理解:间隔不变性2'2S S(三)时空理论1.识记:(1)运动尺度收缩公式(2)运动时钟延缓公式(3)速度变换公式3.理解:(1)光锥(2)同时的相对性(3)长度收缩的相对性(4)时间延缓的相对性(5)运动尺度收缩和运动时钟延缓是时空属性4.简单应用:(1)应用运动尺度收缩公式和运动时钟延缓公式做简单计算(2)应用速度变换公式做简单计算5.综合应用:运动尺度收缩公式、运动时钟延缓公式和速度变换公式等相结合做综合运算(四)相对论的四维形式1.识记:(1)洛伦兹标量(例如固有时)(2)矢量及其变换形式、变换矩阵(3)四维二阶张量的变换形式对于闵可夫斯基四维时空,明确标量、矢量、张量的定义,并能够举出2-3个标量、矢量、张量2.理解:(1)横向多普勒效应(2)物理规律的协变性(五)电动力学的相对论不变性1.识记:(1)电流密度四维矢量形式,电荷守恒定律的四维协变形式(2)四维电磁势矢量形式,达朗贝波动方程的四维协变形式(3)电磁场的四维张量形式,麦克斯韦方程组的四维协变形式2.简单应用:方程协变性的证明(六)相对论力学1.识记:(1)四维动量(动量、能量)(2)运动质量2201c v m m -=及物体的动能(3)物体的能量2mc W =,动量200()T W W m m c =-=-(4)能量动量和质量之间的关系式:40222c m c P W +=(对于光子,00,,,m W pc p k W ω====)(5)运动定律dp F dt =(在相对论中a m F ≠),dtdW v F =⋅ (6)相对论协变的力密度公式。
2020年中科院811量子力学考研真题解析讲义

(3) 用升降算符和基态波函数描述第一激发态;
(4)对于三维谐振子,第一激发态三重简并,此时受微扰 H bxˆyˆ ,微扰矩阵可写成
H
b 2m 2
0 1 0
1 0 0
0 0 ,写出能级分裂. 0
中国科学院大学
2020 年招收攻读硕士学位研究生入学统一考试试题
科目名称:811 量子力学
考生须知: 1.本试卷满分为 150 分,全部考试时间总计 180 分钟。 2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
一.考虑一维束缚态,
(1)证明 (x, t) (x, t) 不随时间变化,此时的 不必是定态;
(球谐函数: Y00
1, 4
Y10
3 4
cos
,
Y11
3 sin ei 8
)
1
(1) 求粒子的总角动量;
(2) 求角动量 Lˆz 的期望值及测得 Lz 的概率;
(3) 求发现粒子在 ( ,) 方向上 d 立体角内的概率.
四 . (1) 一 个 电 子 在
H aˆ1z bˆ2z c0ˆ1 ˆ2 ,其中 a, b, c0 为常数,ˆi 为泡利算符,前两项为粒子处于磁场
中的势能,最后一项为两粒子自旋-自旋相互作用能,求系统能级.
五.考虑一维谐振子的哈密顿量为 Hˆ pˆ 2 1 k xˆ2 : 2m 2
(1)用不确定关系计算体系能量下限;
20 同样插入完备性公式:
eipˆ / x eipˆ / p dp p x
1 2
ei( x) p /
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国科学院大学硕士研究生入学考试
《量子力学》考试大纲
本《量子力学》考试大纲适用于中国科学院大学物理学相关各专业(包括理论与实验类)硕士研究生的入学考试。
本科目考试的重点是要求熟练掌握波函数的物理解释,薛定谔方程的建立、基本性质和精确的以及一些重要的近似求解方法,理解这些解的物理意义,熟悉其实际的应用。
掌握量子力学中一些特殊的现象和问题的处理方法,包括力学量的算符表示、对易关系、不确定度关系、态和力学量的表象、电子的自旋、粒子的全同性、泡利原理、量子跃迁及光的发射与吸收的半经典处理方法等,并具有综合运用所学知识分析问题和解决问题的能力。
一.考试内容:
(一)波函数和薛定谔方程
波粒二象性,量子现象的实验证实。
波函数及其统计解释,薛定谔方程,连续性方程,波包的演化。
能量本征值方程,定态与非定态。
态叠加原理,测量与波包的塌缩。
(二)一维势场中的粒子
一维势场中粒子能量本征态的一般性质,一维方势阱的束缚态,方势垒的穿透,方势阱中的反射、透射与共振。
δ-势的穿透和δ-势阱中的束缚态,一维谐振子。
(三)力学量用算符表示
各种算符的定义及算符的运算规则。
厄米算符的本征值与本征函数。
不确定关系,共同本征函数,对易力学量的完全集。
箱归一化,连续本征函数的归一化。
力学量平均值随时间的演化,量子力学的守恒量。
波包的运动,Ehrenfest 定理。
薛定谔-图像与海森伯-图像。
(四)中心力场和电磁场中粒子的运动
两体问题化为单体问题,球对称势和径向方程,自由粒子和球形方势阱,三维谐振子,氢原子及类氢离子。
电磁场中的薛定谔方程,电磁场的规范不变性。
正常Zeeman 效应,Landau能级。
(五)量子力学的矩阵表示与表象变换
态和算符的矩阵表示,表象变换,狄拉克符号,一维谐振子的占有数表象。
(六)自旋及角动量的耦合
电子自旋态与自旋算符,总角动量的本征态,碱金属原子光谱的双线结构与反常塞曼效应,自旋单态与三重态,光谱线的精细和超精细结构,自旋纠缠态。
角动量的本征值与本征态,两个角动量的耦合,耦合表象及无耦合表象基矢。
(七)定态问题的近似方法
定态非简并微扰轮,定态简并微扰轮,变分法。
(八)量子跃迁。