反比例函数与四边形
反比例函数与平行四边形

反比例函数与平行四边形
反比例函数与平行四边形之间的关系可以通过拓扑学来描述。
在
平行四边形中,若两条边互相平行且长度成比例,那么这个平行四边
形可以看作是一个由反比例函数所定义的区域。
具体来说,考虑一个反比例函数y = k/x,其中k是一个常数。
当x趋向于正无穷时,y趋向于零;当x趋向于零时,y趋向于无穷大;当x为正时,y为负数;当x为负时,y为正数。
这种反比例关系导致
了函数图像在坐标平面上构成了一条双曲线。
类似地,考虑一个平行四边形,其中两条相对的边互相平行,且
长度成比例。
这样的平行四边形可以通过将一条边按比例延长或缩短
得到。
这和反比例函数中x趋于无穷大或者零的情况相对应。
因此,我们可以将反比例函数和平行四边形联系起来,从而在数
学上解释平行四边形的性质。
同时,我们也可以借助平行四边形来更
好地理解反比例函数的图像和特征。
反比例函数知识点及举例

反比例函数知识梳理知识点l. 反比例函数的概念重点:掌握反比例函数的概念 难点:理解反比例函数的概念一般地,如果两个变量x 、y 之间的关系可以表示成xk y =或y=kx -1(k 为常数,0k ≠)的形式,那么称y 是x 的反比例函数。
反比例函数的概念需注意以下几点:(1)k 是常数,且k 不为零;(2)x k中分母x 的指数为1,如22y x=不是反比例函数。
(3)自变量x 的取值范围是0x ≠一切实数.(4)自变量y 的取值范围是0y ≠一切实数。
知识点2. 反比例函数的图象及性质重点:掌握反比例函数的图象及性质 难点:反比例函数的图象及性质的运用反比例函数xky =的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。
它们关于原点对称、反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题: (1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范围是0x ≠,因此不能把两个分支连接起来。
(3)由于在反比例函数中,x 和y 的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y 轴的变化趋势。
反比例函数的性质xky =)0k (≠的变形形式为k xy =(常数)所以: (1)其图象的位置是:当0k >时,x 、y 同号,图象在第一、三象限; 当0k <时,x 、y 异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数xky =的图象上,则点(-m,-n )也在此图象上,故反比例函数的图象关于原点对称。
(3)当0k >时,在每个象限内,y 随x 的增大而减小; 当0k <时,在每个象限内,y 随x 的增大而增大; 知识点3. 反比例函数解析式的确定。
重点:掌握反比例函数解析式的确定 难点:由条件来确定反比例函数解析式(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式xky =中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入xky =中即可求出k 的值,从而确定反比例函数的关系式。
反比例函数与平行四边形

反比例函数与平行四边形例2、(08威海市)如图3-1,点A (m ,m +1),B (m +3,m -1)都在反比例函数x k y =的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. 分析:点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y =的图象上,所以有)1)(3()1(-+=+m m m m k =,解得12,3==k m 。
于是点A(3, 4), B(6, 2), 过A 、B两点分别作X 、Y 轴的垂线,垂足分别是M 、N,如图3-2,显然AM 和BN 互相平分,因此四边形ABMN 是平行四边形。
这个平行四边形恰是符合题意的四边形。
因为M (3,0),N (0,2),根据待定系数法可求出直线MN 的解析式为232+-=x y . 注意应用反比例函数的另一个表达形式)0(≠=k k xy 。
根据点的坐标在函数图象上,则点的坐标满足函数解析式。
如果直接把点的坐标代入解析式x k y =中,有m k m =+1和31+=-m k m ,由此求m 和k 容易出错。
反比例函数的另一个表达形式是)0(≠=k k xy 即两个变量的积一定。
据此得)1)(3()1(-+=+m m m m k =,求m ,k 的值就比较简单。
(2)以点A ,B ,M ,N 为顶点的四边形是平行四边形,同学们往往盲目的在坐标轴上寻找点M 和点N, 当我们由m 的值写出了点A 点B的坐标A(3, 4)、B(6, 2), 并且在坐标轴上标出对应的坐标时,不难发现AM 和BN 互相平分,由此M 和N 点的确定使人大有“踏破铁鞋无处觅,得来全不费工夫”的感觉,真爽。
点评: 本例题把反比例函数图象与性质与一元二次方程、平行四边形性质判定结合。
中考压轴微专题:反比例函数与特殊四边形(2)

中考专题:反比例函数与特殊四边形(2)1.如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点A (-2,0),与反比例函数ky x=的图象交于点B (),4a 和点C .(1)求一次函数和反比例函数的表达式;(2)若点P 在y 轴上,且PBC 的面积等于6,求点P 的坐标; (3)设M 是直线AB 上一点,过点M 作//MN x 轴,交反比例函数ky x=的图象于点N ,若A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.2.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 得坐标分别为(0,2),(1,0),过点C 的反比例函数y (0)kx x=>交正方形的边AD 于点E . (1)求反比例函数的表达式; (2)求点E 的坐标;(3)若P 是y 轴上的一个动点,在反比例函数上是否存在另一个点Q ,使以A 、B 、P 、Q 为顶点的四边形是平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由.3.矩形AOBC 中,OB =4,OA =3,分别以OB ,OA 所在直线为轴,y 轴,建立如图所示的平面直角坐标系,F 是射线BC 边上一个动点,过点F 的反比例函数y (0)kk x=>的图象与射线AC 交于点E .(1)当点F 运动到边BC 的中点时,点E 的坐标为 . (2)连接EF ,求∠EFC 的正切值;(3)当k 4=时,连接OE 、OF ,求sin ∠EOF 的值.4.如图,一次函数y kx b =+的图象交反比例函数()0ay x x=>的图象于()4,8A -、(),2B m -两点,交x 轴于点C .(1)求反比例函数与一次函数的关系式;(2)根据图象回答:在第四象限内,当一次函数的值小于反比例函数的值时,x 的取值范围是什么? (3)若点P 在x 轴上,点Q 在坐标平内面,当以A 、B 、P 、Q 为顶点的四边形是矩形时,求出点P 的坐标.5.如图1,在平行四边形ABCD 中,AD //x 轴,AD =7,原点O 是对角线AC 的中点,顶点A 的坐标为(﹣3,3),反比例函数(0)ky k x=≠在第一象限的图象过四边形ABCD 的顶点D . (1)D 点坐标为 ,k = .(2)①平行四边形ABCD 的顶点B 是否在反比例函数的图象上?为什么?②如图2,连接BD 并延长,设直线BD 解析式为1y k x =,根据图象直接写出不等式1kk x x<的x 的取值范围;(3)是否存在两点P 、Q 分别在反比例函数图象的两支上,使得四边形AQCP 是菱形?若存在,求出P 、Q 两点的坐标.6.如图,一次函数y =kx +b 的图象与反比例函数y =mx(x >0)的图象交于点P (4,2),与x 轴交于点A (a ,0),与y 轴交于点C (0,1),PB ⊥x 轴于点B ,且AC =BC . (1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.7.如图,矩形OABC 的顶点A ,C 分别落在x 轴,y 轴的正半轴上,顶点(2,3B ,反比例函数()0ky x x =>的图象与BC ,AB 分别交于D 、E ,12BD =.(1)求反比例函数关系式和点E 的坐标;(2)如图2,平移直线AC ,当AC 与反比例函数只有一个交点时,求此交点坐标;(3)点F 在直线AC 上,点G 是坐标系内点,当四边形BCFG 为菱形时,求出点G 的坐标并判断点G 是否在反比例函数图象上.8.如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A 在x 轴上,顶点C 在y 轴上,D 是BC 的中点,过点D 的反比例函数图象交AB 于E 点,连接DE .若OD =5,tan ∠COD =43.(1)求过点D 的反比例函数的解析式; (2)求△DBE 的面积;(3)x 轴上是否存在点P 使△OPD 为直角三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.9.如图1,已知直线y =mx 分别与双曲线y =8x ,y =k x(x >0)交于P ,Q 两点,且OP =2OQ .(1)求k 的值;x xC 两点,连接BC ,设A 点的横坐标为t .①分别写出A ,B ,C 的坐标,并求△ABC 的面积;②当m =2时,D 为直线y =2x 上的一点,若以A ,B ,C ,D 为顶点的四边形是平行四边形,求A 点坐标.10.如图,已知反比例函数my x=(x >0)的图象经过点A (4,2),过A 作AC ⊥y 轴于点C ,点B 为反比例函数图象上的一动点,过点B 作BD ⊥x 轴于点D ,连接AD ,直线BC 与x 轴的负半轴交于点E ,(1)若BD =3OC ,求△BDE 的面积;(2)是否存在点B ,使得四边形ACED 为平行四边形?若存在,请求出点B 的坐标;若不存在,请说明理由.11.如图1,已知直线2y x =分别与双曲线8y x =、ky x=(0x >)交于P 、Q 两点,且2OP OQ =. (1)求k 的值;x x于点B 、C ,连接BC .请你探索在点A 运动过程中,ABC 的面积是否变化?若不变,请求出ABC 的面积;若改变,请说明理由;(3)如图3,若点D 是直线2y x =上的一点,请你进一步探索在点A 运动过程中,以点A 、B 、C 、D 为顶点的四边形能否为平行四边形?若能,求出此时点A 的坐标;若不能,请说明理由.12.在直角坐标系xOy 中,矩形ABCD 的顶点A 、B 在x 轴上,矩形ABCD 的相邻两边长之比2:1,顶点C 在反比例函数(0)ky k x=>的图象上.(1)当点A 与原点重合,且矩形ABCD 的面积为2时,求反比例函数的解析式;(2)当A 点坐标为(1,0)时,点C 在反比例函数3y x=图象上,且AB BC >时,求矩形ABCD 边AB 的长;(3)当A 点坐标为(5,0)时,在反比例函数3y x=图像上,符合题意的矩形ABCD 有______个.13.如图,一次函数y =kx +b 的图象与反比例函数y =mx(x >0)的图象交于点P (4,2),与x 轴交于点A(a,0),与y轴交于点C(0,1),PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.14.如图,在平面直角坐标系xOy中,一次函数y=12x+1的图象与x轴交于点A,与y轴交于点C,与反比例函数y=kx(k≠0)的图象交于B,D两点,且AC=BC.(1)写出点A,B的坐标为:A(,),B(,)(2)求出点D的坐标,并直接写出当反比例函数的值大于一次函数的值时对应x的取值范围;(3)若P是x轴上一点,PM⊥x轴交一次函数于点M,交反比例函数于点N,当O,C,M,N为顶点的四边形为平行四边形时,直接写出点P的坐标.15.如图,反比例函数kyx的图像经过点A(1,6),过点A作AC⊥x轴于点C,点B是直线AC右侧的双曲线上的动点,过点B作BD⊥y轴于点D,交AC于点F,连接AB、BC、CD、AD.(1) k=_____;(2四边形ABCD能否为菱形?若能,求出B点的坐标,若不能,说明理由;(3)延长AB,交x轴于点E,试判断四边形BDCE的形状,并证明你结论.16.如图,已知点A是反比例函数12(0)y xx=>的图像上的一个动点,经过点A的直线l交x轴负半轴于点B,交y轴正半轴于点C.过点C作y轴的垂线,交反比例函数的图像于点D.过点A作AE x⊥轴于点E,交CD于点F,连接DE.设点A的横坐标是a.(1)若2BC AC=,求点D的坐标(用含a的代数式表示);(2)若3OC=,当四边形BCDE是平行四边形时,求a的值,并求出此时直线l对应的函数表达式.。
反比例函数常见几何模型(最新整理)

反比例函数常见模型一、知识点回顾例1:如图的锐角顶点是直线y=x+m 与双曲线y=在第一象限的交点,且ABC Rt ∆xm,(1)求m 的值 (2)求的面积3=∆AOB S ABC ∆分别过,,作y 轴平行1A 2A 3A ,作x 轴的平行线,2B 3B 影部分的面积之和为上,且AB ∥x 轴,C 、D 在x 轴上,任意不重合的两点,直线AB 交轴于Mx 轴于F 点,x BF ⊥DF例2:如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数ky x=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①;②相似于DEF CEF S S ∆∆=AOB ∆图1图2模型三:如图,已知反比例函数(k ≠0,x>0)上任意两点P 、C ,过P 做PA ⊥x 轴,ky x=交x 轴于点A ,过C 做CD ⊥x 轴,交x 轴于点D ,则.S S =两点,)的中点E ,交AB 于点D ,若梯形 D. xy 6=题3 题4题5如图,A,B 是函数的图像上关于原点对称的任意xy 2=两点,BC//x 轴,AC//y 轴,的面积记为S ,则S (ABC ∆A.S=2 B.S=4 C.2<S<4 AB=AC=2,直角顶点A 在直线y=x 分别平行于x 轴,y 轴,若双曲线y=kx(1≤k<4B 1、如图,点A 在双曲线上,点B 在双曲线上,且AB ∥x 轴,C 、D 在x 轴上,1y x =3y x=若四边形ABCD 为矩形,则它的面积为 .、如图,双曲线经过四边形的顶点A 、C ,∠ABC =90°,OC )0(2x xy =轴正半轴的夹角,AB ∥轴,将△x交轴于,若,则的解析式是 .y C 1AOB S ∆=2y 课后习练一、填空题42、反比例函数y=kx的图像上有一点k=_______;点P 到原点的距离3、已知双曲线xy=1与直线4、反比例函数y=k的图像经过点 D .22到原点的距离为3)A.0个B.2个C.4个D.无数个。
64 反比例函数中的平行四边形问题

反比例函数中的平行四边形问题1、如图,在平面直角坐标系中,反比例函数y=的图象过等边三角形BOC的顶点B,OC=2,点A在反比例函数图象上,连接AC、AO.(1)求反比例函数解析式;(2)若四边形ACBO的面积为3,求点A的坐标.解:(1)作BD⊥OC于D,如图,∵△BOC为等边三角形,∴OD=CD=OC=1,∴BD=OD=,∴B(﹣1,﹣),把B(﹣1,﹣)代入y=得k=﹣1×(﹣)=,∴反比例函数解析式为y=;(2)设A(t,),∵四边形ACBO的面积为3,∴×2×+×2×=3,解得t=,∴A点坐标为(,2).2、如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M′的坐标为(8,2),点B′、C′的坐标分别为(6,0)、(10,4),设点P(m,2),点Q(s,t);①当B′C′是矩形的边时,如图2,求解的矩形为矩形B′C′PQ和矩形B′C′Q′P′,过点C′作C′H⊥l交于点H,C′H=4﹣2=2,直线B′C′的倾斜角为60°,则∠M′PC′=30°,PH=C′H÷tan∠M′PC′=2=6,故点P的坐标为(16,2),由题意得:点P、Q′关于点C′对称,由中点公式得,点Q的坐标为(12,﹣4);同理点Q、Q′关于点M′对称,由中点公式得,点Q′(4,6);故点Q的坐标为:(12,﹣4)或(4,6);②当B′C′是矩形的对角线时,∵B′C′的中点即为PQ的中点,且PQ=B′C′,∴,解得:,,故点Q的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).3、如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,4).反比例函数y=(x>0)的图象经过点D,点P是一次函数y=kx+4﹣4k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+4﹣4k(k≠0),当随x的增大而增大时,确定点P横坐标的取值范围(不必写过程).解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(4,1),C(4,4),∴BC⊥x轴,AD=BC=3,而A点坐标为(1,0),∴点D的坐标为(1,3).∵反比例函数y=(x>0)的函数图象经过点D(1,3),∴3=,∴m=3,∴反比例函数的解析式为y=;(2)当x=4时,y=kx+4﹣4k=4k+4﹣4k=4,∴一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,∵一次函数y=kx+4﹣4k(k≠0)过C点,并且y随x的增大而增大时,∴k>0,P点的纵坐标要小于4,横坐标大于4,当纵坐标小于4时,∵y=,∴<4,解得:a>,则a的范围为a>1或a<.4、小亮在研究矩形的面积S与矩形的边长x,y之间的关系时,得到如表数据:x0.51 1.5234612y126■32 1.510.5结果发现一个数据被墨水涂黑了,(1)被墨水涂黑的数据为;(2)y与x的函数关系式为,且y随x的增大而;(3)如图是小亮画出的y关于x的函数图象,点B、E均在该函数的图象上,其中矩形OABC的面积记为S1,矩形ODEF的面积记为S2,请判断S1与S2的大小关系,并说明理由;(4)在(3)的条件下,DE交BC于点G,反比例函数y=的图象经过点G交AB于点H,连接OG、OH,则四边形OGBH的面积为.解:(1)从表格可以看出xy=6,∴墨水盖住的数据是6÷1.5=4;故答案为4;(2)由xy=6,得到y=,y随x的增大而减少;故答案为y=;减少;(3)S1=OA•OC=k=6,S2=OD•OF=k=6,∴S1=S2;=OA•OB=6,S△OCG=OD•OG=×2=1,S△OCG=OA•OH=×2=1,(4)∵S四边形OCBA=S四边形OCBA﹣S△OCG﹣S△OAH=6﹣1﹣1=4;∴S四边形OGBH故答案为4;5、如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M ′的坐标为(8,2),点B ′、C ′的坐标分别为(6,0)、(10,4),设点P (m ,2),点Q (s ,t );①当B ′C ′是矩形的边时,如图2,求解的矩形为矩形B ′C ′PQ 和矩形B ′C ′Q ′P ′,过点C ′作C ′H ⊥l 交于点H ,C ′H =4﹣2=2,直线B ′C ′的倾斜角为60°,则∠M ′PC ′=30°,PH =C ′H ÷tan ∠M ′PC ′=2=6,故点P 的坐标为(16,2),由题意得:点P 、Q ′关于点C ′对称,由中点公式得,点Q 的坐标为(12,﹣4);同理点Q 、Q ′关于点M ′对称,由中点公式得,点Q ′(4,6);故点Q 的坐标为:(12,﹣4)或(4,6);②当B ′C ′是矩形的对角线时,∵B ′C ′的中点即为PQ 的中点,且PQ =B ′C ′,∴,解得:,,故点Q 的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).6、已知,在直角坐标系中,平行四边形OABC的顶点A,C坐标分别为A(2,0),C(﹣1,2),反比例函数y=的图象经过点B(m≠0)(1)求出反比例函数的解析式(2)将▱OABC沿着x轴翻折,点C落在点D处,作出点D并判断点D是否在反比例函数y=的图象上(3)在x轴是否存在一点P使△OCP为等腰三角形?若存在,写出点P的坐标;若不存在,请说明理由.解:(1)分别过点C、B作x轴的垂线,垂足分别为:E、F,∵四边形OABC为平行四边形,则∠COE=∠BAF,CO=AB,∴Rt△COE≌Rt△BAF,∴AF=OE=1,故点B(1,2),故m=2,则反比例函数表达式为:y=;(2)翻折后点D的坐标为:(﹣1,﹣2),∵(﹣1)•(﹣2)=2,∴D在反比例函数y=的图象上;(3)当OP=OC时,点P(,0);当OC=PC时,点P(﹣2,0);当OP=PC时,设点P(m,0),则m2+(m+1)2+4,解得:m=﹣2.5;综上,点P的坐标为:(,0)或(﹣2,0)或(﹣2.5,0).7、如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,4).反比例函数y=(x>0)的图象经过点D,点P是一次函数y=kx+4﹣4k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+4﹣4k(k≠0),当随x的增大而增大时,确定点P横坐标的取值范围(不必写过程).解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(4,1),C(4,4),∴BC⊥x轴,AD=BC=3,而A点坐标为(1,0),∴点D的坐标为(1,3).∵反比例函数y=(x>0)的函数图象经过点D(1,3),∴3=,∴m=3,∴反比例函数的解析式为y=;(2)当x=4时,y=kx+4﹣4k=4k+4﹣4k=4,∴一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,∵一次函数y=kx+4﹣4k(k≠0)过C点,并且y随x的增大而增大时,∴k>0,P点的纵坐标要小于4,横坐标大于4,当纵坐标小于4时,∵y=,∴<4,解得:a>,则a的范围为a>1或a<.8、如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB.过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,则的值为.解:过点A作AH⊥x轴,垂足为H,AH交OC于点M,如图,∵OA=AB,AH⊥OB,∴OH=BH=OB,设OH=BH=a,则A(a,),C(2a,),∵AH∥BC,∴MH=BC=,∴AM=AH﹣MH=﹣=,∵AM∥BC,∴△ADM∽△BDC,∴==.9、如图,点A(1,3)为双曲线上的一点,连接AO并延长与双曲线在第三象限交于点B,M为y轴正半轴上一点,连接MA并延长与双曲线交于点N,连接BM、BN,已知△MBN的面积为,则点N 的坐标为.解:连接ON,∵点A(1,3)为双曲线上,∴k=3,即:y=;由双曲线的对称性可知:OA=OB,=S△MAO,S△NBO=S△NAO,∴S△MBO=S△BMN=,∴S△MON设点M(0,m),N(n,),∴mn=,即,mn=,①设直线AM的关系式为y=kx+b,将M(0,m)A(1,3)代入得,b=m,k=3﹣m,∴直线AM的关系式为y=(3﹣m)x+m,把N(n,)代入得,=(3﹣m)×n+m,②由①和②解得,n=,当n=时,=,∴N(,),故答案为:(,).10、如图,等边△OAB的边AB与y轴交于点C,点A是反比例函数y=(x>0)的图象上一点,且BC=2AC,则等边△OAB的边长为.解:设点A(a,),等边三角形的边长为b,过点A作x轴的平行线交y轴于点M,过点B作y轴的平行线交AM的延长线于点E,过点O作ON⊥AB 与点N,则AN=AB=b,ON=b,∵AN=b,AC=b,∴CN=AN﹣AC=b,∵CM∥BE,∴=,即=,则AE=3a,∵∠OCN=∠ACM=∠ABE,∴△ONC∽△AEB,∴=,即=,解得:BE=a,AB2=AE2+BE2,则b2=9a2+a2=a2,∵点A(a,),∴AB2=a2+=a2,解得:a2=3,b=2,故答案为2.11、如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x<0)上,D点在双曲线y=(x>0)上,则k的值为.解:∵A(﹣1,a)在双曲线y=﹣(x<0)上,∴a=2,∴A(﹣1,2),∵点B在直线y=mx﹣1上,∴B(0,﹣1),∴AB==,∵四边形ABCD是正方形,∴BC=AB=,设C(n,0),∴=,∴n=﹣3(舍)或n=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),∵D点在双曲线y=(x>0)上,∴k=2×3=6,故答案为:6.12、如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转α度,tanα=,交反比例函数图象于点C,则点C的坐标为.解:如图,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△AEF∽△FDB,∵tanα=,∴==,∴设BD=a,则EF=2a,∵点A(2,3)和点B(0,2),∴DF=2﹣2a,OD=OB﹣BD=2﹣a,∴AE=2DF=4﹣4a,∵AE+OD=3,∴4﹣4a+2﹣a=3,解得a=,∴F(,),设直线AF的解析式为y=kx+b,则,解得,∴y=x+,∵点A在反比例函数y=的图象上,∴y=,解方程组,可得或,∴C(﹣,﹣),故答案为(﹣,﹣).13、如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为.解:作AD⊥x轴于D,CE⊥x轴于E,连接OC,如图,∵AB过原点,∴点A与点B关于原点对称,∴OA=OB,∵△CAB为等腰三角形,∴OC⊥AB,∴∠ACB=120°,∴∠CAB=30°,∴OA=OC,∵∠AOD+∠COE=90°,∠AOD+∠OAD=90°,∴∠OAD=∠COE,∴Rt△AOD∽Rt△OCE,∴=()2=()2=3,=×|﹣6|=3,而S△OAD=1,∴S△OCE即|k|=1,而k>0,∴k=2.14、以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C分别在x、y轴的正半轴上,双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,过OC边上一点F,把△BCF沿直线BF 翻折,使点C落在矩形内部的一点C′处,且C′E∥BC,若点C′的坐标为(2,4),则tan∠CBF的值为.解:连接OD、OE.设BC=BC′=m,则EC′=m﹣2.∵CD=BD,==S矩形ABCD,∴S△CDO==S△CDO=S矩形ABCD,∵S△AOE∴AE=EB,∵C′(2,4),∴AE=EB=4,在Rt△BEC′中,∵BC′2=BE2+EC′2,∴m2=42+(m﹣2)2,∴m=5,∴E(5,4),∴B(5,8),则BC=5,延长EC′交y轴于G,则EG⊥y轴,∴C′G=2,CG=4,∴在Rt△FGC′中,C′F2=C′G2+FG2,即(4﹣FG)2=22+FG2,∴FG=,∴CF=4﹣=,∴tan∠CBF===.故答案是:.15、如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为;解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(﹣4,0),∴OA=4,∵AB=5,∴OB==3,在△ABO和△BCE中,,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE﹣OB=4﹣3=1,∴点C的坐标为(3,1),∵反比例函数y=(k≠0)的图象过点C,∴k=xy=3×1=3,∴反比例函数的表达式为y=.故答案为:y=.16、如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.17、如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是.解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,由直线y=﹣x+2可知A点坐标为(2,0),B点坐标为(0,2),OA=OB=2,∴△AOB为等腰直角三角形,∴AB=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故答案为.。
反比例函数与几何的综合应用及答案

专训1 反比例函数与几何的综合应用名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程组,解方程组即可得所求几何图形中的未知量或函数解析式中待定字母的值.反比例函数与三角形的综合1.如图,一次函数y =kx +b 与反比例函数y =x 6x>0的图象交于Am,6,B3,n 两点. 1求一次函数的解析式;2根据图象直接写出使kx +b<x 6成立的x 的取值范围; 3求△AOB 的面积.第1题2.如图,点A,B 分别在x 轴、y 轴上,点D 在第一象限内,DC ⊥x 轴于点C,AO =CD =2,AB =DA=,反比例函数y =x kk >0的图象过CD 的中点E.1求证:△AOB ≌△DCA ; 2求k 的值;3△BFG 和△DCA 关于某点成中心对称,其中点F 在y 轴上,试判断点G 是否在反比例函数的图象上,并说明理由.第2题反比例函数与四边形的综合反比例函数与平行四边形的综合3.如图,过反比例函数y =x 6x >0的图象上一点A 作x 轴的平行线,交双曲线y =-x 3x <0于点B,过B 作BC ∥OA 交双曲线y =-x 3x <0于点D,交x 轴于点C,连接AD 交y 轴于点E,若OC =3,求OE 的长.第3题反比例函数与矩形的综合4.如图,矩形OABC 的顶点A,C 的坐标分别是4,0和0,2,反比例函数y =x kx>0的图象过对角线的交点P 并且与AB,第4题BC 分别交于D,E 两点,连接OD,OE,DE,则△ODE 的面积为________.5.如图,在平面直角坐标系中,矩形OABC 的对角线OB,AC 相交于点D,且BE ∥AC,AE ∥OB. 1求证:四边形AEBD 是菱形;2如果OA =3,OC =2,求出经过点E 的双曲线对应的函数解析式.第5题反比例函数与菱形的综合6.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数y =x 3的图象第6题经过A,B 两点,则菱形ABCD 的面积为A .2B .4C .2D .47.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =x kk>0,x>0的图象上,点D 的坐标为4,3.1求k 的值;2若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在反比例函数y =x kk>0,x>0的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.第7题反比例函数与正方形的综合8.如图,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA,OC 分别在x 轴,y 轴上,点B 的坐标为2,2,反比例函数y =x kx >0,k ≠0的图象经过线段BC 的中点D1求k 的值;2若点Px,y 在该反比例函数的图象上运动不与点D 重合,过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q,记四边形CQPR 的面积为S,求S 关于x 的函数解析式并写出x 的取值范围.第8题反比例函数与圆的综合第9题9.如图,双曲线y =x kk>0与⊙O 在第一象限内交于P,Q 两点,分别过P,Q 两点向x 轴和y 轴作垂线,已知点P 的坐标为1,3,则图中阴影部分的面积为________.10.如图,反比例函数y =x kk <0的图象与⊙O 相交.某同学在⊙O 内做随机扎针试验,求针头落在阴影区域内的概率.第10题专训2 全章热门考点整合应用名师点金:反比例函数及其图象、性质是历年来中考的热点,既有与本学科知识的综合,也有与其他学科知识的综合,题型既有选择、填空,也有解答类型.其热门考点可概括为:1个概念,2个方法,2个应用及1个技巧.1个概念:反比例函数的概念1.若y =m -1x |m|-2是反比例函数,则m 的取值为A .1B .-1C .±1D .任意实数2.某学校到县城的路程为 5 km ,一同学骑车从学校到县城的平均速度v km /h 与所用时间t h 之间的函数解析式是A .v =5tB .v =t +5C .v =t 5D .v =5t3.判断下面哪些式子表示y 是x 的反比例函数:①xy =-31;②y =5-x ;③y =5x -2;④y =x 2aa 为常数且a ≠0. 其中________是反比例函数.填序号 2个方法:画反比例函数图象的方法 4.已知y 与x 的部分取值如下表:1试猜想y 与x 的函数关系可能是你学过的哪类函数,并写出这个函数的解析式; 2画出这个函数的图象. 求反比例函数解析式的方法5.已知反比例函数y =x k的图象与一次函数y =x +b 的图象在第一象限内相交于点A1,-k +4.试确定这两个函数的解析式.6.如图,已知A -4,n,B2,-4是一次函数y =kx +b 的图象和反比例函数y =x m的图象的两个交点.求:1反比例函数和一次函数的解析式;2直线AB 与x 轴的交点C 的坐标及△AOB 的面积; 3方程kx +b -x m=0的解请直接写出答案;4不等式kx +b -x m <0的解集请直接写出答案.第6题2个应用反比例函数图象和性质的应用7.画出反比例函数y =x 6的图象,并根据图象回答问题: 1根据图象指出当y =-2时x 的值;2根据图象指出当-2<x<1且x ≠0时y 的取值范围; 3根据图象指出当-3<y<2且y ≠0时x 的取值范围. 反比例函数的实际应用8.某厂仓库储存了部分原料,按原计划每小时消耗2吨,可用60小时.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x 单位:吨,库存的原料可使用的时间为y 单位:小时.1写出y 关于x 的函数解析式,并求出自变量的取值范围.2若恰好经过24小时才有新的原料进厂,为了使机器不停止运转,则x 应控制在什么范围内1个技巧:用k 的几何性质巧求图形的面积9.如图,A,B 是双曲线y =x k k ≠0上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C.若△ADO 的面积为1,D 为OB 的中点,则k 的值为A .34B .38C .3D .4第9题第10题10.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =x 2和y =-x 4的图象于A,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.11.如图是函数y =x 3与函数y =x 6在第一象限内的图象,点P 是y =x 6的图象上一动点,PA ⊥x 轴于点A,交y =x 3的图象于点C,PB ⊥y 轴于点B,交y =x 3的图象于点D.1求证:D 是BP 的中点; 2求四边形ODPC 的面积.第11题答案1.解:1∵Am,6,B3,n 两点在反比例函数y =x 6x>0的图象上, ∴m =1,n =2,即 A1,6,B3,2.又∵A1,6,B3,2在一次函数y =kx +b 的图象上,∴2=3k +b ,6=k +b ,解得b =8,k =-2,即一次函数解析式为y =-2x +8.第1题2根据图象可知使kx +b<x 6成立的x 的取值范围是0<x<1或x>3.3如图,分别过点A,B 作AE ⊥x 轴,BC ⊥x 轴,垂足分别为E,C,设直线AB 交x 轴于D 点.令-2x +8=0,得x =4,即D4,0.∵A1,6,B3,2,∴AE =6,BC =2.∴S △AOB =S △AOD -S △ODB =21×4×6-21×4×2=8.2.1证明:∵点A,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x 轴于点C,∴∠AOB =∠DCA =90°.在Rt △AOB 和Rt △DCA 中,∵AB =DA ,AO =DC ,∴Rt △AOB ≌Rt △DCA. 2解:在Rt △ACD 中,∵CD =2,DA =,∴AC ==1.∴OC =OA +AC =2+1=3.∴D 点坐标为3,2.∵点E 为CD 的中点,∴点E 的坐标为3,1.∴k =3×1=3.3解:点G 在反比例函数的图象上.理由如下:∵△BFG 和△DCA 关于某点成中心对称,∴△BFG ≌△DCA.∴FG =CA =1,BF =DC =2,∠BFG =∠DCA =90°.∵OB =AC =1,∴OF =OB +BF =1+2=3.∴G 点坐标为1,3.∵1×3=3,∴点G1,3在反比例函数的图象上.3.解:∵BC ∥OA,AB ∥x 轴,∴四边形ABCO 为平行四边形.∴AB =OC =3.设A a 6,则B a 6,∴a -3·a 6=-3.∴a =2. ∴A2,3,B -1,3.∵OC =3,C 在x 轴负半轴上,∴C -3,0,设直线BC 对应的函数解析式为y =kx +b, 则-k +b =3,-3k +b =0,解得.9∴直线BC 对应的函数解析式为y =23x +29.解方程组,3得y1=3,x1=-1,.3∴D 23.设直线AD 对应的函数解析式为y =mx +n, 则,3解得.9∴直线AD 对应的函数解析式为y =83x +49. ∴E 49.∴OE =49.4.415点拨:因为C0,2,A4,0,由矩形的性质可得P2,1,把P 点坐标代入反比例函数解析式可得k =2,所以反比例函数解析式为y =x 2.因为D 点的横坐标为4,所以AD =42=21.因为点E 的纵坐标为2,所以2=CE 2,所以CE =1,则BE =3.所以S △ODE =S 矩形OABC -S △OCE -S △BED -S △OAD =8-1-49-1=415.5.1证明:∵BE ∥AC,AE ∥OB, ∴四边形AEBD 是平行四边形.∵四边形OABC 是矩形,∴DA =21AC,DB =21OB,AC =OB. ∴DA =DB.∴四边形AEBD 是菱形.2解:如图,连接DE,交AB 于F,∵四边形AEBD 是菱形,∴DF =EF =21OA =23,AF =21AB =1.∴E ,19.设所求反比例函数解析式为y =x k ,把点E ,19的坐标代入得1=29,解得k =29.∴所求反比例函数解析式为y =2x 9.第5题第7题6.D 7.解:1如图,过点D 作x 轴的垂线,垂足为F.∵点D 的坐标为4,3,∴OF =4,DF =3.∴OD =5.∴AD =5.∴点A 的坐标为4,8.∴k =xy =4×8=32.2将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数y =x 32x>0的图象上点D ′处,过点D ′作x 轴的垂线,垂足为F ′.∵DF =3,∴D ′F ′=3.∴点D ′的纵坐标为3.∵点D ′在y =x 32的图象上,∴3=x 32,解得x =332,即OF ′=332.∴FF ′=332-4=320.∴菱形ABCD 沿x 轴正方向平移的距离为320.8.解:1∵正方形OABC 的边OA,OC 分别在x 轴,y 轴上,点B 的坐标为2,2,∴C0,2.∵D 是BC 的中点,∴D1,2.∵反比例函数y =x k x >0,k ≠0的图象经过点D,∴k =2.2当P 在直线BC 的上方,即0<x <1时,∵点Px,y 在该反比例函数的图象上运动,∴y =x 2.∴S 四边形CQPR =CQ ·PQ =x ·-22=2-2x ;当P 在直线BC 的下方,即x >1时,同理求出S 四边形CQPR =CQ ·PQ =x ·x 2=2x -2,综上,S =2-2x (0<x <1).2x -2(x >1),9.410.解:∵反比例函数的图象关于原点对称,圆也关于原点对称,故阴影部分的面积占⊙O 面积的41,则针头落在阴影区域内的概率为41.1.B 3.①③④4.解:1反比例函数:y =-x 6.2如图所示.第4题 5.解:∵反比例函数y =x k 的图象经过点A1,-k +4,∴-k +4=1k ,即-k +4=k,∴k =2,∴A1,2.∵一次函数y =x +b 的图象经过点A1,2,∴2=1+b,∴b =1.∴反比例函数的解析式为y =x 2,一次函数的解析式为y =x +1.6.解:1将B2,-4的坐标代入y =x m ,得-4=2m ,解得m =-8.∴反比例函数的解析式为y =x -8.∵点A -4,n 在双曲线y =x -8上,∴n =2.∴A -4,2.把A -4,2,B2,-4的坐标分别代入y =kx +b,得2k +b =-4,-4k +b =2,解得b =-2.k =-1,∴一次函数的解析式为y =-x -2.2令y =0,则-x -2=0,x =-2.∴C -2,0.∴OC =2.∴S △AOB =S △AOC +S △BOC =21×2×2+21×2×4=6.3x 1=-4,x 2=2.4-4<x<0或x>2.7.解:如图,由观察可知:1当y =-2时,x =-3;2当-2<x<1且x ≠0时,y<-3或y>6;3当-3<y<2且y ≠0时,x<-2或x>3.第7题点拨:解决问题时,画出函数图象.由图象观察得知结果.由图象解决相关问题,一定要注意数形结合,学会看图.8.解:1库存原料为2×60=120吨,根据题意可知y 关于x 的函数解析式为y =x 120.由于生产能力提高,每小时消耗的原料量大于计划消耗的原料量,所以自变量的取值范围是x>2.2根据题意,得y ≥24,所以x 120≥24.解不等式,得x ≤5,即每小时消耗的原料量应控制在大于2吨且不大于5吨的范围内.点拨:1由“每小时消耗的原料量×可使用的时间=原料总量”可得y 关于x 的函数解析式.2要使机器不停止运转,需y ≥24,解不等式即可.第9题9.B 点拨:如图,过点B 作BE ⊥x 轴于点E,∵D 为OB 的中点,∴CD 是△OBE 的中位线,则CD =21BE.设A x k ,则B 2x k ,CD =4x k ,AD =x k -4x k .∵△ADO 的面积为1,∴21AD ·OC =1,即214x k ·x =1.解得k =38.10.311.1证明:∵点P 在双曲线y =x 6上,∴设P 点坐标为,m 6.∵点D 在双曲线y =x 3上,BP ∥x 轴,D 在BP 上,∴D 点坐标为,m 3.∴BD =m 3,BP =m 6,故D 是BP 的中点.2解:由题意可知S △BOD =23,S △AOC =23,S 四边形OBPA =6.∴S 四边形ODPC =S 四边形OBPA -S △BOD -S △AOC =6-23-23=3.。
一次函数,反比例函数与四边形的综合题

一次函数与反比例函数的综合四边形1,如图12,四边形ABCD 是平行四边形,点(10)(31)(33)A B C ,,,,,.反比例函数(0)my x x=>的图象经过点D ,点P 是一次函数33(0)y kx k k =+-≠的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数33(0)y kx k k =+-≠的图象一定过点C ;(3)对于一次函数33(0)y kx k k =+-≠,当y x 随的增大而增大时,确定点P 横坐标的取值范围(不必写出过程). 2,看图说故事。
请你编一个故事,使故事情境中出现的一对变量x 、y 满足图示的函数关系式,要求:①指出x 和y 的含义;②利用图中数据说明这对变量变化过程的实际意义,其中需设计“速度”这个量3,如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数(k ≠0)在第一象限内的图象经过点D 、E ,且tan ∠BOA=.(1)求边AB 的长;(2)求反比例函数的解析式和n 的值;(3)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长.4.如图5,双曲线)0(>=k xky 与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为 .5,如图9,在平面直角坐标系中,直线l :y =-2x +b (b ≥0)的位置随b 的不同取值而变化. (1)已知⊙M 的圆心坐标为(4,2),半径为2.当b = 时,直线l :y =-2x +b (b ≥0)经过圆心M : 当b = 时,直线l :y = -2x +b (b ≥0)与OM 相切:(2)若把⊙M 换成矩形ABCD ,其三个顶点坐标分别为:A (2,0)、BC 6,O )、C (6,2). 设直线l 扫过矩形ABCD 的面积为S ,当b 由小到大变化时,请求出S 与b 的函数关系式,6,如图,在平面直角坐标系中有Rt △ABC ,∠A =90°,AB =AC ,A (-2,0)、B (0,1)、C (d ,2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个)?证明你的所有结论.
1.不能判定四边形 ABCD 为平行四边形的题设是( A.AB=CD,AD=BC B.AB CD
) D.AB∥CD,AD∥BC
C.AB=CD,AD∥BC
2.如图 1, ABCD 中,对角线 AC 和 BD 交于点 O,若 AC=8,BD=6,则边 AB 长的取值范围是 A.1<AB<7 B.2<AB<14 C.6<AB<8 D.3<AB<4
(1)求直线 AB 的解析式. (2)C、D 两点坐标.
23.已知 y=y1-y2,y1 与 x 成正比例,y 与 x 成反比例,且当 x=1 时,y=-14,x=4 时,y=3. 求(1)y 与 x 之间的函数关系式;(2)自变量 x 的取值范围;(3)当 x=
1 时,y 的值. 4
24.如图,一次函数 y=kx+b 的图象与反比例函数 y=
6.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压 P(kPa)是气体体积 V(m3)的反比 例函数,其图象如图 1 所示,当气球内的气压大于 140kPa 时,气球将爆炸,为了安全起见,气体体积应 ( ) . A.不大于
24 3 m 35
B.不小于
24 3 m 35
C.不大于
24 3 m 37
的图象每一象限内,y 随 x 的增大而增大,则 n=_______.
17. 已知一次函数 y=3x+m 与反比例函数 y= 18. 若一次函数 y=x+b 与反比例函数 y= “<” 、 “=”填空)
m3 的图象有两个交点, 当 m=_____时, 有一个交点的纵坐标为 6. x
k 图象, 在第二象限内有两个交点, 则 k______0, b_______0, (用 “>” 、 x
1 的图象相交于 A、C 两点,AB⊥x 轴于 B,CD⊥x 轴于 D, 如图 3 所示, x
图3 图4 图5 15.如图 4,P 是反比例函数图象在第二象限上的一点,且矩形 PEOF 的面积为 8 ,则反比例函数的表达式是 _________. 16.反比例函数 y=
3n 9 x10 n
2
3 的图象交点依次是 Q1(x1,y1) ,Q2(x2,y2) ,Q3(x3, x
3 k 1 , 0) ,且与双曲线 y 相交于 B、C 两点,已知 B 点坐标为( , 2 x 2
22.如图,已知点 A(4,m) ,B(-1,n)在反比例函数 y= D 两点,
8 的图象上,直线 AB分别与 x 轴,y 轴相交于 C、 x
反比例函数 1.下列函数,①y=2x,②y=x,③y=x-1,④y= A.0 个 2.反比例函数 y= B.1 个
1 是反比例函数的个数有( ) . x 1
C.2 个 D.3 个
2 的图象位于( ) x
)
A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 3.已知矩形的面积为 10,则它的长 y 与宽 x 之间的关系用图象表示大致为(
m (m x
26.如图,双曲线 y=
5 在第一象限的一支上有一点 C(1,5),过点 C的直线 y=kx+b(k>0)与 x 轴交于点 A(a,0) x
1)求点 A 的横坐标 a 与 k 的函数关系式(不写自变量取值范围) . 2)当该直线与双曲线在第一象限的另一个交点 D 的横坐标是 9 时,求△COA的面积.
1 1 的图象有一个交点是( ,2) ,则另一个交点坐标是_________。 x 2 3 6 6 20.两个反比例函数 y= ,y= 在第一象限内的图象如图 5 所示,点 P1,P2,P3……P2005,在反比例函数 y= x x x
19. 若函数 y 4 x 与 y 的图象上,它们的横坐标分别是 x1,x2,x3, …x2005,纵坐标分别是 1,3,5……,共 2005 年连续奇数, 过点 P1,P2,P3, …,P2005 分别作 y 轴的平行线与 y= y3) , …,Q2005(x2005,y2005) ,则 y2005=________. 21. 直线 y kx b 过 x 轴上的点 A( 4) ,求直线和双曲线的解析式。
14.若矩形的面积 S=16 cm2,其中一边是 a=2 2 cm,则另一边 b=_________ cm. 15.直角三角形斜边上的中线与高线的长分别是 6 cm、5 cm,则它的面积是_______ cm2. 16.在△ABC 中,AD⊥BC 于 D,E、F 分别是 AB、AC 的中点,连结 DE、DF,当△ABC 满足条件_________时, 四边形 AEDF 是菱形(填写一个你认为恰当的条件即可). 17.如图 5,矩形 ABCD 中(AD>2),以 BE 为折痕将△ABE 向上翻折,点 A 正好落在 DC 的 A′点,若 AE=2, ∠ ABE=30°,则 BC=_________.
D O C
A
H
B
15、已知:如图,菱形 ABCD 的周长为 16cm,∠ABC=60°,对角线 AC 和 BD 相交 于点 O,求 AC 和 BD 的长。
16、如图,在△ABC 中,∠B=∠C,点 D、E 分别在边 AB、AC 上,且 AD=AE,那么四边 形 BCED 是什么形状的图形呢?
17、采用如图所示的方法,可以把梯形 ABCD 折叠成一个矩形 EFNM(图中 EF,FN,EM 为折痕),使得点 A 与 B、 C 与 D 分别重合于一点.请问,线段 EF 的位置如何确定;通过这种图形变化,你能看出哪些定理或公式(至少三
四边形 1.如图 1,在平行四边形 ABCD 中,∠B=110°,延长 AD 至 F,延长 CD 至 E,连结 EF,则∠E+∠F=( A.110° B.30° C.50°D.70°
)
图1 图2 图3 2.菱形具有而矩形不具有的性质是 ( ) A.对角相等 B.四边相等 C.对角线互相平分 D.四角相等 3.如图 2,平行四边形 ABCD 中,对角线 AC、BD 交于点 O,点 E 是 BC 的中点.若 OE=3 cm,则 AB 的长为 ( ) A.3 cm B.6 cm C.9 cm D.12 cm 4.已知:如图 3,在矩形 ABCD 中,E、F、G、H 分别为边 AB、BC 、CD、DA 的中点.若 AB=2,AD=4,则图中阴影部分的面积为 ( )A.8 B.6 C.4 D. 3 5.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、 矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形 ( ) 10 题 A.①③⑤ B.②③⑤ C.①②③ D.①③④⑤ 6.一梯形的中位线长与腰长相等,则这个梯形是( ) A.等腰梯形 B.直角梯形 C.任意梯形 D.无法确定 8.如果边长分别为 4cm 和 5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm. 9.已知菱形两条对角线的长分别为 5cm 和 8cm,则这个菱形的面积是 cm2. 10.如图,DE∥BC,DF∥AC,EF∥AB,图中共有_______个平行四边形. 11、若四边形 ABCD 是平行四边形,请补充条件 (写一个即可),使四边形 ABCD 是菱形. 12、在周长为 30cm 的梯形 ABCD 中,上底 CD=5cm,DE∥BC 交 AB 于 E,则△ADE 的周长为 14、如图,四边形 ABCD 是菱形,对角线 AC=8 cm,BD=6cm,DH⊥AB 于 H,求 DH 的长.
D.不小于
24 3 m 37
图1 图2 7.某闭合电路中,电源电压为定值,电流 I(A)与电阻 R(Ω)成反比例,如图 2 所表示的是该电路中电流 I 与电阻 R 之间的函数关系的图象,则用电阻 R 表示电流 I的函数解析式为( ) .
6 6 3 2 B.I=C.I= D.I= R R R R 1 8.函数 y= 与函数 y=x 的图象在同一平面直角坐标系内的交点个数是( ) . x
A.I= A.1 个 B.2 个 C.3 个 9.若函数 y=(m+2)|m|-3 是反比例函数,则 m 的值是( ) . A.2 B.-2 C.±2 D.0 个 D.×2
10.已知点 A(-3,y1) ,B(-2,y2) ,C(3,y3)都在反比例函数 y= A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2
4 的图象上,则( ) . x
D.y2<y1<y3
k (k≠0)的图象经过点 P(-2,-1) ,则该反比例函数的解析式是________. x 6 12. 已知关于 x 的一次函数 y=kx+1 和反比例函数 y= 的图象都经过点 (2, m) , 则一次函数的解析式是________. x
11.一个反比例函数 y= 13.一批零件 300 个,一个工人每小时做 15 个,用关系式表示人数 x与完成任务所需的时间 y 之间的函数关系 式为________. 14.正比例函数 y=x 与反比例函数 y= 则四边形 A等于 150°,则从此多边形的一个顶点出发可引的对角线有 A.8 条 B.9 条 C.10 条 D.11 条 4.如图 2,已知四边形 ABCD 是平行四边形,下列结论中,不一定正确的是 A.AB=CD B.AC=BD C.当 AC⊥BD 时,它是菱形 D.当∠ABC=90°时,它是矩形 5.如图 3 所示,用一块边长为 2 2 的正方形 ABCD 厚纸板,按下面的做法做一套七巧板:作对角线 AC,分别取 AB、BC 的中点 E、F,连结 EF;连结 BD,交 EF 于 G,交 AC 于 H;将正方形 ABCD 沿画出的线剪开,现把 它们拼成一座桥,如图(2)所示,这座桥阴影部分的面积是( ) A.8 B.6 C.4 D.5 6.正方形的对角线与边长之比为( )A.1∶1 B.
4.已知关于 x 的函数 y=k(x+1)和 y=-
k (k≠0)它们在同一坐标系中的大致图象是( ) . x