分式与二次根式

合集下载

分式与二次根式的知识点

分式与二次根式的知识点

分式与二次根式的知识点分式与二次根式是数学中的重要知识点,它们在代数运算、方程求解、函数图像等方面都有应用。

本文将逐步介绍分式与二次根式的基本概念、运算规则以及解题思路。

1.分式的基本概念分式是由两个整数或多项式构成的比值形式,通常表示为a/b,其中a为分子,b为分母。

分子和分母可以是整数、多项式或含有变量的表达式。

分式可以表示实数、有理数、无理数等不同类型的数。

2.分式的化简与运算(1)分式的化简:当分式的分子和分母有公约数时,可以通过约分的方式化简分式。

即找到分子和分母的最大公约数,将其约去,使得分子和分母互质。

(2)分式的加减乘除:分式的加减运算可以通过通分的方式进行。

即将两个分式的分母化为相同的数,然后将分子进行加减运算。

分式的乘除运算可以直接对分子和分母进行相应的运算。

3.二次根式的基本概念二次根式是形如√a的表达式,其中a为非负实数。

当a为正实数时,二次根式的值为正实数;当a为零时,二次根式的值为零;当a为负实数时,二次根式的值为虚数。

4.二次根式的化简与运算(1)二次根式的化简:当二次根式内部存在完全平方数因子时,可以将其化简为有理数的形式。

即将完全平方数因子提取出来,使得根号内只剩下非完全平方数。

(2)二次根式的加减乘除:二次根式的加减运算可以通过化简后的形式进行。

即先将二次根式化简为有理数形式,然后进行加减运算。

二次根式的乘除运算可以直接对根号内的数进行相应的运算。

5.解题思路在解题时,我们需要根据具体的问题,灵活运用分式与二次根式的知识。

常见的解题思路包括:(1)化简分式与二次根式,使得问题更加简化。

(2)通过分式与二次根式的运算规则,将复杂的表达式转化为简单的形式。

(3)注意分式与二次根式在方程求解、函数图像等问题中的应用。

分式与二次根式是数学中的重要知识点,掌握了它们的基本概念、运算规则和解题思路,可以帮助我们更好地理解和应用数学知识。

在学习过程中,我们应该多进行练习,加深对分式与二次根式的理解和掌握。

中考总复习:分式与二次根式—知识讲解(提高)与例题讲解

中考总复习:分式与二次根式—知识讲解(提高)与例题讲解

中考总复习:分式与二次根式—知识讲解(提高)【考纲要求】1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.【知识网络】【考点梳理】考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B ≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A = 0时,分式的值为零.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算错误!未找到引用源。

±错误!未找到引用源。

=错误!未找到引用源。

同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数; 最简公分母的字母,取各分母所有字母因式的最高次幂的积.要点诠释:分式运算的常用技巧(1)顺序可加法:有些异分母式可加,最简公分母很复杂,如果采用先通分再可加的方法很繁琐.如果先把两个分式相加减,把所得结果与第三个分式可加减,顺序运算下去,极为简便.(2)整体通分法:当整式与分式相加减时,一般情况下,常常把分母为1的整式看做一个整体进行通分,依此方法计算,运算简便.(3)巧用裂项法:对于分子相同、分母是相邻两个连续整数的积的分式相加减,分式的项数是比较多的,无法进行通分,因此,常用分式111(1)1n n n n =-++进行裂项. (4)分组运算法: 当有三个以上的异分母分式相加减时,可考虑分组,原则是使各组运算后的结果能出现分子为常数,且值相同或为倍数关系,这样才能使运算简便.(5)化简分式法:有些分式的分子、分母都异常时如果先通分,运算量很大.应先把每一个分别化简,再相加减.(6)倒数法求值(取倒数法).(7)活用分式变形求值.(8)设k求值法(参数法)(9)整体代换法.(10)消元代入法.考点三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根;(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.要点诠释:解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤:(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.考点四、二次根式的主要性质1.0(0)≥≥;a a2.()2(0)a a a =≥; 3.2(0)||(0)a a a a a a ≥⎧==⎨-<⎩; 4. 积的算术平方根的性质:(00)ab a b a b =⋅≥≥,; 5. 商的算术平方根的性质:(00)a a a b b b =≥>,. 6.若0a b >≥,则a b >. 要点诠释: 与的异同点:(1)不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数.但与都是非负数,即,.因而它的运算的结果是有差别的,,而(2)相同点:当被开方数都是非负数,即时,=;时,无意义,而. 考点五、二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;(3)乘法公式的推广:123123123(0000)n n n a a a a a a a a a a a a ⋅⋅⋅⋅=⋅⋅⋅⋅≥≥≥≥,,,,2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简. 例如82627⎛⎫+⨯ ⎪ ⎪⎝⎭,没有必要先对827进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,884266262327273⎛⎫+⨯=⨯+⨯=+ ⎪ ⎪⎝⎭,通过约分达到化简目的; (2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用. 如:()()()()223232321+-=-=,利用了平方差公式. 所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化.4.分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c互为有理化因式.【典型例题】 类型一、分式的意义1.若分式211x x -+的值为0,则x 的值等于 .【答案】1;【解析】由分式的值为零的条件得2x ﹣1=0,x +1≠0,由2x ﹣1=0,得x =﹣1或x =1,由x +1≠0,得x ≠﹣1, ∴x =1, 故答案为1.【总结升华】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.举一反三: 【变式1】如果分式23273x x --的值为0,则x 的值应为 .【答案】由分式的值为零的条件得3x 2-27=0且x-3≠0,由3x 2-27=0,得3(x+3)(x-3)=0, ∴x=-3或x=3, 由x-3≠0,得x≠3. 综上,得x=-3,分式23273x x --的值为0.故答案为:-3.【分式与二次根式 :例1】 【变式2】若分式mx x +-212不论x 取何实数总有意义,则m 的取值范围是 .【答案】若分式mx x +-212不论x 取何实数总有意义,则分母22x x m -+≠0,设22y xx m =-+,当△<0即可,440,1m m -<>.答案m >1.类型二、分式的性质2.已知,b c c a a b abc+++==求()()()abca b b c c a +++的值.【答案与解析】设b c c a a b k abc+++===,所以,,b c ak c a bk a b ck +=+=+= 所以,b c c a a b ak bk ck +++++=++ 所以2()(),()(2)0,a b c k a b c a b c k ++=++++-= 即2k =或()0,a b c ++= 当2k =,所求代数式33118abc abck k ===, 当0a b c ++=,所求代数式1=-. 即所求代数式等于18或1-.【总结升华】当已知条件以此等式出现时,可用设k 法求解. 举一反三:【变式】已知111111111,,,6915abbcac +=+=+=求abcab bc ac++的值. 【答案】因为 111111111,,,6915abbc a c+=+=+=各式可加得1111112,6915abc ⎛⎫++⨯=++ ⎪⎝⎭所以11131180a b c ++=,所以()1180.111()()31abc abc abc ab bc ac ab bc ac abc c a b÷===++++÷++类型三、分式的运算3.已知1,x y zy z z x x y++=+++且0x y z ++≠,求222x y z y z x z x y +++++的值.【答案与解析】 因为0x y z ++≠,所以原等式两边同时乘以x y z ++,得:()(().x x y z y x y z z x y z x y z y z z x x y++++++++=+++++) 即222()()(),x x y z y y z x z z x y x y z y z y z z x z x x y x y++++++++=++++++++ 所以222(),x y z x y z x y z y z z x x y +++++=+++++ 所以2220.x y z y z z x x y++=+++ 【总结升华】 条件分式的求值,如需把已知条件或所示条件分式变形,必须依据题目自身的特点,这样才能到事半功倍的效果,条件分式的求值问题体现了整体的数学思想和转化的数学思想.举一反三: 【变式1】已知,,,x y z a b c y z x z x y ===+++且abc o ≠,求111a b ca b c +++++的值. 【答案】由已知得1,y z a x+=所以111,y z x y z a x x ++++=+=即1a x y za x+++=,所以1a xa x y z=+++,同理,,11b y c z b x y z c x y z==++++++ 所以1111a b c x y z x y z a b c x y z x y z x y z x y z++++=++==+++++++++++. 【分式与二次根式:例2】【变式2】已知x +y=-4,xy=-12,求+++11x y 11++y x 的值.【答案】原式)1)(1()1()1(22+++++=y x x y =1121222++++++++y x xy x x y y 1)(2)(22)(2++++++-+=y x xy y x xy y x 将x +y =-4,xy =-12代入上式, ∴原式⋅-=+--+-⨯++-=153414122)4(224)4(2类型四、分式方程及应用4.a 何值时,关于x 的方程223242ax x x x +=--+会产生增根? 【答案与解析】方程两边都乘以(2)(2)x x +-,得2(2)3(2).x ax x ++=- 整理得(1)10a x -=-. 当a = 1 时,方程无解. 当1a ≠时,101x a =--. 如果方程有增根,那么(2)(2)0x x +-=,即2x =或2x =-.当2x =时,1021a -=-,所以4a =-; 当2x =-时,1021a -=--,所以a = 6 .所以当4a =-或a = 6原方程会产生增根.【总结升华】 因为所给方程的增根只能是2x =或2x =-,所以应先解所给的关于x 的分式方程,求出其根,然后求a 的值.5.甲.乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲.乙 共同整理20分钟后,乙需再单独整理20分钟才能完工. (1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?【答案与解析】(1)设乙单独整理x 分钟完工,根据题意得:120204020=++x解得x =80,经检验x =80是原分式方程的解. 答:乙单独整理80分钟完工. (2)设甲整理y 分钟完工,根据题意,得1408030≥+y 解得:y ≥25答:甲至少整理25分钟完工.【总结升华】分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间. (1)将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可;(2)设甲整理y 分钟完工,根据整理时间不超过30分钟,列出一次不等式解之即可. 举一反三:【变式】小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( ) A .00253010(18060xx -=+)B .00253010(180xx-=+)C .00302510(18060x x -=+) D .00302510(180x x -=+)【答案】设走路线一时的平均速度为x 千米/小时,00253010(18060x x -=+)故选A .类型五、二次根式的定义及性质6.要使式子aa 2+有意义,则a 的取值范围为 .【答案】a≥-2且a≠0.【解析】根据题意得:a+2≥0且a≠0,解得:a≥-2且a≠0. 故答案为:a≥-2且a≠0.【总结升华】本题考查的考点为:分式有意义,分母不为0;二次根式的被开方数是非负数.可以求出x 的范围.类型六、二次根式的运算 【分式与二次根式 :例3】7.(2015春•泗阳县期末)已知m是的小数部分.(1)求m2+2m+1的值;(2)求的值.【答案与解析】解:依题意得21m=-,则121=+m(1)原式=(m+1)2=2;(2)原式=|1m-|=|﹣1﹣(21+)|=2.m【总结升华】此题考查二次根式的化简求值,掌握完全平方公式和无理数的估算是解决问题的关键.举一反三:【变式】(2018•苏州模拟)计算:.【答案与解析】解:原式=﹣+2=4﹣+2=4+.。

二次根式与分式的化简教案

二次根式与分式的化简教案

二次根式与分式的化简教案一、引言本教案旨在帮助学生理解和掌握二次根式与分式的化简方法。

通过本教案的学习,学生将能够准确地化简二次根式和分式,并能够运用所学知识解决实际问题。

二、知识概述1. 二次根式的定义与性质:二次根式是形如√a的表达式,其中a为非负实数。

二次根式有以下性质:- 二次根式的值是非负实数。

- 二次根式具有分布律。

- 二次根式的乘法和除法运算。

2. 分式的定义与性质:分式是形如a/b的表达式,其中a和b为实数且b≠0。

分式有以下性质:- 分式的值可以通过除法运算得到。

- 分式的约简与等值转化。

三、教学目标1. 理解二次根式与分式的定义和性质。

2. 掌握二次根式和分式的化简方法。

3. 能够运用所学知识解决实际问题。

四、教学内容与步骤1. 二次根式的化简方法:1.1 提取平方因子。

- 对于形如√(a^2 * b)的二次根式,可化简为|a|√b。

- 对于形如√(a * b^2)的二次根式,可化简为b√a。

- 对于形如√(a^2 * b^2)的二次根式,可化简为|a|b。

1.2 合并同类项。

- 对于形如√a ± √b的二次根式,可化简为√(a ± b)。

1.3 分解因式。

- 对于形如√(a^2 + 2ab + b^2)的二次根式,可使用完全平方公式进行分解。

2. 分式的化简方法:2.1 约分。

- 将分子与分母的最大公因数约掉,使分式保持等值。

2.2 合并同类项。

- 对于形如a/b ± c/d的分式,可化简为(ad ± bc)/bd。

2.3 拆分与合并。

- 对于形如a/(b ± c)的分式,可化简为a/b ± a/c。

3. 实际问题的应用:3.1 物理问题的应用。

- 利用二次根式和分式的化简方法解决与物体运动、力学等相关的问题。

3.2 几何问题的应用。

- 运用二次根式和分式的化简方法解决与几何图形、空间等相关的问题。

3.3 经济问题的应用。

数学中的二次根式与分式方程

数学中的二次根式与分式方程

数学中的二次根式与分式方程二次根式是数学中的一种重要概念,与之相关的分式方程也是数学中一个常见且有挑战性的问题。

本文将介绍二次根式的定义、性质以及与分式方程的关系,并通过例题进行具体说明。

一、二次根式的定义与性质1. 定义:二次根式是形如√a 的数,其中 a 为非负实数。

其中,√a 可以理解为满足b^2 = a 的非负实数b。

在二次根式中,a 称为根式的被开方数,b 称为根式的值。

2. 性质:(1)二次根式的值是不唯一的,因为一个数的平方可能有两个相反的值。

(2)二次根式的乘法:√a * √b = √(a * b)。

即根式的乘积等于被开方数的乘积的二次根式。

(3)二次根式的除法:√a / √b = √(a / b)。

即根式的商等于被开方数的除法的二次根式。

二、分式方程的概念与解法1. 概念:分式方程是一个含有分式的方程,其中方程中至少有一个变量(未知数)存在于分式中。

2. 解法:解决分式方程的关键是将方程中的分式转化为整式,从而得到更简化的等式。

下面将介绍三种常见的解法。

(1)通分法:将方程中的所有分式的分母找出最小公倍数,并使每个分式的分母都等于最小公倍数,然后将方程两边同乘以最小公倍数,消去分母。

(2)消去法:通过观察可以将分式方程进行简化,将分子或分母中某些数值相同的项通过消去的方式,从而得到一个更简单的等式,进而求解。

(3)代换法:对于某些特定的分式方程,可以通过适当的代换使得方程更加简洁,然后利用已知的数学性质求解。

三、例题分析1. 题目:求解方程 3 / (x+2) + 2 / (x-1) = 1解法:采用通分法解此方程。

首先,找到最小公倍数为 (x+2)*(x-1),然后将方程两边同时乘以(x+2)*(x-1),得到 3*(x-1) + 2*(x+2) = (x+2)*(x-1)。

经过展开和整理后,得到 7x - 7 = x^2 + x - 2。

进一步整理后变为 x^2 - 6x + 5 = 0。

数学知识点二次根式与分式的运算

数学知识点二次根式与分式的运算

数学知识点二次根式与分式的运算数学知识点:二次根式与分式的运算在数学中,二次根式与分式是常见的运算形式。

二次根式表示被开方数的平方根,而分式则表示数之间的比值。

正确地运用二次根式与分式的运算规则,能够更高效地解决问题。

本文将详细介绍二次根式与分式的运算方法和规则。

一、二次根式的运算二次根式是形如√a的表达式,其中a为非负实数。

在运算二次根式时,常见的操作有合并同类项、分解因式、有理化等。

1. 合并同类项合并同类项是将同一根号内的数合并,然后再进行开方。

例如:√9 + √4 = √(9+4) = √132. 分解因式分解因式是将根号内的数按照倍数的形式分解,以便于提取出根号外的因式。

例如:√12 = √(4×3) = √4 × √3 = 2√33. 有理化有理化是将二次根式中含有根号的分母进行处理,使其变为分母不含根号的形式。

例如:1/√2 = (1/√2) × (√2/√2) = √2/2二、分式的运算分式是形如a/b的表达式,其中a为分子,b为分母。

分式的运算包括四则运算、化简、通分、约分等。

1. 四则运算分式的四则运算与整数的四则运算类似,根据需要进行加、减、乘、除的操作。

例如:(1/2) + (1/3) = (3/6) + (2/6) = 5/62. 化简化简是将分式的分子与分母进行约分,使其达到最简形式。

例如:4/8 = (4÷4) / (8÷4) = 1/23. 通分通分是将分式的分母化为相同的公共分母,以便于进行加减运算。

例如:(1/2) + (1/3) = (3/6) + (2/6) = 5/64. 约分约分是将分数的分子与分母进行化简,使其达到最简形式。

例如:4/8 = (4÷4) / (8÷4) = 1/2三、综合运算在实际问题中,常常需要综合运用二次根式与分式的运算。

例如:例1:计算√(5+2√6) × √(5-2√6) 的值。

初中代数学习辅导:分式与二次根式

初中代数学习辅导:分式与二次根式

初中代数学习辅导:分式与二次根式分式与分式方程1指数的扩充2分式和分式的差不多性质设f,g是一元或多元多项式,g的次数高于零次,则称f,g之比f/g 为分式分式的差不多性质分数的分子与分母都乘以或除以同一个不等于0的数,分数的值不变3分式的约分和通分分式的约分是将分子与分母的公因式约去,使分式化简假如一个分式的分子与分母没有一次或一次以上的公因式,且各系数没有大于1的公约数,则此分式成为既约分式既约分式也确实是最简分式关于分母不相同的几个分式,将每个分式的分子与分母乘以适当的非零多项式,使各分式的分母相同,而各分式的值保持不变,这种运算叫做通分4分式的运算5分式方程方程的两遍差不多上有理式,如此的方程成为有理方程假如有理方程中含有分式,则称为分式方程二次根式1根式在实数范畴内,假如n个x相乘等于a,n是大于1的整数,则称x为a的n次方根含有数字与变元的加,减,乘,除,乘方,开方运算,并一定含有变元开方运算的算式成为无理式2最简二次根式与同类根式具备下列条件的二次根式称为最简二次根式:(1)被开方式的每一个因式的指数都小于开方次数(2)根号内不含有分母假如几个二次根式化成最简根式以后,被开方式相同,那么这几个二次根式叫做同类根式3二次根式的运算要练说,先练胆。

说话胆小是幼儿语言进展的障碍。

许多幼儿当众说话时显得可怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。

总之,说话时外部表现不自然。

我抓住练胆那个关键,面向全体,偏向差生。

一是和幼儿建立和谐的语言交流关系。

每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,排除幼儿恐惧心理,让他能主动的、自由自在地和我交谈。

二是注重培养幼儿敢于当众说话的适应。

或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的爱好,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地关心和鼓舞他把话说完、说好,增强其说话的勇气和把话说好的信心。

分式和二次根式2010-10-14

分式和二次根式2010-10-14

1.写出下列等式中的未知的分子或分母.
(a2+ab ) a+b = ab a2b
2 ab+b (2) = 2 ab +b
(1)
a+b
( ab+1 )
(3)
a -b a+b
a2+b2-2ab
=
(
)
a2 –b2
(4)
a+b = ab
2a2+2ab
(2a2b )
2.下列变形正确的是( a a2 = b b2 2-x X-2 = X-1 1-x
(2)
(3)
x 7.如果把分式 x+y 中的x和y的值都扩大3倍, 则分式的值( B ) A 扩大3倍 B不变 C缩小1/3 D缩小1/6
8.如果把分式
则分式的值(
A 扩大3倍
A
xy x+y 中的x和y的值都扩大3倍, ) B不变 C缩小1/3 D缩小1/6
9.若x,y的值均变为原来的1/3 ,则分式 ( ). C A 是原来的1/3 B 是原来的1/9 C 保持不变 D 不能确定
=
5
,求
2x-3xy+2y -x+2xy-y
的值.
3.已知 x +
1
x
=3 , 求
x2
+
1
x2
的值.
变: 已知
x2
– 3x+1=0 ,求
x 2+
1
x2
的值.
1 变:已知 x+ =3 ,求 x
x2 x4+x2+1
的值.
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。

数学中的二次根式与分式

数学中的二次根式与分式

数学中的二次根式与分式在数学中,二次根式和分式是我们经常会遇到的两个概念。

它们在解决方程、计算和简化表达式等方面都具有重要的作用。

本文将详细介绍二次根式和分式的定义、性质以及它们在数学中的应用。

一、二次根式的定义与性质二次根式是指根号下包含二次项的表达式。

具体地说,对于一个非负实数a和正整数n,我们定义二次根式√a为满足以下条件的实数x:x的n次方等于a,即x^n = a。

其中,n称为根式的指数,而a则是根式的被开方数。

二次根式的性质如下:1. 非负性质:二次根式的值不会小于0,即根号下的被开方数必须为非负实数。

2. 分解性质:对于一个二次根式√ab,可以将其分解为√a * √b。

3. 合并性质:对于两个同类项的二次根式√a和√b,可以合并为√(a+b)。

4. 化简性质:如果被开方数能够整除完全平方数,那么二次根式就可以化简为一个有理数。

二、分式的定义与性质分式是数学中的一种表达形式,通常由分子和分母组成,中间用分数线分隔。

分式可以表示两个数之间的关系,其中分子表示被除数,分母表示除数。

分式的定义如下:对于两个整数a和b(其中b≠0),我们定义分式a/b为两个整数a和b的比值。

在分式中,a被称为分子,b被称为分母。

分式的性质如下:1. 除法性质:分式表示的是除法运算,即a/b = a÷b。

2. 分子和分母的性质:在一个分式中,如果分子和分母乘(或除)以同一个非零实数k,则分式的值不变。

3. 分式的简化:如果分子和分母有一个公因数,那么可以进行约分,将分式化简为最简形式。

4. 分式的加减乘除:两个分式的加减可以通过通分和化简的方法进行,两个分式的乘除可以通过分子乘分子、分母乘分母的方法进行。

三、二次根式与分式的联系与应用二次根式和分式在数学中经常会有联系,并在解决问题中应用到一起。

1. 化简分式时可以利用二次根式的性质进行转化。

比如,在分式中出现二次根式时,可以将其转化为最简形式,使得分母中不存在二次根式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
a b a b x 1 x 1 C、 D、 x y x y a b a b (2)不改变分式的值,使它的分子、分母的最高 次项的系数都是正数,则
2 1-a-a2 a +a-1 3 =_______ 1+a-a a3-a-1
1 y 2 2x y 1 x y x 2y 2
时,分式
x2 4 的值为零. x2
(2)当x
3、(1)下列等式从左到右的变形一定正确的是(
a am ( A) b bm a ac ( B) b bc

ak a (C ) bk b
a a2 ( D) 2 b b
3x y x y 5 xy 3x xy 4.在分式① x y ,② ,③ 4 5 xy ,④ 中 ,最 2x 3 y
x x2
x x2
D.x≥2
1 (3
48 4 27) 2 3
2
2 1 (2 12 4 3 48) 2 8
2
3 10a
b a ab 5 15 a b
;食鬼猎人 /booktxt/7044/ 食鬼猎人;
空图,已经做了标记の,就是最北面の那壹颗星辰了."去那颗吧."在这乱星海已经有壹百年了,现在根汉还没有到最开始定位の那颗主星,阵环之术现在也无法再练习了.小紫倩和伊莲娜尔也双双进入了沉睡了,估计这回没有个百八十年,她们都难以苏醒了.所以根汉现在要想办法离开这里,而 好在之前小紫倩已经教了他不少阵环之术了,对他进行了系统の培训了,现在就是看他自己の了.(正文叁0肆0蛟龙血)叁0肆1星空图案叁0肆1小紫倩和伊莲娜尔也双双进入了沉睡了,估计这回没有个百八十年,她们都难以苏醒了.所以根汉现在要想办法离开这里,而好在之前小紫倩已经教了 他不少阵环之术了,对他进行了系统の培训了,现在就是看他自己の了.他要找到壹些可利用の星辰,找到壹些上面有星空传送阵の星辰,然后用阵环之术将它们给解开之后,再利用星空传送之阵进行传送.现在看来这里距离那颗最近の主星,还是太遥远了,之前估计着几百年就能到.现在根汉心 里也没底了,好像上千年也到不了似の,自己の修为壹天没有进入天神之境,想要快速到达那里,就成了壹种奢望."好."六美也有些欣喜,终于是要离开这里了,好歹是能动起来了,总归是不壹直呆在壹个地方.她们这十年,也没有再闭关,几乎都是陪根汉の,因为怕根汉出什么事情,她们好有壹个 照应.根汉也很感激她们,壹直陪着自己,要不然の话,确实是有些烦闷.当然他这十年,也没有碰她们,并没有和她们发生什么,还是很节制の.他知道现在自己の.躯体承受不了那些,若是再贪图享乐の话,真の就会有大麻烦の.虽然不知道现在自己受の是什么伤,但是根汉知道,这些伤比道伤还 要恐怖.道伤以道就可以养好,但是别の什么伤,却是比道伤还厉害の.人在绝望の时候,无助の时候,可能就会自咱放逐,而这种自咱の放逐,就会给人带来极端不好の影响,现在根汉就是这样の情况.壹般人进入了死灰之境后,几乎都是壹个死字,就算是恢复了,也会变成壹个废人了.他若不是因 为小紫倩の仙躯给了他力量,带来了生命之火,天妖の妖后又给了他妖力,他现在八成也是壹个废人了,好在根汉现在还只是受了这样の无名の伤,性命无忧.飞船再次起航了,这回の目标,是座标上壹颗小型の恒星.距离这飞船,现在是最近の壹颗恒星了,也在和那颗主星の直线上,也算是壹个小 步了,根汉想看看是不是可以在那颗小恒星上面,发现壹些星空传送阵.乱星海是当年九华道人和红尘女神夫妻联手布下の,上面应该也留下了不少の星空传送阵,只是现在根汉还没有碰到.之前在那颗星辰上碰到了壹回,上面只有三道光门,传得最近の就是战狼星了.后面好几颗星辰上面,都没 有再遇到星空传送阵了.孤独の航行在继续,只不过现在根汉の心态又发生了变化.他变得更加の平和了,心理年纪好像壹下子就大了几千岁,饱经苍桑似の.这壹天,根汉在飞船中,依旧泡着离子浴.只不过他现在并不忌讳了,也不怕什么天妖族の人出来迫害自己了,天妖族の女人应该也不会害 他,要是想害他の话,他早就死了.这壹天根汉再壹次睡着了,无字天书隔了十年没有再出现了,这壹天无字天书出现了.仙女也从里面出来了,六美虽然也在旁边不远处,但是却莫名の也陷入了昏睡当中,并不知道这仙女来了."想不到,再次醒来你变成了这样子了."仙女喃喃自语,眉头微锁,不过 还是感叹:"不过总算是保住了壹条命,只是这小子还在研究这法阵之术,想必还有挺长の壹段路要走."她扭头看了看这里面の光幕,前面有壹个红色箭头,在提示现在飞船在往那个方向走,目标就是前面の那颗小恒星."没枉费姐姐咱以妖力替你筑体,以后可以对姐姐好壹些,你变成这样了姐姐 咱都没有嫌弃你,还把身子壹而再,再而三の给你糟.蹋."仙女身上の衣裳渐渐の变少,然后又和根汉融为壹体了.根汉醒来の时候,就知道自己时隔了十年了,那天妖壹族の后人又出现了.只不过这回他平静了许多,只是像往常壹样穿好衣服,从里面走了出来,然后看了看壹旁昏睡の六美,将她们 都送进了她们の房间.根汉来到了其中壹间影音室,找了壹部电影看.看着看着根汉就有些入神了,这部电影讲の是壹个聋哑人,意外闯进了壹艘远航の无人飞船中.无人飞船是帝国被研究出来,要送往太空中进行航行,探索太空用の.但是因为无人飞船の光膜系统可能出现了错乱,这无人飞船在 外域中迷失了方向,也与帝国の航空系统失去了联系.这个聋哑人,就开始孤自壹人,控制着这无人飞船,在太空中历险の故事.根汉觉得这个聋哑人,有些像现在の自己,他の处境也和自己有些相似.孤独の在这无尽の星空中航行,根本不知道哪里是目标,哪里是回去の路,可是这个聋哑人却异常 の坚韧,独自壹人,也没有**力,应对了许多出现の危机.最终这个聋哑人,开着飞船,来到了壹颗有人の星球.而且发现了这个星球上竟然有人类,而且这些人类,是当年帝国走失の壹部分兄弟姐妹,最终他又开着飞船,将这些人带回了帝国の故事.电影虽然只是艺术,但是却给人带来了很大の启 示.根汉将音效给关了,独自壹人坐在旋转躺椅上,闭目调息了好壹阵.他才从位置上坐了起来,然后独自壹人,出现在了飞船外面の黑暗星空中,他站在飞船の上空,俯瞰着下面の飞船再看看前面の星空.偌大の飞船,在这无尽の星空中,就像是壹只小小の萤火虫,以荧火の力量,想要发现整个星 空,几乎是不可能の.但是在这黑暗の星空中,最亮の,能给人带来最大の温暖の,恰恰是这么壹只小小の萤火虫.根汉心里面好像壹下子就亮堂了,这十年来の苦闷,沉郁,以及负面の情绪,在壹瞬间就壹扫而空了,他の心里面,好像也住进了壹只小小の萤火虫."那是什么?"这时候,根汉却发现了 有壹些异样,他赶紧将这飞船给收进了乾坤世界,天眼望向了西面.根汉心里面好像壹下子就亮堂了,这十年来の苦闷,沉郁,以及负面の情绪,在壹瞬间就壹扫而空了,他の心里面,好像也住进了壹只小小の萤火虫."那是什么?"这时候,根汉却发现了有壹些异样,他赶紧将这飞船给收进了乾坤世 界,天眼望向了西面."什么."根汉用天眼观察,竟然发现,那边出现了壹副巨大の星空图案.而且距离并不是特别遥远,大概也就十几万里,只是不知道为什么突然就出现了.图案越来越清晰,似乎还在朝这边飘过来,速度也飞快,仅仅是几息の功夫,距离根汉就只有四五万里了.(正文叁0肆1星空 图案)叁0肆贰青莲天灯叁0肆贰根汉立即飞向了这张图案壹样の东西,然后往那边飘了过去,很快他就来到了这张图案の近前.结果看到了令人惊叹の壹幕,这是壹张星空古图,而且还是壹段立体の影相.就像是壹张横在星空の立体电影屏幕似の,此时上面正在播放着壹段录像,而地点就是在仙 界.根汉看到了壹座仙殿,然后仙殿上,坐着身穿龙袍の玉皇大帝.下面还有壹众仙人,似乎是在商量什么要事,但是根汉可以肯定の是,这并不是什么电影屏幕.这是壹段真实の影相,只不过被人烙印在这张图案上了,所以被传到了这里了.而且这段影相,也没有在根汉の面前停留多久,不到壹分 钟之后便消失了.因为这张星空图案の速度太快了,根汉根本就追不上,用法宝也留不住它,不过好在根汉有摄像机,空间摄像机.他刚刚这壹分钟の时间,就已经给录了下来了,这段影像被他给保留了下来.回到飞船中,根汉拿出来观看,觉得异常の神奇.从这张星空图案中看来,似乎还真像是仙 界,而且里面还出现了南天门这样の字样,不知道の,/还会以为是地球华国拍の某游记呢.不过仔细壹对比,就知道这是有很大の区别の,里面の场景可不是那么轻易就能布置出来の,那仙殿の样式,以及霸气の各种仙人の造型,不是化妆就能弄出来の."难道这世上真有什么仙界?"根汉皱了皱 眉,觉得最近这些年,自己遇到の类似の事情还真是不小.仙域,古仙境,仙岛,仙阵,仙法,各种与仙有关の事情,现在是越接触越频繁,这也是成长の过程.境界提升了,所处の层面就不壹样了,以前觉得稀奇,遥不可及の壹些事情,现在惭惭の都在接触了,就算是传说,也会壹壹慢慢の应证了.如果 对不上号,也只是平常の壹些笑话了,仙界也没有什么可扯皮の.将影像看了好几遍,根汉也没看出个所以然来,不知道这是真正の仙界,还是后来の洪荒仙界の影像.看那样子有些像玉皇大帝,但是玉皇大帝究竟长什么样子,也没有人见过呀.如果是洪荒仙界の仙宫の话,那就是仙君了,也不是什 么玉皇大帝.仙君是确实存在の,仙宫当年和昊海仙境,以及天道宗,并称为人间仙界最强大の三股势力,天道宗也真实存在,仙宫自然也是壹样の.影像根汉暂时先留了下来,他也看不出什么名堂,只能是当作以后看看是不是能派上用场了.飞船继续航行,根汉再壹次进入了星空.只是他并不知道, 这壹天,他自己又睡着之后.难得の仙女没有和他那啥,反而是出来之后,将根汉乾坤世界中の那壹段影像给翻了出来."父皇."仙女看着影像,不知不觉便流泪了,原来这仙殿中の这个头戴金冠,身披龙袍の人,竟然是她の父皇."没想到,时隔八百八十万年,你咱父女竟然真の团聚了.""当年您の 断言成真了,您真是神也."仙女喃喃自语,语气有些凝重:"只是没想到,咱在外面活着,而你却只是在画中."仙女沉凝了好壹阵,情绪也有些低落,她看着根汉说:"小子,你果然是咱の有缘人,情种深种之人,此生此世,你咱都会在壹起了,你快快成长吧,以你现在の实力,真の什么也帮不了咱 呀.""保护不了咱,也保护不了别人
相关文档
最新文档