第三章 应力分析与应变分析
工程力学中的应力与应变分析方法探讨

工程力学中的应力与应变分析方法探讨在工程力学中,应力与应变是研究材料和结构力学性能的重要概念。
应力是指单位面积内的力的大小,而应变则是指材料的形变程度。
应力与应变的分析方法是工程力学中的核心内容之一,本文将对工程力学中的应力与应变分析方法进行探讨。
一、应力分析方法在工程力学中,常用的应力分析方法有静力学方法、接触力学方法和弹性力学方法。
静力学方法是通过平衡方程分析物体所受到的力,并计算得出应力分布情况;接触力学方法则是研究物体间的接触行为,通过接触区域的应力分布来分析力的传递情况;弹性力学方法则是应用弹性力学原理,通过杨氏模量和泊松比等参数计算得出应力分布情况。
静力学方法是应力分析中最基本的方法之一,它基于物体所受到的力的平衡条件进行分析。
静力学方法分为静力学平衡和弹性力学平衡两种情况。
静力学平衡是指物体在外力作用下不发生形变,通过将物体分解为若干个力的平衡条件方程来求解各个部位的应力;而弹性力学平衡则是物体在外力作用下发生形变,通过应力-应变关系来求解应力分布情况。
静力学方法在工程力学中应用广泛,可以分析各种载荷下的应力情况。
接触力学方法是研究物体与物体之间接触行为的力学方法,通过分析接触面的应力分布来推导出力的传递情况。
在实际工程应用中,接触力学方法广泛用于轴承、齿轮、摩擦等接触问题的分析与设计。
接触力学方法主要利用弹性力学和接触力学理论,通过建立接触面的几何模型和接触条件,求解接触区域的应力分布。
弹性力学方法是应力分析中最常用的方法之一,它基于弹性力学理论,通过材料的弹性参数计算得出应力分布。
弹性力学方法广泛应用于材料和结构强度分析中。
弹性力学方法主要使用线弹性理论,通过杨氏模量和泊松比等参数来描述材料的弹性性能,根据应力-应变关系计算得出应力分布情况。
二、应变分析方法在工程力学中,常用的应变分析方法有光栅衍射法、电测法和应变计法。
光栅衍射法是利用光学原理来测量物体表面的应变分布情况,通过测量光栅的位移来计算应变大小;电测法则是利用电阻应变片等设备来测量物体表面的应变分布情况;应变计法则是通过安装应变计来测量物体表面的应变分布情况。
第三章-应变分析

3-4 体积应变
单元体的体积: dVdxdydz
变形后,体积: dV'(dxxdx)(dyydy)(dzzdz)
dxdy(d1z )(1 )(1 )
x
y
z
dxdy(d1z )
x
y
z
则,体积应变:
d' V d V d
x(1 d y d z) d
x
y
z
x d y d z
dV
d xd yd zx y z
Man◇ ._Ha!n.℡ɡ1rl。 ゜ eVer ㄨ 、 Give up沸 点 soon startˊ Sorry -aesar 凯 撒 Julietˋ A m , 七 分 醒 ▌SakitIf- ExpectΜ elod y丶 低 声 、 saybetrayeiove 均 My、
queen哀 伤 之 后 After sad□ Yinkuimy、 zyO° Myへ Loveヽ ρuzzledPoison丶
第二种位移是弹性体形状的变化,位移发生时不仅改变 物体的绝对位置,而且改变了物体内部各个点的相对位 置,这是物体形状变化引起的位移,称为变形位移。
M(x,y,z)移动至M'(x',y',z')
点的位移为MM'
z
u = x'- x = u(x,y,z)
v = y'- y = v(x,y,z)
w = z’- z = w(x,y,z)
变形后:
m'点的坐标为( x+u,y+v)
a '点的坐标为( x+dx+u+微分增量,y+v +微分增量)
b '点的坐标为 ( x+u+微分增量,y+dy+v +微分增量)
河海大学 材料力学 第三章 杆件横截面上的应力、应变分析第一节

点K处的应力(stress) DF p=lim pm= lim —— DA→0 DA→0 DA
p 正应力s :沿截面法向 n 切应力t :沿截面切向 s p 2= s 2 + t 2
应力单位:Pa(帕斯卡、帕) MPa(兆帕)
1 Pa = 1 N/m2 1MPa =106 Pa
注意:
t
K
s
以上分析可见,应力是受力物体内某个截面上某 一点上内力分布集度。通常情况下,物体内各点 应力是不同的,对于同一点不同方位截面上应力 亦不同。这样,应力离开它的作用点是没有意义 的,同样,离开它的作用面亦是没有意义的。
(shearing strain) 单位: rad。
四、胡克定律
s
s
du e= — dx
u
u+du
如果仅在单方向正应力s 作用下,且正应力不超过某 一限值(比例极限),则正应力与正应变成正比,即
s = Ee ——胡克定律(Hooke's law)
E ——弹性模量。(elastic modulus)
如何描述一点处的应力?
二、一点的应力状态、单元体:
K K
围绕K点取一微小的六面体,称为单元体。
六个面都表示通过同一点K的面,只是方向不同而已。
如果所取的单元体在空间方位不同,则单元体上各面 的应力分量亦不相同。
sy
y
tyz
tyx txy txz sx
x
tzy
z
sz
tzx
若从一复杂受力构件内某点取一单元体,一般 情况下单元体各面上均有应力,且每一面上同时存 在三个应力分量:一个法向分量——正应力;两个 切向分量——切应力。这样,单元体上共有9个应力 分量。
材料力学应力与应变分析

在复杂应力状态下,物体内部某一点处的主应力表示该点处最主要 的应力,次应力则表示其他较小的应力。
应力表示方法
应力矢量
应力矢量表示应力的方向和大小,通常用箭头表示。
应力张量
在三维空间中,应力可以用一个二阶对称张量表示,包括三个主应力和三个剪切 应力分量。
主应力和剪切应力
主应力
在任意一点处,三个主应力通常是不相等的,其中最大和最小的主应力决定了材料在该点的安全程度 。
采用有限元分析方法,建立高 层建筑的三维模型,模拟不同 工况下的应力与应变分布。
结果
通过分析发现高层建筑的关键 部位存在较高的应力集中,需
要进行优化设计。
结论
优化后的高层建筑结构能够更 好地承受各种载荷,提高了安
全性和稳定性。
THANKS FOR WATCHING
感谢您的观看
不同受力状态下的变形行为。
06 实际应用与案例分析
实际应用场景
航空航天
飞机和航天器的结构需要承受高速、高海拔和极端温度下 的应力与应变,材料力学分析是确保安全的关键。
汽车工业
汽车的结构和零部件在行驶过程中会受到各种应力和应变 ,材料力学分析有助于优化设计,提高安全性和耐久性。
土木工程
桥梁、大坝、高层建筑等大型基础设施的建设需要精确的 应力与应变分析,以确保结构的稳定性和安全性。
剪切应力
剪切应力是使物体产生剪切变形的力,其大小和方向与剪切面的法线方向有关。剪切应力的作用可以 导致材料产生剪切破坏。
04 应变分析
应变定义
定义
应变是描述材料形状和尺寸变化的物理量, 表示材料在外力作用下发生的形变程度。
单位
应变的单位是1,没有量纲,常用的单位还有微应变 (με)和工程应变(%)。
第三章应力分析应变分析屈服准则复习讲诉

a 0 0
1 ij
0
b
0
0 0 0
ab
2
ab 2
0
2 ij
a
b 2
ab 2
0
0
0 0
一、应力张量不变量及其应用
例题解答
对于
1 ij
J1 a b0 a b
J2
a 0
0b
b0
00
00
0
a
ab
a00 J3 0 b 0 0
000
同理,对于
2 ij
J1
a
2
b
a
2
b
0
a
b
ab
J2
试问上述应变场在什么情况下成立?
例题解答
2 xy xy
1 2
2 x y 2
2 y x2
(1)
2 xy 2 (2bxy) 2b xy xy
1
2
2 x y 2
2 y x2
1
2
2
a x2 y2 y 2
2
axy
x2
a
a 2b 即当a 2b时,上述应变场存在。
应变分析问题小 结
max min
2
C
2.2 单向拉伸时的Tresca屈服准则
2.2 Tresca yield criterion in uniaxial stretch test
三、应变连续方程问题
知识要点回顾
小应变几何方程
2 x y2
2 y2
u x
2 xy
u
y
(1)
2 y x2
2 x2
v y
2 v xy x
(2)
2应力应变分析

JJ J
1 2
应该是单值的,不随坐标
3
而变,因此把
JJ J
1 2
3
分别称为应力张量的
第一、第二和第三不变量,存在不变量也是张
量的特性之一。
15
例题
• 设某点的应力状态如图所示,试求其主应力(应力 单位:牛顿/平方毫米)
16
• 解:
x
yx
zx
2; 3;
4;
ij
xy y
2
2
2
2
xy
yz
zx
x
yz
y
xz
z
xy
2
2
2
18
• 将应力张量不变量带入应力状态特征方程中得:
J 1 J 2 J 3 0
3 3 2
•
9;
1
15 60 54 0
2
9 6 6 0
2 2
3 3;
ζ
ζ η ζ
ζ 主剪切应力平面
21
• 一对相互垂直的主剪应力平面,它们分别与一个主平面 垂直并与另两个主平面成45度,而且每对正交主剪平面 上的主剪应力都相等。如下图所示:
22
三个主剪应力为: τ σ σ 2 23 2 3
τ 31 σ 3 σ1 2
τ12 σ1 σ 2 2
张量的特性:一个对称张量有三个相互垂直的方向, 叫做主方向,在主方向上,下标不同的分量均为零, 只剩下下标相同的分量,叫做主值。
在应力张量中,主值就是主方向上的三个正应力, 叫做主应力;与三个主方向垂直的微分面叫主平面, 主平面上没有剪应力。也就是说τ=0。
第三章 应力分析

σx τxy τxz σy yx τ τyz Sx τzy σz τzx By Sz S= σ Sy N
A x
主平面上的应力
S x = σ l , S y = σ m, S z = σ n S x = σl = σ x l + τ yx m + τ zx n ⎫
⎪ S y = σm = τ xy l + σ y m + τ zy n⎬ ⎪ S z = σn = τ xz l + τ yzx m + σ z n ⎭
S y dF − σ y mdF − τ xy ldF − τ zy ndF = 0
写成矩阵形式:
z C σ τx
y x
dF N σ Sz S Sy Sx O τz
y z
斜面上全应力为: 斜面上切应力为:
S = Sx + S y + Sz
2 2 2
2
σ
y z
τx τy
x z
σ = S xl + S y m + S z n
F0
P
N θ
σ0
σθ C F1 C1 Q Q
P P ⎧ C ⎪ Sθ = F = F cos θ = σ 0 cos θ 1 0 ⎪ ⎪ 2 ⎨σ θ = Sθ cos θ = σ 0 cos θ ⎪ 1 ⎪τ θ = Sθ sin θ = σ 0 cos θ sin θ = σ 0 sin 2θ 2 ⎪ ⎩
SN = σ N +τ N
2 2
2
3.2 点应力状态
点应力状态:点的应力状态,是指物体内任意一点附近不同方位上所承 受的应力情况,必须了解物体内任意一点的应力状态,才可推断整个变 形物体的应力状态。 1、一点应力状态的两种描述方法 第一种方法:应力状态图 在变形区内某点附近取一无限小的单元六面体,在其每个界面上都 作用着一个全应力,设单元体很小,可视为一点,故对称面上的应力是 相等的,只需在三个可见的面上画出全应力:
第三章力学基础(应力分析)

主应力
4 2 3
例题:已知点的应力状态 ij 2 6 1 ,求其
3 1 5
的主应力、主方向。(应力单位:MPa)
解:
J1 x y z 4 6 5 15
J2
(
x
y
y
z
z
x)
2 xy
2 yz
2 zx
(24 30 20) 4 1 9 60
x xy xz 4 2 3 J3 xy y yz 2 6 1 120 6 6 20 4 54
)l ( y
yxm )m
zxn zyn
0 0
xzl yz m ( z )n 0
主应力
➢ 由于 l 2 m2 n2 1 ,因此l、m、n不同时为零 则三元齐次方程组的系数矩阵一定等于零
x xy xz
yx y
yz
yz zy 0 z
展开方程组系数矩阵,可得
3 J1 2 J2 J3 0
主应力
➢应力状态特征方程
3 J1 2 J2 J3 0
式中 J1 x y z
J2
( x y
y z
z
x
)
2 xy
2 yz
2 zx
J3
x y z
2 xy yz zx
x
2 yz
y
2 zx
z
2 xy
主应力
➢ 应力状态特征方程 3 J1 2 J2 J3 0 的三
xl2 ym2 zn2 2( xylm yzmn zxnl) 即 ijlil j
2 n
S2
2 n
如何求解斜面上的应力
例题说明
➢ 已知某点应力张量为
ij yxx
xy y
xz yz
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-9-2
24
3.1.4 点的应力状态
全应力: S S x2 S y2 S x2 全应力S在法线N上的投影就是斜微分面上 的正应力σ ,它等于Sx,Sy,Sz在N上的投影之 和,即: S l S m S n
x y z
x l 2 y m 2 z n 2 2( xy lm yz m n zx nl)
2013-9-2 15
若将C-C截得的下半部分放在 空间直角坐标系oxyz中,使CC截面垂直于某坐标轴,如y轴, 即C-C截面外法线方向N平行于 y轴,则过Q点的微分面称为y 面。将Q点的全应力S在三个坐 标轴上的投影称为应力分量。 每个应力分量可用两个下角标 的符合表示,第一个角标表示 该应力分量所在的平面,第二 个下角标表示其作用方向。
(3)各向同性假设。变形体内各质点在各个方向上的物理性
(4)初应力为零假设。物体在受力之前是处于自然平衡
状态,即物体变形时内部所产生的应力仅由外力引起。 (5)体积力为零假设。体积力如重力、磁力、惯性力等 与面力相比十分微小,可忽略不计。 (6)体积不变假设。 物体在塑性变形前后体积不变。
2013-9-2
20
2.多向受力下的应力分量
(4)剪应力互等定律
由于单元体是处于静力平衡状态,所以绕 单元体各轴的合力矩必须等于零,由此可 以得到如下的关系式:
这个式子叫做剪应力互等定律。它表明了: 为了保持单元体的平衡,剪应力总是成对 出现。因此,实际上只需六个应力分量就 可以表示点的应力状态。即九个应力分量 只有六个是独立的。
2013-9-2
18
2.多向受力下的应力分量
(2)应力分量的表示
为了清楚的表示各个微分面上的应力分量,我们给三个 微分面命名为:X面、Y面、Z面;让每一个应力分量都 带上两个下标,第一个下标表示应力分量的作用面,第 二个下标表示应力分量的作用方向。所以,九个应力分 量可以表示为:
可以看出,两个下标相同的应力是正应力,如σxx,一般 写成σx的形式;两个下标不相同的是剪切应力,如τxy。
2013-9-2
2
型钢轧制
2013-9-2
3
轧辊的断裂
2013-9-2
4
锤锻过程
2013-9-2
5
飞机蒙皮的成形
破裂 起皱
F
F
能否一次成形,用什么样的模具? 变形量是否满足要求(厚度减薄量等)? 要想定量的研究变形过程,建立理论公式, 在研究塑性力学行为时,必须采用一些假设。
2013-9-2 6
2013-9-2
7
在塑性理论中,分析问题需要从静力学、几何 学和物理学等角度考虑。静力学角度是从变形 体中质点的应力分析出发、根据静力平衡条件 导出应力平衡微分方程。几何学角度是根据变 形体的连续性和匀质性假设,用几何的方法导 出小应变几何方程。物理学角度是根据实验和 基本假设导出变形体内应力与应变之间的关系 式,即本构方程。此外,还要建立变形体由弹 性状态进入塑性状态并使继续进行塑性变形时 所具备的力学条件,即屈服准则。
2013-9-2 10
2013-9-2
11
2.体积力
体积力是与变形体内各质点的质量成正比的力,如 重力、磁力和惯性力等。 对于一般的塑性成形过程,由于体积力与加工中的 面力比较起来要小的多,在实际工程计算中一般可 以忽略。 但在高速加工时,如高速锤锻造、爆炸成形等,金 属塑性流动的惯性力应该考虑。如锤上模锻时,坯 料受到由静到动的惯性力作用,惯性力向上,有利 于金属充填上模,故锤上模锻通常形状复杂的部位 设置在上模。
第三章 应力分析与应变分析
3.1应力与点的应力状态
3.1.1 六个基本假设 3.1.2 外力 3.1.3 应力和内力
3.1.4 点的应力状态
3.1.5 张量与应力张量
2
1
3.1 应力状态基本概念
金属塑性加工是金属与合金在外力作用下产 生塑性变形的过程,所以必须了解塑性加工 中工件所受的外力及其在工件内的应力和应 变。本章讲述变形工件内应力状态的分析及 其表示方法。这是塑性加工的力学基础。
斜切微分面上的切应力为:
S 2 2
2013-9-2
25
综上可知,变形体内任意点的应力状态可以通 过该点且平行于坐标面的三个微分面上的九个 应力分量来表示。
x
y z
xy yx yz zy
zx xz
或者说,通过变形体内任意点垂直于坐标轴所 截取的三个相互垂直的微分面上各应力 ij 已知 时,便可确定该点的应力状态。
2013-9-2
16
1.单向受力下的应力及其分量
一点的应力向量不仅取决于该点的位置,还取决于截面的方位。
过试棒内一点Q并垂直于拉伸轴线横截面C-C上的应力为:
S0 dP P 0 dF F0
0 0
若过Q点做任意切面C1-C1,其法线N与拉伸轴成θ 角,面 积为F1。由于是均匀拉伸,故截面C1-C1上的应力是均布的。 此时截面上Q点的全应力Sθ 、正应力σ θ 、切应力τ θ 分别 为:
2013-9-2
14
P dP S lim dF F 0 F
S为截面C-C上点Q的全应力。全应力为矢 量,可分解成两个分量,一个垂直于截面 C-C,即C-C截面外法线N上的分量,称为 正应力,一般用σ 表示;另一个平行于截面 C-C,称为切应力,用τ 表示。则:
S 2 2 2
2013-9-2
23
3.1.4 点的应力状态
现设斜面上的全应力为S,它在三个坐标轴方 向的分量分别为Sx,Sy,Sz,由于四面体 QABC处于平衡状态,由静力平衡条件由∑Fx = 0,∑Fy= 0,∑Fz = 0即有:
SxdF –σxdFx – τyxdFy – τzxdFz = 0 SydF –σydFy – τxydFy – τzydFz = 0 SzdF –σzdFz – τyzdFy – τxzdFz = 0
2013-9-2 26
应力边界条件方程
如果该四面体素的斜面 恰好为变形体的外表面 上的微面素,并假定此 面素单位面积上的作用 力在坐标轴方向的分力 分别为px、py、pz,则
p x x l yx m zx n p y xyl y m zy n p z xzl yz m z n
2013-9-2 8
3.1.2 外力
塑性成形是利用金属的塑性,在外力作用下使 其成形的一种加工方法。 作用于金属的外力分为两类: 面力或接触力:作用于金属表面的力,可以是 集中的,但一般是分布的力。 体积力:作用在金属物体的每个质点上的力。
2013-9-2
9
1.面力
作用力 塑性加工设备的可动工具部分对工件所作用的 力,用于使金属坯料产生塑性变形,又称主动力。可 以实测或理论计算,用于验算设备强度和设备功率。 在不同的加工工序中,可以是压力、拉力或剪切力。 反作用力 一般情况下,作用力与反作用力互相平行, 并组成平衡力系。 摩擦力 沿工具和工件接触面切向阻碍金属流动的力, 其方向平行于接触面,并与金属质点流动方向或流动 趋势相反。摩擦力最大值不应超过金属的抗剪强度。 摩擦力的存在往往会引起变形力的增加,对金属的塑 性往往是有害的。 正压力 沿工具和工件接触面法向阻碍工件整体移动或 金属流动的力,其方向垂直于接触面,并指向工件。
2013-9-2 22
3.1.4 点的应力状态
已知某个坐标系中Q点的三个互相垂 直的坐标面上的九个应力分量。现过 Q点作一个任意斜切微分面ABC,这 样就组成一个微小四面体QABC。外 法线方向为N,则这个斜面与三个坐 标轴x、y、z的方向余弦分别为: l = cos( N,x); m = cos( N,y ); n = cos(N,z)。 假设斜面ABC面积为dF,则dF在三 个坐标面上的投影面积分别为: dFx =ldF;dFy = mdF;dFz = ndF
整理得:
S x x l yx m zx n S y xy l y m zy n S z xz l yz m z n
S x x yx zx l 或 S y xy y zy m S z xz yz z n
2013-9-2 27
应力边界条件方程的物理意义: 建立了过外表面上任意点,单位表面力与过 该点垂直坐标轴截面上应力分量的关系。
2013-9-2
28
3.5.1 求和约定和应力张量
(1)求和约定
为了简化公式和书写的方便,我们常采用求和 约定的方式来书写公式。例如我们探讨一矩阵 与向量的乘法:
(1)应力分量的提出
设在直角坐标系中有一个承受外力 的物体,物体内有一个质点Q,现在围 绕Q点切取一个矩形六面体作为单元体, 六面体的棱边分别平行于坐标系的三根 坐标轴。取六面体中三个互相垂直的表 面作为微分面,各个微分面上的全应力 都可以按坐标轴方向分解为一个正应力 和两个切应力,三个微分面共有九个应 力分量,其中三个正应力分量,六个切 应力分量。可以用这九个应力分量来表 示物体内点的应力状态。
3.1.1 六个基本假设
(1)连续性假设。变形体内均由连续介质组成,即整个变形体
内不存在任何空隙。这样,应力、应变、位移等物理量都是连续变化的, 可化为坐标的连续函数。 且相同的,即各质点的物理性能均相同,且不随坐标的改变而变化。 能、力学性能均相同,也不随坐标的改变而变化。
(2)匀质性假设。变形体内各质点的组织、化学成分都是均匀
S P P cos 0 cos F1 F0 1 2