应力与应变状态分析

合集下载

应力及应变状态

应力及应变状态
斜切微分面上的应力
19Βιβλιοθήκη 一、一点附近应力表示法4. 主应力和应力不变量 已知单元体的应力状态为:
és x t xy t xz ù és x t xy t xz ù ê ú ê ú s ij = êt yx s y t yz ú = ê s y t yz ú êt zx t zy s z ú ê sz ú û ë û ë
s 1 = s 0 × cos a
F
单向拉伸时轴向应力随截面方位变化
16
外载荷不变的情况下, 应力的数值取决于其所 作用平面的方位。
一、一点附近应力表示法
3. 直角坐标系下一点的应力状态
s ij =
és x t xy t xz ù êyx s y t yz ú t êt yx s y t yz ú êt zx t zy s z ú ë û
应力状态和应变状态分析
内容
l塑性加工应力分析 — 一点附近应力表示方法 l平衡微分方程 l塑性加工应变分析 --- 点的应变状态分析
2
F
预测金属变形?载荷?缺陷? 应力和应变分析 变形区域内接触应力 变形力F
平衡方程 Forging F 塑性条件 物理方程 几何方程 边界条件
Extrusion
三维空间问题 (十三个未知数,十三个方程) 轴对称问题 (九个未知数,九个方程) 平面问题 3 (三个未知数,三个方程)
一、一点附近应力表示法
1.基本概念
外力: 外部施加作用在物体上的力。(接触力,摩擦力,重力等) 内力: 外力作用下,物体各点之间产生相互作用的力。 应力: 变形体中单位面积上的内力。
4
一、一点附近应力表示法 外力分析
正压力—工具与工件接触面上的垂直作用力

工程力学7第七章应力状态和应变状态分析

工程力学7第七章应力状态和应变状态分析

x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布





• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y

y

y
y
y
n
y

x
a
x

e
d
x

x
x
bz
x
x

x
e
x
x




y


f
yy
x
x

b


c
y

y

y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2

第七章应力状态及应变状态分析

第七章应力状态及应变状态分析

第七章 应力状态及应变状态分析第一节 概 述在第一章中将应力定义为内力的集度或单位面积的内力值。

应力又分正应力σ和剪应力τ两种。

前面各章的知识表明,受力杆件中任一点的应力是随截面位置及点的位置的不同而不同,如7-1(a )中a 、b 两点分别在两个截面上,其应力是不同的。

同一截面上的各点,如图7-1(b )中b 、c 两点的应力一般情况下也是不同的。

同一点不同方向的应力也是不同的。

过一点各个方向上的应力情况称为该点的应力状态....,应力状态分析就是要研究杆件中某一点(特别是危险点)各个方向上的应力之间的关系,确定该点处的最大正应力和最大剪应力,为强度计算提供重要依据。

研究应力状态的方法是过杆件中的任一点取出一个微小的六面体——单元..体.。

如图7-1(a )中过a 点取出的单元体放大如图7-2所示。

单元体三个方向的边长很小且趋于零,则该单元体代表一点,即a 点,互相平行的平面上的正应力相等,剪应力也相等。

杆件在任意荷载作用下,从中所取出的单元体表面上一般既有正应为又有剪应力,如图7-2所示。

当图7-2所示的单元体各面上的,0,0,0,0,0,0======zy zx yx yz xz xy ττττττ 即六个面上均没有剪应力作用时,这种面叫做特殊平面,并定义为主平面...。

该主(a)(b)图7-1各点的应力情况平面上作用的正应力称为主应力...,用,,,321σσσ表示(,321σσσ≥≥),如图7-3所示。

各面均为主平面的单元体,称为主单元体....。

三个主应力中若有两个等于零一个不等于零,该单元体称为单向应力状态......,如图7-4(a );三个主应力中有一个等于零,两个不等于零,该单元体称为二向应...力状态...,如图7-4(b );三个主应力均不等于零,该单元体称为三向应力状态......,如7-3。

单向应力状态和二向应力状态属平面应力状态,三向应力状态属空间应力状.....态.。

材料力学应力与应变分析

材料力学应力与应变分析
主应力和次应力
在复杂应力状态下,物体内部某一点处的主应力表示该点处最主要 的应力,次应力则表示其他较小的应力。
应力表示方法
应力矢量
应力矢量表示应力的方向和大小,通常用箭头表示。
应力张量
在三维空间中,应力可以用一个二阶对称张量表示,包括三个主应力和三个剪切 应力分量。
主应力和剪切应力
主应力
在任意一点处,三个主应力通常是不相等的,其中最大和最小的主应力决定了材料在该点的安全程度 。
采用有限元分析方法,建立高 层建筑的三维模型,模拟不同 工况下的应力与应变分布。
结果
通过分析发现高层建筑的关键 部位存在较高的应力集中,需
要进行优化设计。
结论
优化后的高层建筑结构能够更 好地承受各种载荷,提高了安
全性和稳定性。
THANKS FOR WATCHING
感谢您的观看
不同受力状态下的变形行为。
06 实际应用与案例分析
实际应用场景
航空航天
飞机和航天器的结构需要承受高速、高海拔和极端温度下 的应力与应变,材料力学分析是确保安全的关键。
汽车工业
汽车的结构和零部件在行驶过程中会受到各种应力和应变 ,材料力学分析有助于优化设计,提高安全性和耐久性。
土木工程
桥梁、大坝、高层建筑等大型基础设施的建设需要精确的 应力与应变分析,以确保结构的稳定性和安全性。
剪切应力
剪切应力是使物体产生剪切变形的力,其大小和方向与剪切面的法线方向有关。剪切应力的作用可以 导致材料产生剪切破坏。
04 应变分析
应变定义
定义
应变是描述材料形状和尺寸变化的物理量, 表示材料在外力作用下发生的形变程度。
单位
应变的单位是1,没有量纲,常用的单位还有微应变 (με)和工程应变(%)。

材料力学:第八章-应力应变状态分析

材料力学:第八章-应力应变状态分析
斜截面: // z 轴; 方位用 a 表示;应力为 sa , ta
正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相等,同时
sa+90 ,ta+90
E
sa+90 ,ta+90
结论: 所画圆确为所求应力圆
应力圆的绘制与应用3
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
t
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
应力圆绘制 作D, E连线中垂线,与x轴相交即为应力圆圆心
tb sb
t
sa
O
C
ta
D
sa ,ta
t
s
E
sb ,tb
O
D
sa ,ta
C
s
E
sb ,tb
由|DC|=|CE|,可得sC值:
sC
s
2 β
+
t
2 β
s
2 α
+
t
2 α
2 sα sβ
点、面对应关系
转向相同, 转角加倍 互垂截面, 对应同一直径两端
应变状态
构件内一点处沿所有方位的应变总况或集合, 称为该点处的 应变状态
研究方法
环绕研究点切取微体, 因微体边长趋于零, 微体趋于所研究 的点, 故通常通过微体, 研究一点处的应力与应变状态

第八章2应力应变状态分析

第八章2应力应变状态分析

第八章2应力应变状态分析应力应变状态分析是研究材料或结构在外力作用下所产生的应力和应变的过程。

应力是单位面积上的内力,用于描述材料或结构对外力的抵抗能力。

而应变是形变相对于初始状态的变化量,用于描述材料或结构的变形程度。

针对材料或结构的应力应变状态进行分析,可以帮助我们了解其力学性能和稳定性,为工程实践提供重要依据。

应力应变状态分析是弹性力学的基本内容之一、根据材料的力学性质和外力的作用,可以得到不同的应力应变状态。

在弹性力学中,线弹性和平面应变假定是常用的简化假设。

线弹性假定材料仅在拉伸和压缩的方向上有应力,而在横截面上的应力是均匀分布的。

一维拉伸和挤压是线弹性应力应变状态的基本类型。

平面应变假定材料在一个平面内有应力,而在垂直于该平面的方向上无应力。

二维平面应变是平面应变应力应变状态的基本类型。

在应力应变状态分析中,我们通常关注应力和应变之间的关系。

最常见的是材料的应力-应变曲线。

应力-应变曲线描述了材料在外力作用下的力学行为,可以帮助我们了解材料的强度、塑性和韧性等性能。

在弹性阶段,应力-应变曲线呈线性关系,符合胡克定律。

而在屈服点之后,材料会发生塑性变形,应力不再是线性关系。

当应力达到最大值时,材料会发生破坏。

除了应力-应变曲线外,还有一些其他重要的参数和指标可用于描述应力应变状态。

例如,弹性模量是描述材料刚度的重要参数,表示单位应力引起的单位应变量。

剪切弹性模量描述了材料抵抗剪切变形的能力。

同时,杨氏模量和泊松比也是用于描述材料力学性质的常用参数。

应力应变状态分析在材料工程、结构工程以及土木工程等领域具有重要应用。

通过对材料和结构的应力应变状态进行分析,可以帮助我们评估其性能和强度,并且对设计和优化具有指导意义。

例如,在结构工程中,通过应力应变状态分析可以确定材料的承载能力和极限状态,从而确保结构在设计荷载下的安全运行。

然而,应力应变状态分析也面临一些挑战。

首先,材料的力学性质和变形行为往往是非线性的,需要使用复杂的数学模型进行描述。

材料力学之应力与应变分析

材料力学之应力与应变分析
(2)面的方位用其法线方向表示
3.截取原始单元体的方法、原则
①用三个坐标轴(笛卡尔坐标和极坐标,依问题和构件形状 而定)在一点截取,因其微小,统一看成微小正六面体
②单元体各个面上的应力已知或可求; ③几种受力情况下截取单元体方法:
P
P
Me B
Me
A
s A s=P/A
B t=Me/Wn
Байду номын сангаасa) 一对横截面,两对纵截面 P

ss"'
a0 *
ttxyxy a0 *
ss"'
4.极值切应力:
应力与应变分析
①令:
,可求出两个相差90o 的
a1,代表两个相互垂直的极值切应力方位。
②极值切应力:

(极值切应力平面与主平面成45o)
例一 图示单元体,试求:①a=30o斜
截面上的应力; ②主应力并画出主单元
体;③极值切应力。
s" 40
txy
ssxtxxy

a
a
dA

x
tyx sy
sy tyx

符号规定:
应力与应变分析
a角—以x轴正向为起线,逆时针旋转为正,反之为负
s拉为正,压为负
t—使微元产生顺时针转动趋势者为正,反之为负
3.主应力及其方位:
①由主平面定义,令t =0,得:
可求出两个相差90o的a0值,对应两个互相垂直主平面。
④单向应力状态又称简单应力状态,平面和空间应 力状态又称复杂应力状态。
第二节 平面应力状态下的 应力研究、应力圆
一、平面应力分析的解析法
1.平面应力状态图示:

第七章 应力状态、应变分析和强度理论

第七章 应力状态、应变分析和强度理论

§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135

y =60 MPa xy = -50MPa =-30°
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ma x
min
x y 2
(x 2y)2x2 y ——主应力的大小
1 ; 2 ; 3 ; m ;am x;i0 n
最大正应力(σmax)与X轴的夹角规定用“α0 ” 表示。 简易判断规律:由τ的方向判断。
α0 α0
2、 τ的极值及所在平面
x 2ysi2n xy co 2s
d 0 d
tg21
3、三向应力状态:三向主应力都不等于零的应力状态。
平面应力状态:单向应力状态和二向应力状态的总称。 空间应力状态:三向应力状态 简单应力状态:单向应力状态。 复杂应力状态:二向应力状态和三向应力状态的总称。 纯剪切应力状态:单元体上只存在剪应力无正应力。
§8-2 平面应力状态分析——解析法
一、任意斜面上的应力计算
主应力排列规定:按代数值由大到小。 1 2 3
10 σ1=50 MPa ;
50
30 σ2=10 MPa ; σ3=-30 MPa 。
单位:MPa
10 σ1=10 MPa ;
30 σ2=0 MPa ; σ3=-30 MPa 。
8、画原始单元体: 例 :画出下列图中的 a、b、c 点的已知单元体。
二、σ、τ的极值及所在平面(主应力,主平面)
1、 σ的极值及所在平面(主应力,主平面)
x 2 y x 2 yc2 o s xs y 2 i n d d 0 x 2 ys2 i n 0 xc y 2 o 0 s0 0 0
tg20
2xy x y
——主平面的位置
( 0;
0 0900 )
F
F a
x
a
x
x
F A
y b C
z
y b
C z
M F L
b xz
zx
x
M
WT
yx
C xy
x b x
C
σx
x
x
FL WZ
y
b

x
c
x
z
M0
二、应力状态的分类:
yx
b
zx
xz x
C xy
x
M0 WZ
M WT
1、单向应力状态:只有一个主应力不等于零,另两个主应力 都等于零的应力状态。
2、二向应力状态:有两个主应力不等于零 ,另一个主应力 等于零的应力状态。
等价
y x
xy
y
x
n
xy
t
图1
设:斜截面面积为dA,由分离体平衡得:
F n0;
d A (xdcAo )c so s(xd y cAo )ssin (ydsAin )sin (yd x sAin )co s0
Ft 0
dA(xdA cos)sin(xydA cos)cos (ydA sin)cos(yxdA sin)sin0
小结
§8—1 应力状态概述
一、基本概念:
m a x ; m a x
F 铸铁拉伸
F 铸铁压缩
F 铸铁与低碳钢的拉、压、扭 试验现象是怎样产生的?

低碳钢 铸铁
组合变形杆将怎样破坏?
σmax ? τmax ?
F M
1、应力状态:构件内任意一点处取一单元体,单元体上的应力。 2、一点处应力状态:构件内通过一点各个方向的应力的总称。 3、研究的目的:找出一点处沿不同方向应力的变化规律,确定
出最大应力,从而全面考虑构件破坏的原因, 建立适当的强度条件。
4、研究方法:取单元体。
单元体的概念:构件内的点的代表物,是包围被研究点的无限小 的几何体,常用的是正六面体。
单元体上应力的性质:每个面上的应力均布,每对相平行面上的 应力大小、性质完全相同。
σα
FP
A FP
x A x
A τα
5、主平面:剪应力等于零的面。 6、主应力:主平面上的应力(正应力)。 7、主单元体:由主平面组成的单元体。
min
x 2
y
(x 2y)2x2 y
450
σ1
yx
0 0x2yxy
1x;y 20 ;3 x.y
20
30 单位:MPa σ1 、σ2、σ3 ?
2、主平面
tg20
2xy x y
2xy
0
0 450;
例:如图所示单元体,求α斜面的应力及主应力、主平面。
60
解:1、 α斜面的应力
50 40
x 2 y x 2 yc2 o s xs y 2 i n
σ1=80.7(MPa);σ2=0;σ3=-60.7(MPa)。
tg20
2xy x y
2 ( 50 ) 40 60
1
0 67.50
60 50
σ1
60
α0
50
40
σ1;σ2;σ3?
90
40
σ3
(单位:MPa)
§8-3 平面应力状态分析——图解法
一、基本原理:
xx 2 2yysin2 x 2yxcycoo2s2sxysin2
300
40604060cos6( 00)
2
2
(单位:MPa)
(50)sin(600)58.3(MP)a
x 2ysi2n xy co 2s
4060sin6(00)(5)0cos6(00) 2
1.83(MP ) a
2、主应力、主平面
ma x
min
x y( 2
x 2
y)2x2 y
42 0 6 0(42 0 6)2 0 ( 5)2 0 8 6..7 7 0 0 ( (M M) )P P
x y 2xy
——最大剪应力 所在的位置
(1;
1 1900 )
max
min
(x
y)2
2Leabharlann 2 xy——xy面内的最大剪应力
max
min
1
3
2
——整个单元体内的最大剪应力
最大剪应力与X轴的夹角规定为“α1”
tg20tg211
(10450)
例:如图所示单元体,求主应力及主平面。
解:1、主应力
σ3
xy
max
考虑剪应力互等和三角变换,得:
x 2 y x 2 yc2 o s xs y 2 i n
x 2ysi2n xy co 2s
——任意α斜面应力的计算公式
规律: 900xy
注意:用公式计算时代入相应的正负号
符号规定:、“”正负号同“”; 、 “正负号同“ ;
、 “为斜面的外法线与 轴正向的夹角, 逆时针为正,顺时针为负。
第八章 应力与应变状态分析
§8—1 应力状态概述 §8-2 平面应力状态分析——解析法 §8-3 平面应力状态分析——图解法 §8-4 梁的主应力及其主应力迹线 §8-5 三向应力状态研究 §8-6 平面应力状态下的应变分析 §8-7 复杂应力状态下的应力 -- 应变关系 §8-8 复杂应力状态下的变形比能
对上述方程消参(2),得:
x 2y 2 2 x 2y 2x 2y ——应力圆方程(莫尔圆)
圆心:
(
x
y
,0)
2
半径: R
(xy
2
)2
xy2
二、应力圆的绘制:
1、取直角坐标系σοτ。
2、取比例尺(严格按比例做图)。
3、找点 D(x,xy) D(y,yx)
相关文档
最新文档