第三章 应力分析与应变分析解读

合集下载

工程力学中的应力与应变分析方法探讨

工程力学中的应力与应变分析方法探讨

工程力学中的应力与应变分析方法探讨在工程力学中,应力与应变是研究材料和结构力学性能的重要概念。

应力是指单位面积内的力的大小,而应变则是指材料的形变程度。

应力与应变的分析方法是工程力学中的核心内容之一,本文将对工程力学中的应力与应变分析方法进行探讨。

一、应力分析方法在工程力学中,常用的应力分析方法有静力学方法、接触力学方法和弹性力学方法。

静力学方法是通过平衡方程分析物体所受到的力,并计算得出应力分布情况;接触力学方法则是研究物体间的接触行为,通过接触区域的应力分布来分析力的传递情况;弹性力学方法则是应用弹性力学原理,通过杨氏模量和泊松比等参数计算得出应力分布情况。

静力学方法是应力分析中最基本的方法之一,它基于物体所受到的力的平衡条件进行分析。

静力学方法分为静力学平衡和弹性力学平衡两种情况。

静力学平衡是指物体在外力作用下不发生形变,通过将物体分解为若干个力的平衡条件方程来求解各个部位的应力;而弹性力学平衡则是物体在外力作用下发生形变,通过应力-应变关系来求解应力分布情况。

静力学方法在工程力学中应用广泛,可以分析各种载荷下的应力情况。

接触力学方法是研究物体与物体之间接触行为的力学方法,通过分析接触面的应力分布来推导出力的传递情况。

在实际工程应用中,接触力学方法广泛用于轴承、齿轮、摩擦等接触问题的分析与设计。

接触力学方法主要利用弹性力学和接触力学理论,通过建立接触面的几何模型和接触条件,求解接触区域的应力分布。

弹性力学方法是应力分析中最常用的方法之一,它基于弹性力学理论,通过材料的弹性参数计算得出应力分布。

弹性力学方法广泛应用于材料和结构强度分析中。

弹性力学方法主要使用线弹性理论,通过杨氏模量和泊松比等参数来描述材料的弹性性能,根据应力-应变关系计算得出应力分布情况。

二、应变分析方法在工程力学中,常用的应变分析方法有光栅衍射法、电测法和应变计法。

光栅衍射法是利用光学原理来测量物体表面的应变分布情况,通过测量光栅的位移来计算应变大小;电测法则是利用电阻应变片等设备来测量物体表面的应变分布情况;应变计法则是通过安装应变计来测量物体表面的应变分布情况。

河海大学 材料力学 第三章 杆件横截面上的应力、应变分析第一节

河海大学 材料力学  第三章  杆件横截面上的应力、应变分析第一节

点K处的应力(stress) DF p=lim pm= lim —— DA→0 DA→0 DA
p 正应力s :沿截面法向 n 切应力t :沿截面切向 s p 2= s 2 + t 2
应力单位:Pa(帕斯卡、帕) MPa(兆帕)
1 Pa = 1 N/m2 1MPa =106 Pa
注意:
t
K
s
以上分析可见,应力是受力物体内某个截面上某 一点上内力分布集度。通常情况下,物体内各点 应力是不同的,对于同一点不同方位截面上应力 亦不同。这样,应力离开它的作用点是没有意义 的,同样,离开它的作用面亦是没有意义的。
(shearing strain) 单位: rad。
四、胡克定律
s
s
du e= — dx
u
u+du
如果仅在单方向正应力s 作用下,且正应力不超过某 一限值(比例极限),则正应力与正应变成正比,即
s = Ee ——胡克定律(Hooke's law)
E ——弹性模量。(elastic modulus)
如何描述一点处的应力?
二、一点的应力状态、单元体:
K K
围绕K点取一微小的六面体,称为单元体。
六个面都表示通过同一点K的面,只是方向不同而已。
如果所取的单元体在空间方位不同,则单元体上各面 的应力分量亦不相同。
sy
y
tyz
tyx txy txz sx
x
tzy
z
sz
tzx
若从一复杂受力构件内某点取一单元体,一般 情况下单元体各面上均有应力,且每一面上同时存 在三个应力分量:一个法向分量——正应力;两个 切向分量——切应力。这样,单元体上共有9个应力 分量。

材料力学应力与应变分析

材料力学应力与应变分析
主应力和次应力
在复杂应力状态下,物体内部某一点处的主应力表示该点处最主要 的应力,次应力则表示其他较小的应力。
应力表示方法
应力矢量
应力矢量表示应力的方向和大小,通常用箭头表示。
应力张量
在三维空间中,应力可以用一个二阶对称张量表示,包括三个主应力和三个剪切 应力分量。
主应力和剪切应力
主应力
在任意一点处,三个主应力通常是不相等的,其中最大和最小的主应力决定了材料在该点的安全程度 。
采用有限元分析方法,建立高 层建筑的三维模型,模拟不同 工况下的应力与应变分布。
结果
通过分析发现高层建筑的关键 部位存在较高的应力集中,需
要进行优化设计。
结论
优化后的高层建筑结构能够更 好地承受各种载荷,提高了安
全性和稳定性。
THANKS FOR WATCHING
感谢您的观看
不同受力状态下的变形行为。
06 实际应用与案例分析
实际应用场景
航空航天
飞机和航天器的结构需要承受高速、高海拔和极端温度下 的应力与应变,材料力学分析是确保安全的关键。
汽车工业
汽车的结构和零部件在行驶过程中会受到各种应力和应变 ,材料力学分析有助于优化设计,提高安全性和耐久性。
土木工程
桥梁、大坝、高层建筑等大型基础设施的建设需要精确的 应力与应变分析,以确保结构的稳定性和安全性。
剪切应力
剪切应力是使物体产生剪切变形的力,其大小和方向与剪切面的法线方向有关。剪切应力的作用可以 导致材料产生剪切破坏。
04 应变分析
应变定义
定义
应变是描述材料形状和尺寸变化的物理量, 表示材料在外力作用下发生的形变程度。
单位
应变的单位是1,没有量纲,常用的单位还有微应变 (με)和工程应变(%)。

第三章应力分析应变分析屈服准则复习讲诉

第三章应力分析应变分析屈服准则复习讲诉

a 0 0
1 ij
0
b
0
0 0 0
ab
2
ab 2
0
2 ij
a
b 2
ab 2
0
0
0 0
一、应力张量不变量及其应用
例题解答
对于
1 ij
J1 a b0 a b
J2
a 0
0b
b0
00
00
0
a
ab
a00 J3 0 b 0 0
000
同理,对于
2 ij
J1
a
2
b
a
2
b
0
a
b
ab
J2
试问上述应变场在什么情况下成立?
例题解答
2 xy xy
1 2
2 x y 2
2 y x2
(1)
2 xy 2 (2bxy) 2b xy xy
1
2
2 x y 2
2 y x2
1
2
2
a x2 y2 y 2
2
axy
x2
a
a 2b 即当a 2b时,上述应变场存在。
应变分析问题小 结
max min
2
C
2.2 单向拉伸时的Tresca屈服准则
2.2 Tresca yield criterion in uniaxial stretch test
三、应变连续方程问题
知识要点回顾
小应变几何方程
2 x y2
2 y2
u x
2 xy
u
y
(1)
2 y x2
2 x2
v y
2 v xy x
(2)

第三章 应力分析

第三章 应力分析

σx τxy τxz σy yx τ τyz Sx τzy σz τzx By Sz S= σ Sy N
A x
主平面上的应力
S x = σ l , S y = σ m, S z = σ n S x = σl = σ x l + τ yx m + τ zx n ⎫
⎪ S y = σm = τ xy l + σ y m + τ zy n⎬ ⎪ S z = σn = τ xz l + τ yzx m + σ z n ⎭
S y dF − σ y mdF − τ xy ldF − τ zy ndF = 0
写成矩阵形式:
z C σ τx
y x
dF N σ Sz S Sy Sx O τz
y z
斜面上全应力为: 斜面上切应力为:
S = Sx + S y + Sz
2 2 2
2
σ
y z
τx τy
x z
σ = S xl + S y m + S z n
F0
P
N θ
σ0
σθ C F1 C1 Q Q
P P ⎧ C ⎪ Sθ = F = F cos θ = σ 0 cos θ 1 0 ⎪ ⎪ 2 ⎨σ θ = Sθ cos θ = σ 0 cos θ ⎪ 1 ⎪τ θ = Sθ sin θ = σ 0 cos θ sin θ = σ 0 sin 2θ 2 ⎪ ⎩
SN = σ N +τ N
2 2
2
3.2 点应力状态
点应力状态:点的应力状态,是指物体内任意一点附近不同方位上所承 受的应力情况,必须了解物体内任意一点的应力状态,才可推断整个变 形物体的应力状态。 1、一点应力状态的两种描述方法 第一种方法:应力状态图 在变形区内某点附近取一无限小的单元六面体,在其每个界面上都 作用着一个全应力,设单元体很小,可视为一点,故对称面上的应力是 相等的,只需在三个可见的面上画出全应力:

应力分析与应变分析

应力分析与应变分析

1 2 y
2 z 2
1 2
2 z
x 2
2 y
x 2
2 z
y 2
2 x
z 2
讨论:
1.物理意义:表示各应变分量之间的相互关系“连续 协调”即变形体在变形过程中不开裂,不堆积; 2.应变协调方程说明:同一平面上的三个应变分量中 有两个确定,则第三个也就能确定;在三维空间内 三个切应变分量如果确 定,则正应变分量也就可以 确定; 3.如果已知位移分量,则按几何方程求得的应变分量 自然满足协调方程;若是按其它方法求得的应变分 量,则必须校验其是否满足连续性条件。
e
2 2(1 )
(
(1 2 )2 (2 3)2 (3 1)2
( ——泊松比)
对于塑性变形:
e
2( 3
(1 2 )2 (2 3)2 (3 1)2
真实应力和真实应变含义:
tr p(t) A(t)
表示某瞬时的应力值
tr ln(lt l0 )
表示对某瞬时之前的应变的积分
§1.3 应力张量的分解与几何表示
ij
' ij
ij m
(i,j=x,y,z)
其中
m
1 3
(
x
y
z
)
即平均应力,
为柯氏符号。

x
.
xy y
xz yz
.x'
xy
' y
xz yz
m
1 0
0 1
0 0
.
. z .
.
' z
0 0 1
' x
x
m,
' y
y
m
' z

应力和应变分析和强度

应力和应变分析和强度

泊松比
总结词
泊松比是描述材料横向变形与纵向变形之间关系的物理量。
详细描述
当材料受到外力作用时,会发生形变。泊松比是表示材料在受到外力作用时,横向变形与纵向变形之间的比例关 系。其值通常在-0.5到0.5之间,但不同材料的泊松比可能会有所不同。
屈服强度
总结词
屈服强度是描述材料在受到外力作用时开始发生屈服现象的应力极限。
应力和应变分析和强度
目录
• 应力分析 • 应变分析 • 强度分析 • 材料性能 • 应力和应变的关系 • 工程应用
01
应力分析
定义与概念
01
02
03
应力
物体受到外力作用时,单 位面积上的内力。
应变
物体在外力作用下发生的 形状和尺寸的改变。
应力分析
通过数学模型和实验手段, 研究物体在受力状态下的 应力分布、大小和方向的 过程。
应力分类
正弯曲应力
由于弯曲产生的应力。
扭曲应力
由于扭曲产生的应力。
应力计算方法
解析法
通过数学公式和物理定律,计算应力 的方法。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的应力,再组合得到 整体的应力分布。
实验法
通过实验手段测量物体的应力分布。
应变计算方法
有限元分析法
有限元分析是一种数值计算方法,通过将物体离散化为有限个小的单元,对每个 单元进行受力分析和形变计算,再通过单元的集合来模拟整个物体的形变。这种 方法可以处理复杂的几何形状和边界条件,广泛应用于工程领域。
实验测量法
通过在物体上粘贴应变片或使用激光干涉仪等设备来测量物体的形变,这种方法 可以直接获得物体的应变值,但需要专业的设备和操作技能。

应力和应变分析

应力和应变分析

应力和应变分析应力和应变分析是材料力学中非常重要的一项内容,它们研究材料在外力作用下的变形行为。

应力是表征材料单位面积内的力的大小,而应变则是描述材料单位长度内的变形程度。

应力和应变的分析可以帮助我们理解材料的强度和刚度,以及材料在不同条件下的变形和破坏机制。

本文将从应力和应变的定义、材料的本构关系和应变测量等方面进行探讨。

首先,应力的定义为单位面积内的力的大小,常用符号为σ,其计算公式为σ=F/A,其中F为施加力的大小,A为力作用的面积。

应力的单位通常为帕斯卡(Pa),1Pa等于1N/m^2、根据作用力的不同方向,应力又可以分为正应力和剪应力。

正应力是垂直于材料截面的力,剪应力则是在材料截面上平行于切平面的力。

其次,应变是材料受力后发生的形变程度,常用符号为ε,其计算公式为ε=ΔL/L0,其中ΔL为长度的增量,L0为力作用前的长度。

应变的单位为无量纲。

类似于应力,应变也有正应变和剪应变之分。

正应变是材料在力作用下产生的沿体积方向的变化,剪应变则是在截面上平行于剪切力方向的变化。

应力和应变之间的关系可以通过材料的本构关系来描述。

材料的本构关系是材料在应力与应变之间的函数关系,通常以应力-应变曲线的形式表示。

根据材料的性质不同,应力-应变曲线可以分为线性区、弹性区、屈服区、塑性区和断裂区。

在线性区内,应力和应变呈线性关系,材料具有良好的弹性行为。

在弹性区内,材料回复到原始形状,没有永久性变形。

当应力超过一定的值时,材料进入屈服区,出现塑性变形。

塑性区内,材料的应变增大,但没有太大的应力增加。

当材料无法再承受应力引起继续塑性变形时,出现断裂。

最后,应变的测量是应力和应变分析的重要一环。

常用的应变测量方法包括拉伸试验、剪切试验、压缩试验等。

拉伸试验是最常见的应变测量方法之一,通过施加拉力来测量材料在不同应力下的应变。

剪切试验则是通过施加剪切力来测量材料的剪切应变。

压缩试验则是将材料压缩后测量其压缩应变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/11/30 6
3.1.1 六个基本假设
(1)连续性假设。变形体内均由连续介质组成,即整个变形体
内不存在任何空隙。这样,应力、应变、位移等物理量都是连续变化的, 可化为坐标的连续函数。 且相同的,即各质点的物理性能均相同,且不随坐标的改变而变化。 能、力学性能均相同,也不随坐标的改变而变化。
第三章 应力分析与应变分析
3.1应力与点的应力状态
3.1.1 六个基本假设 3.1.2 外力 3.1.3 应力和内力
3.1.4 点的应力状态
3.1.5 张量与应力张量
2018/11/30
1
3.1 应力状态基本概念
金属塑性加工是金属与合金在外力作用下产 生塑性变形的过程,所以必须了解塑性加工 中工件所受的外力及其在工件内的应力和应 变。本章讲述变形工件内应力状态的分析及 其表示方法。这是塑性加工的力学基础。
2018/11/30 12
3.1.2 外力
重力
体积力
惯性力
电磁力
……
特点:分布在物体体积的外力,它作 用在物体内部的每一个质点上
外力
作用力(主动力)
面力
约束反力
反作用力 正压力 摩擦力
特点:分布在物 体表面的外力
2018/11/30
13
3.1.3 内力和应力
内力:在外力作用下,物体内各质点之间产 生的相互作用的力。 应力:单位面积Байду номын сангаас的内力。
2018/11/30
14
P dP S lim dF F 0 F
S为截面C-C上点Q的全应力。全应力为矢 量,可分解成两个分量,一个垂直于截面 C-C,即C-C截面外法线N上的分量,称为 正应力,一般用σ 表示;另一个平行于截面 C-C,称为切应力,用τ 表示。则:
S 2 2 2
2018/11/30
2
型钢轧制
2018/11/30
3
轧辊的断裂
2018/11/30
4
锤锻过程
2018/11/30
5
飞机蒙皮的成形
破裂 起皱
F
F
能否一次成形,用什么样的模具? 变形量是否满足要求(厚度减薄量等)? 要想定量的研究变形过程,建立理论公式, 在研究塑性力学行为时,必须采用一些假设。
2018/11/30 10
2018/11/30
11
2.体积力
体积力是与变形体内各质点的质量成正比的力,如 重力、磁力和惯性力等。 对于一般的塑性成形过程,由于体积力与加工中的 面力比较起来要小的多,在实际工程计算中一般可 以忽略。 但在高速加工时,如高速锤锻造、爆炸成形等,金 属塑性流动的惯性力应该考虑。如锤上模锻时,坯 料受到由静到动的惯性力作用,惯性力向上,有利 于金属充填上模,故锤上模锻通常形状复杂的部位 设置在上模。
2018/11/30 15
若将C-C截得的下半部分放在 空间直角坐标系oxyz中,使CC截面垂直于某坐标轴,如y轴, 即C-C截面外法线方向N平行于 y轴,则过Q点的微分面称为y 面。将Q点的全应力S在三个坐 标轴上的投影称为应力分量。 每个应力分量可用两个下角标 的符合表示,第一个角标表示 该应力分量所在的平面,第二 个下角标表示其作用方向。
2018/11/30 8
3.1.2 外力
塑性成形是利用金属的塑性,在外力作用下使 其成形的一种加工方法。 作用于金属的外力分为两类: 面力或接触力:作用于金属表面的力,可以是 集中的,但一般是分布的力。 体积力:作用在金属物体的每个质点上的力。
2018/11/30
9
1.面力
作用力 塑性加工设备的可动工具部分对工件所作用的 力,用于使金属坯料产生塑性变形,又称主动力。可 以实测或理论计算,用于验算设备强度和设备功率。 在不同的加工工序中,可以是压力、拉力或剪切力。 反作用力 一般情况下,作用力与反作用力互相平行, 并组成平衡力系。 摩擦力 沿工具和工件接触面切向阻碍金属流动的力, 其方向平行于接触面,并与金属质点流动方向或流动 趋势相反。摩擦力最大值不应超过金属的抗剪强度。 摩擦力的存在往往会引起变形力的增加,对金属的塑 性往往是有害的。 正压力 沿工具和工件接触面法向阻碍工件整体移动或 金属流动的力,其方向垂直于接触面,并指向工件。


2018/11/30
7
在塑性理论中,分析问题需要从静力学、几何 学和物理学等角度考虑。静力学角度是从变形 体中质点的应力分析出发、根据静力平衡条件 导出应力平衡微分方程。几何学角度是根据变 形体的连续性和匀质性假设,用几何的方法导 出小应变几何方程。物理学角度是根据实验和 基本假设导出变形体内应力与应变之间的关系 式,即本构方程。此外,还要建立变形体由弹 性状态进入塑性状态并使继续进行塑性变形时 所具备的力学条件,即屈服准则。
(2)匀质性假设。变形体内各质点的组织、化学成分都是均匀
(3)各向同性假设。变形体内各质点在各个方向上的物理性
( 4)初应力为零假设。物体在受力之前是处于自然平衡
状态,即物体变形时内部所产生的应力仅由外力引起。 ( 5)体积力为零假设。体积力如重力、磁力、惯性力等 与面力相比十分微小,可忽略不计。 (6)体积不变假设。 物体在塑性变形前后体积不变。
2018/11/30
16
1.单向受力下的应力及其分量
一点的应力向量不仅取决于该点的位置,还取决于截面的方位。
过试棒内一点Q并垂直于拉伸轴线横截面C-C上的应力为:
S0 dP P 0 dF F0
0 0
若过Q点做任意切面C1-C1,其法线N与拉伸轴成θ 角,面 积为F1。由于是均匀拉伸,故截面C1-C1上的应力是均布的。 此时截面上Q点的全应力Sθ 、正应力σ θ 、切应力τ θ 分别 为:
S P P cos 0 cos F1 F0 1 2
S cos 0 cos 2 S sin 0 sin 2
2018/11/30 17
在单向匀速拉伸条件下,可用一个σ0来表示其一点的应力状态,称为单向应力状态。
2.多向受力下的应力分量
(1)应力分量的提出
设在直角坐标系中有一个承受外力 的物体,物体内有一个质点Q,现在围 绕Q点切取一个矩形六面体作为单元体, 六面体的棱边分别平行于坐标系的三根 坐标轴。取六面体中三个互相垂直的表 面作为微分面,各个微分面上的全应力 都可以按坐标轴方向分解为一个正应力 和两个切应力,三个微分面共有九个应 力分量,其中三个正应力分量,六个切 应力分量。可以用这九个应力分量来表 示物体内点的应力状态。
相关文档
最新文档