微生物电化学脱氯

合集下载

电化学氧化与芬顿技术降解三氯生的研究进展

电化学氧化与芬顿技术降解三氯生的研究进展

电化学氧化与芬顿技术降解三氯生的研究进展曾湘梅【摘要】三氯生(TCS)作为一种高效的广谱抗菌剂,被广泛应用于各种药品及个人护理用品中.随着三氯生的大量使用,在水环境中频繁被检出的同时,也发现其在一定条件下,还发现其会转化成其他致癌物及多种有毒有害物质,这将给生态系统安全和平衡带来了极大的隐患.常规的污水处理工艺对三氯生的降解都很有限.高级氧化技术能高效降解三氯生,且能在降解后大大提高三氯生的可生化性.在对目前常用于降解三氯生的电化学氧化和芬顿技术介绍的基础上,并从各种技术的机理,处理效果,目前存在的问题等方面对每种氧化技术进行阐述,并对其广泛应用于工业化处理提出展望.【期刊名称】《有色冶金设计与研究》【年(卷),期】2017(038)002【总页数】4页(P46-49)【关键词】污水处理;三氯生;电催化高级氧化技术;芬顿【作者】曾湘梅【作者单位】中冶赛迪工程技术股份有限公司,重庆市400013【正文语种】中文【中图分类】X703包括三氯生在内的一大类新兴的化学物质具有潜在危害,从而引起人们的广泛关注,这些化学品包括药物和个人护理用品 (pharmaceuticals and personal careproducts,简称PPCPs)[1]。

直到1999年在美国环境保护总署(EPA)支持下,Daugh ton和Ternes (1999)[2]发表了一篇关于药品及个人护理用品的综述文章,PPCPs污染才得以正式被提出[1]。

三氯生(TCS)作为药品与个人护理品(PPCPs)中的添加物,是一种国际流行的广谱抗菌剂。

由于它们与皮肤有极好的相容性,对革兰氏阳性菌、革兰氏阴性菌、真菌、酵母菌、病毒等也都有高效抑杀作用,因此被广泛应用于纺织品、塑料、肥皂、化妆品、牙膏和伤口消毒剂等类产品中,起到杀菌、抑菌和除臭的作用[3]。

三氯生是一种潜在的持久性有机污染物(Persistent organic pollutants,POPS),其亲水性低,亲脂性强,pH为7时,log Kow为4.8[4],物理化学性质稳定,在环境中较难降解。

污水处理中的微生物电化学技术

污水处理中的微生物电化学技术
在工业废水处理中,微生物电化学技术可以针对不同行业的废水进行分类处理。例如,针对造纸、印染、食品等行业的废水 ,可以采用相应的微生物电化学技术进行处理,实现废水的净化与资源化利用。此外,该技术还可以用于处理含有重金属离 子的废水,降低重金属离子对环境的危害。
农村污水处理
农村污水处理是微生物电化学技术的又一应用领域。由于农村地区基础设施相对薄弱,传统的污水处 理方法难以覆盖,因此需要一种低成本、易维护的处理技术来解决农村污水处理问题。微生物电化学 技术正是一种适合农村地区应用的污水处理技术。
降低处理成本
该技术的应用可以降低污水处理 过程中的能耗和物耗,从而降低 处理成本,提高经济效益。
促进可持续发展
微生物电化学技术符合可持续发 展的理念,有助于推动人类社会 与自然环境的和谐发展。
THANKS
感谢您的观看
资源回收与能源利用
该技术可以将污水处理过程中的有机物转化为电 能或氢能等可再生能源,实现资源的回收和能源 的再利用。
促进生态平衡
微生物电化学技术可以减少化学药剂的使用,降 低对环境的污染,同时促进微生物的生长和繁殖 ,有助于维护生态平衡。
对未来污水处理技术的启示与影响
创新污水处理工艺
微生物电化学技术为污水处理领 域提供了新的思路和方法,有助 于推动污水处理工艺的创新和发 展。
解决方案
针对这些问题,研究者们正在探索新型电极材料、优化反应器设计和提高能量 转化效率的方法,如使用三维电极、优化电解液组成和反应条件等。
成本与经济效益分析
成本
微生物电化学技术的成本主要包括设备 投资、运营维护和人力成本等。目前该 技术的成本相对较高,但随着技术的进 步和应用规模的扩大,成本有望逐渐降 低。
VS

微生物电化学技术去除水体中抗生素的研究进展

微生物电化学技术去除水体中抗生素的研究进展

微生物电化学技术去除水体中抗生素的研究进展微生物电化学技术去除水体中抗生素的研究进展近年来,随着抗生素的广泛应用,水体中的抗生素污染问题逐渐引起人们的关注。

由于抗生素的广泛应用导致许多抗生素残留在水体中,对环境和人类健康造成潜在风险。

因此,寻找一种高效、低成本、环境友好的方法去除水体中的抗生素显得尤为重要。

微生物电化学技术是一种利用微生物在电极表面的活性产物氧化还原反应来降解水体中有机物的方法。

它是一种全新的技术,可以通过调控电解池,在微生物的作用下,使抗生素分子氧化还原反应,从而将其降解为无毒物质。

由于微生物电化学技术具有高效、低成本、环境友好等优点,越来越多的研究开始关注其在水体中抗生素去除方面的应用。

微生物电化学技术尤其适用于抗生素降解的研究。

研究人员通过选取产电性强、耐受性强的细菌,并与电极表面形成生物膜,形成电化学活性区域。

在适当的实验条件下,细菌能够利用电极作为电子受体供给呼吸和生长过程中所需的电子,同时利用有机物作为碳源进行生长。

在这个过程中,抗生素分子与细菌产生相互作用,从而降解抗生素分子。

研究发现,微生物电化学技术去除水体中的抗生素具有显著的优势。

首先,微生物电化学技术在抗生素降解方面表现出极高的降解率和去除率。

研究人员通过实验证明,微生物电化学技术可以在较短时间内去除水体中的抗生素,且去除率可以达到90%以上。

其次,微生物电化学技术具有低成本的优势。

相比传统的物理化学方法,微生物电化学技术不需要大量的化学药剂投入,节省了成本。

同时,通过微生物的自动修复功能,电解池的寿命可以得到有效延长。

再次,微生物电化学技术是一种环境友好的方法。

生物电化学反应不会产生有害物质和二次污染,对环境没有负面影响。

此外,微生物电化学技术还具有灵活性强的优点,可以灵活调节反应条件,从而适应不同抗生素的降解。

尽管微生物电化学技术在抗生素降解领域已取得了显著的进展,但仍然面临一些挑战。

首先,微生物的选择和电极表面的生物膜构建是微生物电化学技术研究的关键环节。

原油有机氯的形态分析及脱除

原油有机氯的形态分析及脱除

原油有机氯的形态分析及脱除王彩凤;杨霄;吴剑虹;夏明桂【摘要】The extraction dechlorination process was applied to test the removal effect of chlorines in the oil bytriethylbenzylammonium,triethylamine,N-Dimethylformamide (DMF) and dechlorination agent TC-F,and the chlorines extracted were analyzed The results show that the dechlorination agent TC-F can successfully extract most of organic chlorides.The extraction rate after passivation is as high as 80.99% when the extractant to oil ratio is 16.67%.The organochlorine impurities are mainly 5-chloro-2-methylaniline and 2,6-dichloro-3-methylaniline.The dechlorination rate is as high as 82.28% at a 1% of TC-F dechlorinating agent to oil ratio.When the agent to oil is 8%,the dechlorination rate is 92.28%.Further increase of agent to oil ratio has no obvious impact on dechlorination rate.The extraction dechlorination reaction is very fast and it can be completed within 13 minutes at a 1 agent to oil ratio.When dechlorination agent B is used,the dechlorination result at an agent to oil of no greater than 6% is better than that of dechlorination agent TC-F,and the dechlorination rate is 89.57% at an agent to oil ratio of 6%.Further increase of agent to oil ratio has no obvious effect on the rise of the performance of dechlorination agentB.The dechlorination rate of dechlorination agent TC-F can reache92.77%.The application of dechlorination agent compounded with dechlorination agent TCF and dechlorination agent B can raise thedechlorination rate by 1.0 ~ 3.0 percent.Whereas,the addition of dechlorination agent B will bring in sulfide impurities,and dechlorination agent TC-F should be first selected for application.%以萃取脱氯为主要方法,测试了三乙基苄基氯化铵、三乙胺、二甲基甲酰胺(DMF)以及浓脱氯剂(TC-F)对油品中的氯元素的脱除效果,对提取出来的氯元素进行了形态分析.结果表明:TC-F可成功萃取大部分有机氯,萃取剂与油样的质量比为16.67%时洗涤纯化后的萃取率达到80.99%.有机氯的形态主要为5-氯,2-甲基苯胺、2,6-二氯,3-甲基苯胺及其同分异构体等苯胺类物质.使用TC-F脱氯剂在剂油比为1%时就能达到82.28%的脱氯率,剂油比8%时脱氯率为92.28%,再增加剂油比对脱氯率的提升不明显.该萃取脱氯的反应速度较快,在1%的剂油比时13 min即可反应完成.若使用脱氯剂B,在剂油比为6%之前其效果比TC-F脱氯剂好,剂油比6%时脱氯率89.57%,但剂油比继续提高时效果没有明显提升,而TC-F脱氯剂可达到92.77%,TC-F与脱氯剂B复配脱氯率提升1~3百分点,但加入脱氯剂B会引入硫杂质,因此推荐优先使用TC-F 脱氯剂.【期刊名称】《炼油技术与工程》【年(卷),期】2017(047)007【总页数】5页(P18-21,30)【关键词】原油;有机氯;形态分析;脱氯【作者】王彩凤;杨霄;吴剑虹;夏明桂【作者单位】武汉纺织大学化学与化工学院,湖北省武汉市430200;湖北华邦化学有限公司,湖北省武汉市430073【正文语种】中文原油中含有的氯主要分为无机氯与有机氯。

脱氯、氯气处理(修改稿)

脱氯、氯气处理(修改稿)

三、淡盐水脱氯单元3.1 概述1、脱除淡盐水中游离氯的方法有几种?脱除淡盐水中游离氯的方法有二种:物理脱氯和化学脱氯;而目前国内物理脱氯生产工艺主要有真空脱氯和空气吹除脱氯;生产实践中为提高脱氯效果,回收氯气,一般先采取物理脱氯法将大部分游离氯脱除后,再用化学脱氯法将剩余的游离氯除去。

2、淡盐水中游离氯的物理脱除和化学脱除的原理是怎样的?从淡盐水中游离氯的两种存在形式可知:脱氯原理就是破坏化学平衡和相平衡关系,使平衡向着生成氯气的方向进行,同时通过加入还原性物质去除残留的少量游离氯;破坏平衡关系的手段有:在一定的温度下增加溶液酸度和降低液体表面的氯气分压。

由于存在着平衡,所以采用上述手段不能将淡盐水中的游离氯百分之百地除去,剩余微量的游离氯(一般在10~30mg/L)用添加还原性物质(一般用亚硫酸钠)使其发生氧化还原化学反应而将其彻底除去。

化学反应如下:Cl2+H2O——→HClO+ H ClHClO——→H++ ClO-Cl2+2NaOH+Na2SO3——→+2NaCl+Na2SO4+ H2O3.2 空气吹除法脱氯3、淡盐水空气吹除法脱氯生产工艺流程是怎样的?空气吹除法脱氯生产工艺流程如下:空气吹除法脱氯工艺流程简图1—消音器;2—风机;3—空气过滤器;4—脱氯塔;5—废氯气冷却器;6—淡盐水泵;7—静态混合器;8—亚硫酸钠泵;9—亚硫酸钠配制槽;10—pH计、氧化还原电位计在线分析仪表。

工艺流程简述:来自电解工序的淡盐水(温度约85℃,pH值3~4,游离氯一般为600~800mg/l)在进入脱氯塔前,定量加入盐酸,将其pH值调至1.3~1.5 ,然后进入脱氯塔顶部;风机鼓入的空气(压力约600mmH2O,气量是淡盐水体积的6~8倍)由脱氯塔底部进入,在塔内填料表面淡盐水与空气逆流接触,逸出的湿氯气随空气从塔顶流出,淡盐水在此完成物理脱氯过程。

湿氯气经废氯气冷却器冷却后,一般送去生产次氯酸钠(因吹脱出的氯气中含有大量空气,浓度较低,一般采用二级填料塔串联,用碱吸收)。

电催化氢化还原去除水体卤代有机物研究进展

电催化氢化还原去除水体卤代有机物研究进展
( Eg/ngeeeng/ReseaehhCegieeloeWasieOnaRehoeeesTehhgoao/sagdEiunpmegi, Chog/ing/ Technoloyo and Business Univeni0,Chongq0aiedoe/agnhseepeesegiaispnhaapeesnsiegioe/agnhpoauiagiwniheaenabaemobnanis,hn/hN
Electrochtalytic hydrodechlorination reection foe detoxiOchtion of the persistent chlorinated organic pollutants io wateo
JIANG Guang-ming, 5IANG Kon-xin, LHANG Xion-ming
(6)
从电流效率数据Jiang G M等提出催化剂表面 H *的数量是远大于EHDC实际所需,产H *并不是
EHDC反应的决速步骤。在此基础上,Fu W Y等以 TiU-Cd和CAd为模型催化剂,通过实验表征和理
论计算结合,探究其表面产H*、反应动力学、污染
物(2,4-二氯苯酚)吸附活化及产物(苯酚)脱附等
[基层状金属有机框架(NMOF)为载体合成的Pd-
NMOF催化剂,相比于传统Pd-Nl材料,NiMOF的
加入使Pd颗粒被固定在NMOF的Nl配位水分子
上,Pd的分布均匀,分散性增大,活性位点增多,产 H *增强,同时NMOF具有诱导协同效应,可促进对
污染物2,-二氯苯酚的吸附,使电极在EHDC中具 有高活性与高稳定性。Yang L等[/使用新型泡沫
是提升Pd质量活性,减少其使用量最有效的方法。
Lu R等J5]通过合成一维金属Pd纳米线催化剂(直

8种电化学水处理方法

8种电化学水处理方法

8种电化学水处理方法电化学水处理 -世间万物,都是有一利就有一弊。

社会的进步和人们生活水平的提高,也不可避免地对环境产生污染。

废水就是其中之一。

随着石化、印染、造纸、农药、医药卫生、冶金、食品等行业的迅速发展,世界各国的废水排放总量急剧增加,且由于废水中含有较多的高浓度、高毒性、高盐度、高色度的成分,使其难以降解和处理,往往会造成非常严重的水环境污染。

为了处理每天大量排出的工业废水,人们也是蛮拼的。

物、化、生齐用,力、声、光、电、磁结合。

今天笔者为您总结用“电”来处理废水的电化学水处理技术。

电化学水处理技术,是指在电极或外加电场的作用下,在特定的电化学反应器内,通过一定的化学反应、电化学过程或物理过程,对废水中的污染物进行降解的过程。

电化学系统设备相对简单,占地面积小,操作维护费用较低,能有效避免二次污染,而且反应可控程度高,便于实现工业自动化,被称为“环境友好”技术。

电化学水处理的发展历程1799年Valta制成Cu-Zn原电池,这是世界上第一个将化学能转化为电能的化学电源。

1833年建立电流和化学反应关系的法拉第定律。

19世纪70年代Helmholtz提出双电层概念。

任何两个不同的物相接触都会在两相间产生电势,这是因电荷分离引起的。

两相各有过剩的电荷,电量相等,正负号相反,相互吸引,形成双电层。

1887年Arrhenius提出电离学说。

1889年Nernst提出电极电位与电极反应组分浓度关系的能斯特方程。

1903年Morse和Pierce把两根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去。

提出Tafel 公式,揭示电流密度和氢过电位之间的关系。

1906年Dietrich取得一个电絮凝技术的专利,专门有人和公司对电絮凝过程进行改进和修正。

1909年Harries(美国)取得电解法处理废水的专利,它是利用自由离子的作用和铝作为阳极。

1950年Juda首次试制成功了具有高选择性的离子交换膜,这促使电渗析技术进入了实用阶段,奠定了电渗析的实用化基础。

氯代有机污染物的电化学还原脱氯降解技术研究进展

氯代有机污染物的电化学还原脱氯降解技术研究进展
Ab ta t h lcrc e c l e u t ed c lrn t e o oi o f ra i ho d o tmiain ly d a sr c :T eee t h mia d ci e hoiaed c mp st n o g ncc lr ec na n t spa e n i o r v i o i o m-
( 1 )d + 1 C 一 aM+ C 一+M () 5 对 电催 化还 原而言 , 首先 氯代 有机物 吸附在 电极表 面 M, 形
间态 , 以通常 电还原脱 氯过程 中电极 的反应 电位不 是很 高 , 所 能 耗较低 。
( 7 1)
C3 C O 1 O H+ H h m F ( I -2 h m F ( C 2 b e e e I)- Hbe e e Ⅲ) +
+C2 H O H+H +C 一 1C C O 1 (8 1) C2 H O H + H hm F (I) + H h m F (I l CO C 2 b e e e I - 2 b e e e I) - I +CC 2 O H+H +C 一 1H C O l CC 2 O H + H hm F (I)-2 b e e e Ⅲ ) 1H C O 2 be ee I - H hm F ( + +C C O H3 O H+H +C 一 l (O 2) (9 1)
获得一个 电子还原生成 血红蛋 白 F “ , e 血红 蛋 白 F 再 与三氯 e 乙酸发生 电还原 反应 , 步生 成二 氯 乙酸 , 氯 乙酸 , 终 达 到 逐 一 最 完全脱除氯原子 的 目的。而其本身在 反应过程 中又 不断被 生成 的 中间产物一氯 乙酸和二氯乙酸氧化成血红 蛋 白 F¨ 。在这种 e 循环过程 中, 生物媒质始终保持 较高得失 电子 的能力 , 的作用 它 类似催化剂运载 电子 , 自身 的量不 被消 耗 的同时却 达 到对 氯代 有机物脱氯 降解 的 目的 。 综上所述 , 电化学还原脱氯 技术 的机 理与有 机物 结构性 质 , 电极材料 和媒 质等均有关系 , 仍有待于进一步研究 。 这
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档