角平分线 优秀课 公开课教案

合集下载

角的平分线市公开课获奖教案省名师优质课赛课一等奖教案

角的平分线市公开课获奖教案省名师优质课赛课一等奖教案

角的平分线教案一、教学目标:1. 理解什么是角的平分线以及其性质;2. 掌握如何构造角的平分线;3. 能够运用角的平分线性质解决相关几何问题。

二、教学重难点:1. 角的平分线的性质和构造方法;2. 运用角的平分线解决问题的能力。

三、教学准备:1. 教师准备黑板、白板、彩色粉笔或白板笔;2. 学生准备直尺、铅笔和橡皮擦。

四、教学步骤:Step 1:引入教师通过问学生关于角的基本知识,如定义、表示方法和度量等,引导学生进入本节课的学习主题。

然后,教师提出问题:“如何找到一个角的平分线?”激发学生思考。

Step 2:角的平分线的性质1. 教师在黑板上绘制一个角ABC,并标出其顶点为A;2. 教师向学生提问:“如果有一条线段AD,使得∠BAD = ∠CAD,我们称线段AD是角ABC的平分线,你能猜测一下角的平分线有哪些性质吗?”引导学生探索角的平分线的性质;3. 学生讨论后,教师总结角的平分线的性质:a. 角的平分线将角分成两个相等的部分;b. 角的平分线和角的边构成一个等腰三角形。

Step 3:角的平分线的构造1. 教师向学生展示角的平分线的构造方法:a. 以顶点A为中心,任取一点B和C;b. 以B和C为圆心,以相同的半径在各自的弧上分别画弧交于点D;c. 连接点A和D,则AD为所需的角的平分线。

2. 教师引导学生使用直尺和铅笔按照上述步骤,自己绘制角的平分线,并检查结果的准确性。

Step 4:练习和应用1. 教师设计一些练习题,让学生运用所学知识解决问题,巩固角的平分线的性质和构造方法;2. 学生在课堂上完成练习并相互交流答案,教师进行讲评;3. 教师提出一些实际问题,让学生运用所学知识解决,培养学生的应用能力和创新思维。

Step 5:总结1. 通过本节课的学习,学生应该理解和掌握角的平分线的性质和构造方法;2. 学生对角的平分线的性质和构造方法有一定的应用能力。

五、教学反思:通过本节课的设计和教学实施,学生可以通过自己的思考和实践,掌握角的平分线的性质和构造方法。

角平分线的市公开课获奖教案省名师优质课赛课一等奖教案

角平分线的市公开课获奖教案省名师优质课赛课一等奖教案

角平分线的教案一、教学目标:1. 理解什么是角平分线,能够准确地描述角平分线的概念。

2. 能够使用直尺和量角器作图画出角平分线。

3. 了解角平分线的性质和应用。

二、教学内容:1. 角平分线的定义和性质。

2. 如何使用直尺和量角器作图画出角平分线。

3. 角平分线的应用。

三、教学过程:导入:教师出示一个角ABC,引导学生思考角的特点和角的平分线的概念。

引入:教师通过示意图和具体例子,向学生介绍角平分线的定义和性质。

角平分线是指从一个角的顶点出发,将角平分为两等分的线段。

性质包括:角平分线上的点到角的两边的距离相等,角平分线的两边上的线段互相垂直,角平分线将角分为两个相等的角。

示范:教师使用直尺和量角器,示范如何作图来画出一个角的角平分线。

首先用直尺连接角的两边,在角的外部取一点并以这个点为中心画一个圆。

然后再使用量角器来测量这个角的一半,将测量结果与圆交点相连,即得到角的平分线。

实践:让学生进行实践操作,在纸上画出若干个角,然后利用直尺和量角器画出这些角的平分线。

鼓励学生在操作中互相交流,共同解决问题。

总结:教师带领学生一起总结角平分线的概念、性质和作图方法,并强调掌握这些内容的重要性。

拓展:教师给出一些具体问题,让学生思考使用角平分线解决问题的方法。

例如,如何证明两个角相等,如何证明一个点在角的平分线上等等。

四、教学评价:教师布置练习题,让学生运用所学知识解答。

评价学生的理解和掌握程度,同时也可以发现学生的问题,及时进行针对性的辅导。

五、教学反思:通过本次教学,学生能够了解什么是角平分线,掌握画角平分线的方法,并熟悉角平分线的性质和应用。

在教学过程中,教师可以引导学生进行思考和讨论,激发他们的学习兴趣,提高他们的学习主动性。

同时,教师也要注意评价和反馈,及时纠正学生的错误,帮助他们进行巩固和提高。

人教版八年级上册12.3《角的平分线的性质》优秀教学案例

人教版八年级上册12.3《角的平分线的性质》优秀教学案例
人教版八年级上册12.3《角的平分线的性质》优秀教学案例
一、案例背景
本节内容为人教版八年级上册12.3《角的平分线的性质》。在之前的学习中,学生已经掌握了角的概念、分类以及角的计算方法,了解了直线、射线、线段的基本性质。在此基础上,学习角的平分线的性质,既是对已有知识的巩固,也是为后续学习几何图形的对称性、角的平分线定理等知识打下基础。
4.结合学生的评价和反思,教师总结本节课的教学效果,对后续教学进行调整和改进,以提高教学质量和学生的学习效果。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入角的平分线概念。例如,展示一张图片,图片中有一辆汽车在转弯处,转弯处的角被一条线段平分,使学生感受到角的平分线在现实生活中的应用。
2.引导学生回顾已学过的角的概念、分类以及角的计算方法,为新课的学习打下基础。
2.采用小组讨论、合作交流的方式,让学生在探讨中思考,培养团队合作能力和自主学习能力。
3.利用几何画图工具,让学生动手实践,加深对角的平分线性质的理解和运用。
4.设计不同难度的题目,针对不同程度的学生进行针对性训练,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生探索数学奥秘的热情。
3.教师提出问题:“你们认为角的平分线有什么特殊性质?”,让学生思考并发表自己的观点。
(二)讲授新知
1.介绍角的平分线的定义:角的平分线是将一个角平分成两个相等角的线段。
2.讲解角的平分线的性质,如:角的平分线上的任意一点,到角的两边的距离相等;角的平分线与角的两边垂直等。
3.结合几何画图工具,如直尺、圆规等,演示角的平分线的画法,让学生直观地理解角的平分线的性质。
4.通过示例题,讲解如何运用角的平分线性质解决实际问题,如在几何图形中,如何找到一点,使这点到图形两边的距离相等。

角平分线的性质的市公开课获奖教案省名师优质课赛课一等奖教案

角平分线的性质的市公开课获奖教案省名师优质课赛课一等奖教案

角平分线的性质的教案一、教学目标:1. 知识与技能:了解角平分线的定义和性质,学会运用角平分线的性质解题。

2. 过程与方法:通过教师讲解和实例演示相结合的方式,提高学生的理解和运用能力。

3. 情感态度价值观:培养学生严谨的数学思维,注重观察与推理,提高学生的自学、合作学习和解决问题的能力。

二、教学重点与难点:1. 重点:掌握角平分线的定义和性质。

2. 难点:运用角平分线的性质解决实际问题。

三、教学过程:Step 1 引入新知(1)教师通过提问,引导学生回顾角的定义和性质,复习相关知识。

(2)教师出示一张图纸,上面有两条射线,从一个点出发,交于一点,并各自形成两个角。

教师问学生:如何判断这两个角是否相等?请从几何性质的角度进行推理。

Step 2 角平分线的定义(1)教师解释角平分线的含义:角平分线是指从角的顶点出发,把角分成两个相等的角的射线或线段。

(2)教师出示角平分线的实例图,并要求学生观察并总结出角平分线的特点。

Step 3 角平分线的性质(1)教师提供一些角平分线的性质,如:a. 角平分线把一个角分成两个相等的角。

b. 一个角的两个相等角的角平分线相交于同一点,且这个点在角的内部。

(2)教师通过具体例子进行演示,让学生观察并找出角平分线的性质,引导学生进行类比和推理。

Step 4 角平分线的运用(1)教师提供一些具体问题,要求学生利用角平分线的性质解决问题。

a. 已知一个角的两个角平分线相交于点O,求证这两个角相等。

b. 在△ABC中,AD是∠BAC的角平分线,且∠ADB = 30°,求证∠ACB = 60°。

(2)学生独立思考并进行解答,然后进行讨论,通过合作学习的方式互相交流和纠正错误。

Step 5 拓展练习(1)教师布置一些拓展练习题,要求学生独立完成。

(2)教师进行答疑解惑,引导学生进行错误分析和订正,提高学生的解题能力和思维能力。

四、教学反思:本节课通过引导学生观察、思考和推理,使学生在实际操作中领会到角平分线的定义和性质,并能灵活运用角平分线的性质解决实际问题。

角的平分线教案

角的平分线教案

•••••••••••••••••角的平分线教案角的平分线教案作为一名优秀的教育工作者,常常要写一份优秀的教案,教案是教材及大纲与课堂教学的纽带和桥梁。

我们该怎么去写教案呢?以下是小编帮大家整理的角的平分线教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

角的平分线教案1【教学目标】知识目标:1、使学生知道三角形的角平分线和中线的定义,并能熟练地画出这两种线段2、能应用三角形的角平分线和中线的性质解决简单的数学问题能力目标:培养学生形成观察辨别、全面分析、归纳概括等数学方法,培养学生的思维方法和良好的思维品质。

情感目标:通过提问、讨论等多种教学活动,树立自信、自强、自主感,激发学习数学的兴趣,增强学好数学的信心。

【教学重点、难点】教学重点、难点:三角形的角平分线、中线的定义及画图是本节课的重点,利用三角形的角平分线和中线的性质解决有关的计算问题是本节难点。

【教学过程】一、创设情景,引入新课1、让每个学生拿一张三角形纸片,把其中一个内角对折一次,使角的两边重合,得到一条折痕。

(问学生折痕是什么形状?)2、请每位学生用量角器量一量被折痕分割的二个角的大小,得到什么结论?(得到折痕平分这个内角)引出概念:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

(让学生理解三角形的角平分线的形状是线段)一、合作交流,探讨结论请同学回答下面的问题在一个三角形中有几条角平分线?请每位同学在不同类型的三角形中画一画,与同伴交流你发现了什么?在此过程中,教师可以用几何画板制作的动画演示,在锐角三角形、钝角三角形、直角三角形中三条角平分线的特点。

(三条线都在三角形的内部,三条线相交于一点)任意画一个ABC,用刻度尺画BC的中点D,连结A D引出概念:在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。

(让学的中线的形状也是线段生理解三角形)请同学回答问题:在一个三角形中有几条中线?请每位同学在不同类型的三角形中画一画,与同伴交流你发现了什么?在此过程中,教师可以用几何画板制作的动画演示,在锐角三角形、钝角三角形、直角三角形中三条中线的特点。

角平分线 优秀课 公开课教案

角平分线   优秀课 公开课教案

1.4角平分线第1课时角平分线1.复习角平分线的相关知识,探究归纳角平分线的性质和判定定理;(重点) 2.能够运用角平分线的性质和判定定理解决问题.(难点)一、情境导入问题:在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短?问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线的性质定理【类型一】应用角平分线的性质定理证明线段相等如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F 在AC上,BD=DF.求证:(1)CF=EB;(2)AB =AF+2EB.解析:(1)根据角平分线的性质,可得点D到AB的距离等于点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EBD,得CF=EB;(2)利用角平分线的性质证明△ADC和△ADE全等得到AC=AE,然后通过线段之间的相互转化进行证明.证明:(1)∵AD是∠BAC的平分线,DE ⊥AB,DC⊥AC,∴DE=DC.在Rt△DCF和Rt△DEB中,∵⎩⎪⎨⎪⎧BD=DF,DC=DE,∴Rt△CDF ≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵⎩⎪⎨⎪⎧CD=DE,AD=AD,∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB =AF+2EB.方法总结:角平分线的性质是判定线段相等的一个重要依据,在应用时一定要注意是两条“垂线段”相等.【类型二】角平分线的性质定理与三角形面积的综合运用如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB =4,则AC的长是()A.6 B.5 C.4 D.3解析:过点D作DF⊥AC于F,∵AD 是△ABC的角平分线,DE⊥AB,∴DF=DE =2,∴S△ABC=12×4×2+12×AC×2=7,解得AC=3.故选D.方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.【类型三】 角平分线的性质定理与全等三角形的综合运用如图所示,D 是△ABC 外角∠ACG 的平分线上的一点.DE ⊥AC ,DF ⊥CG ,垂足分别为E ,F .求证:CE =CF .解析:由角平分线上的性质可得DE =DF ,再利用“HL ”证明Rt △CDE 和Rt △CDF 全等,根据全等三角形对应边相等证明即可.证明:∵CD 是∠ACG 的平分线,DE ⊥AC ,DF ⊥CG ,∴DE =DF .在Rt △CDE和Rt △CDF 中,∵⎩⎪⎨⎪⎧CD =CD ,DE =DF ,∴Rt △CDE≌Rt △CDF (HL),∴CE =CF .方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.探究点二:角平分线的判定定理 【类型一】 角平分线的判定如图,BE =CF ,DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC ,求证:AD 是∠BAC 的平分线.解析:先判定Rt △BDE 和Rt △CDF 全等,得出DE =DF ,再由角平分线的判定可知AD 是∠BAC 的平分线.证明:∵DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,∴∠BED =∠CFD ,∴△BDE 与△CDF 是直角三角形.在Rt △BDE 和Rt△CDF 中,∵⎩⎪⎨⎪⎧BE =CF ,BD =CD ,∴Rt △BDE ≌Rt △CDF (HL),∴DE =DF .∵DE ⊥AB ,DF ⊥AC ,∴AD 是∠BAC 的平分线.方法总结:证明一条射线是角平分线的方法有两种:一是利用三角形全等证明两角相等;二是角的内部到角两边距离相等的点在角平分线上.【类型二】 角平分线的性质和判定的综合如图所示,△ABC 中,AB =AC ,AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F .下面给出四个结论,①AD 平分∠EDF ;②AE =AF ;③AD 上的点到B 、C 两点的距离相等;④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等.其中正确的结论有( )A .1个B .2个C .3个D .4个 解析:由AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC 可得DE =DF ,由此易得△ADE ≌△ADF ,故∠ADE =∠ADF ,即①AD 平分∠EDF 正确;②AE =AF 正确;中垂线上的点到两端点的距离相等,故③正确;∵④到AE 、AF 距离相等的点,在∠BAC 的角平分线AD 上,到DE 、DF 的距离相等的点在∠EDF 的平分线DA 上,两者同一条直线上,所以到DE 、DF 的距离也相等正确,故④正确;①②③④都正确.故选D.方法总结:运用角平分线的性质或判定时,可以省去证明三角形全等的过程,可以直接得到线段或角相等.【类型三】 添加辅助线解决角平分线的问题如图,△ABC 的∠ABC 和∠ACB的外角平分线交于点D .求证:AD 是∠BAC 的平分线.解析:分别过点D 作DE 、DF 、DG 垂直于AB 、BC 、AC ,垂足分别为E 、F 、G ,然后利用角平分线上的点到角两边的距离相等可知DE =DG ,再利用到角两边距离相等的点在角平分线上来证明.证明:分别过D 作DE 、DF 、DG 垂直于AB 、BC 、AC ,垂足分别为E 、F 、G .∵BD 平分∠CBE ,DE ⊥BE ,DF ⊥BC ,∴DE =DF .同理DG =DF ,∴DE =DG ,∴点D 在∠BAC 的平分线上,∴AD 是∠BAC 的平分线.方法总结:在遇到角平分线的问题时,往往过角平分线上的一点作角两边的垂线段,利用角平分线的判定或性质解决问题.【类型四】 线段垂直平分线与角平分线的综合运用如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O .(1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系.解析:(1)由垂直平分线的性质可得出相等的线段;(2)由条件可证明△AOC ≌△AOD ,可得AO 平分∠DAC ,根据角平分线的性质可得OE =OF .解:(1)∵AB 、CD 互相垂直平分,∴OC =OD ,AO =OB ,且AC =BC =AD =BD ;(2)OE =OF ,理由如下:在△AOC 和△AOD 中,∵⎩⎪⎨⎪⎧AC =AD ,OC =OD ,AO =AO ,∴△AOC ≌△AOD (SSS),∴∠CAO =∠DAO .又∵OE ⊥AC ,OF ⊥AD ,∴OE =OF .方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.三、板书设计1.角平分线的性质定理角平分线上的点到这个角的两边的距离相等.2.角平分线的判定定理 在一个角的内部,到角的两边距离相等的点在这个角的平分线上.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.第2课时 平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究 探究点一:对角线互相平分的四边形是平行四边形【类型一】 利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 中点.求证:(1)△AOC ≌△BOD ; (2)四边形AFBE 是平行四边形. 解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 就可以了.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧AO =OB ,∠AOC =∠BOD ,∠C =∠D ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】 利用平行四边形的判定定理(3)证明线段或角相等 如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,F 分别是OA ,OC 的中点,请判断线段BE ,DF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA =OC ,OB =OD ,利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .因为四边形ABCD 是平行四边形,所以OA =OC ,OB =OD .因为E ,F 分别是OA ,OC 的中点,所以OE =OF ,所以四边形BFDE 是平行四边形,所以BE =DF ,BE ∥DF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴S △EGO =S △FHO .方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD 中,AD∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG .(1)求证:四边形DEGF 是平行四边形; (2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.解析:(1)求出平行四边形AGCD ,推出CD =AG ,推出EG =DF ,EG ∥DF ,根据平行四边形的判定推出即可;(2)由点G 是BC 的中点,BC =12,得到BG =CG =12BC=6,根据四边形AGCD 是平行四边形可知AG =DC =10,根据勾股定理得AB =8,求出四边形AGCD 的面积为6×8=48.解:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形,∴AG =DC .∵E 、F 分别为AG 、DC 的中点,∴GE =12AG ,DF =12DC ,即GE =DF ,GE ∥DF ,∴四边形DEGF 是平行四边形;(2)∵点G 是BC 的中点,BC =12,∴BG =CG =12BC =6.∵四边形AGCD 是平行四边形,DC =10,AG =DC =10,在Rt △ABG 中,根据勾股定理得AB =8,∴四边形AGCD 的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计 1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.六、词语点将(据意写词)。

《 角平分线》 (第1课时)示范公开课教学设计【部编北师大版八年级数学下

《 角平分线》 (第1课时)示范公开课教学设计【部编北师大版八年级数学下

《角平分线》 (第1课时)示范公开课教学设计【部编北师大版八年级数学下《角平分线》 (第1课时) 示范公开课教学设计一、引言在几何学中,角平分线是指将一个角分成两个相等的小角的射线或线段。

它是几何学中一个重要的概念,具有广泛的应用价值。

本文将针对八年级数学下册中的《角平分线》这一知识点,设计一个示范公开课教学,以帮助学生更好地理解和应用角平分线的概念。

二、教学目标1. 知识目标:- 理解角平分线的定义;- 掌握构造角平分线的方法。

2. 能力目标:- 能够运用角平分线的概念解决相关几何问题;- 培养学生观察、分析和解决问题的能力。

三、教学重点和难点1. 教学重点:- 角平分线的定义;- 构造角平分线的方法。

2. 教学难点:- 运用角平分线解决相关几何问题。

四、教学准备1. 教师准备:- 相关教学课件;- 黑板、粉笔、尺子等教学工具;- 多个已画好的角图,以供学生观察和分析。

2. 学生准备:- 学生课本;- 笔、纸。

五、教学步骤及内容安排1. 导入(5分钟)- 引入角平分线的概念,以让学生对本课内容产生兴趣。

2. 观察与讨论(10分钟)- 展示已画好的角图,要求学生仔细观察每个图中的现象和特点; - 将学生分成小组,让他们讨论可能的构造角平分线的方法;- 随机抽取几个小组分享讨论结果,并引导学生理解角平分线的定义。

3. 角平分线的构造方法(15分钟)- 展示构造角平分线的步骤,并进行详细解释;- 通过几个实例的演示,让学生亲自操作尺子、直尺等工具,完成角平分线的构造。

4. 角平分线的性质讲解(10分钟)- 介绍角平分线的几个重要性质,如:角平分线相交于角的内部,相交点到角的两条边的距离相等等;- 引导学生理解这些性质并举例进行实际应用。

5. 巩固练习(15分钟)- 要求学生在作业本上完成若干道练习题,巩固对角平分线的理解和应用。

6. 拓展思考(5分钟)- 提出一个拓展问题,让学生思考并尝试解答;- 鼓励学生主动发言,及时给予肯定和指导。

1.4角平分线(教案)

1.4角平分线(教案)

同学们,今天我们将要学习的是《角平分线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将角平均分成两个相等角的情况?”比如,在剪纸或拼图时,我们可能需要这样的技巧。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索角平分线的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角平分线的基本概念。角平分线是通过角的顶点,将角分成两个相等角的射线。它在几何图形的分割和证明中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用角平分线来解决实际问题,以及它如何帮助我们解决几何问题。
3.重点难点解析:在讲授过程中,我会特别强调角平分线的定义和性质这两个重点。对于难点部分,比如性质的应用,我会通过具体例题和图示来帮助大家理解。
此外,课后我对学生的作业进行了批改,发现他们在解题过程中对角平分线的应用还不够熟练。为了帮助他们巩固知识点,我计划在下一节课开始时,对一些典型的错误进行讲解,让学生明白自己错在哪里,如何改正。
另外,小组讨论环节,我发现有些学生参与度不高,可能是因为他们对讨论主题不够感兴趣或者不知道如何表达自己的观点。针对这个问题,我打算在下次课中尝试引入一些生活化的例子,激发学生的兴趣,并引导他们如何进行有效讨论。同时,我也会鼓励学生多与同伴交流,培养他们的团队协作能力。
在学生小组讨论的引导过程中,我意识到提问技巧的重要性。提出的问题既要能够启发学生思考,又要具有一定的开放性,让学生有足够的空间发挥。在今后的教学中,我会更加注意问题的设计,努力提高学生的逻辑思维能力和解决问题的能力。
首先,我意识到在讲解角平分线性质时,需要更多地结合实际例子来帮助学生理解。例如,在证明角平分线上的点到角的两边距离相等时,我可以准备一些具体的图形,让学生观察、测量并自己推导出这个性质。这样既能提高他们的几何直观能力,也能加深对性质的理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4角平分线第1课时角平分线1.复习角平分线的相关知识,探究归纳角平分线的性质和判定定理;(重点) 2.能够运用角平分线的性质和判定定理解决问题.(难点)一、情境导入问题:在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短?问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线的性质定理【类型一】应用角平分线的性质定理证明线段相等如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F 在AC上,BD=DF.求证:(1)CF=EB;(2)AB =AF+2EB.解析:(1)根据角平分线的性质,可得点D到AB的距离等于点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EBD,得CF=EB;(2)利用角平分线的性质证明△ADC和△ADE全等得到AC=AE,然后通过线段之间的相互转化进行证明.证明:(1)∵AD是∠BAC的平分线,DE ⊥AB,DC⊥AC,∴DE=DC.在Rt△DCF和Rt△DEB中,∵⎩⎪⎨⎪⎧BD=DF,DC=DE,∴Rt△CDF ≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵⎩⎪⎨⎪⎧CD=DE,AD=AD,∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB =AF+2EB.方法总结:角平分线的性质是判定线段相等的一个重要依据,在应用时一定要注意是两条“垂线段”相等.【类型二】角平分线的性质定理与三角形面积的综合运用如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB =4,则AC的长是()A.6 B.5 C.4 D.3解析:过点D作DF⊥AC于F,∵AD 是△ABC的角平分线,DE⊥AB,∴DF=DE =2,∴S△ABC=12×4×2+12×AC×2=7,解得AC=3.故选D.方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.【类型三】 角平分线的性质定理与全等三角形的综合运用如图所示,D 是△ABC 外角∠ACG 的平分线上的一点.DE ⊥AC ,DF ⊥CG ,垂足分别为E ,F .求证:CE =CF .解析:由角平分线上的性质可得DE =DF ,再利用“HL ”证明Rt △CDE 和Rt △CDF 全等,根据全等三角形对应边相等证明即可.证明:∵CD 是∠ACG 的平分线,DE ⊥AC ,DF ⊥CG ,∴DE =DF .在Rt △CDE和Rt △CDF 中,∵⎩⎪⎨⎪⎧CD =CD ,DE =DF ,∴Rt △CDE≌Rt △CDF (HL),∴CE =CF .方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.探究点二:角平分线的判定定理 【类型一】 角平分线的判定如图,BE =CF ,DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC ,求证:AD 是∠BAC 的平分线.解析:先判定Rt △BDE 和Rt △CDF 全等,得出DE =DF ,再由角平分线的判定可知AD 是∠BAC 的平分线.证明:∵DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,∴∠BED =∠CFD ,∴△BDE 与△CDF 是直角三角形.在Rt △BDE 和Rt△CDF 中,∵⎩⎪⎨⎪⎧BE =CF ,BD =CD ,∴Rt △BDE ≌Rt △CDF (HL),∴DE =DF .∵DE ⊥AB ,DF ⊥AC ,∴AD 是∠BAC 的平分线.方法总结:证明一条射线是角平分线的方法有两种:一是利用三角形全等证明两角相等;二是角的内部到角两边距离相等的点在角平分线上.【类型二】 角平分线的性质和判定的综合如图所示,△ABC 中,AB =AC ,AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F .下面给出四个结论,①AD 平分∠EDF ;②AE =AF ;③AD 上的点到B 、C 两点的距离相等;④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等.其中正确的结论有( )A .1个B .2个C .3个D .4个 解析:由AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC 可得DE =DF ,由此易得△ADE ≌△ADF ,故∠ADE =∠ADF ,即①AD 平分∠EDF 正确;②AE =AF 正确;中垂线上的点到两端点的距离相等,故③正确;∵④到AE 、AF 距离相等的点,在∠BAC 的角平分线AD 上,到DE 、DF 的距离相等的点在∠EDF 的平分线DA 上,两者同一条直线上,所以到DE 、DF 的距离也相等正确,故④正确;①②③④都正确.故选D.方法总结:运用角平分线的性质或判定时,可以省去证明三角形全等的过程,可以直接得到线段或角相等.【类型三】 添加辅助线解决角平分线的问题如图,△ABC 的∠ABC 和∠ACB的外角平分线交于点D .求证:AD 是∠BAC 的平分线.解析:分别过点D 作DE 、DF 、DG 垂直于AB 、BC 、AC ,垂足分别为E 、F 、G ,然后利用角平分线上的点到角两边的距离相等可知DE =DG ,再利用到角两边距离相等的点在角平分线上来证明.证明:分别过D 作DE 、DF 、DG 垂直于AB 、BC 、AC ,垂足分别为E 、F 、G .∵BD 平分∠CBE ,DE ⊥BE ,DF ⊥BC ,∴DE =DF .同理DG =DF ,∴DE =DG ,∴点D 在∠BAC 的平分线上,∴AD 是∠BAC 的平分线.方法总结:在遇到角平分线的问题时,往往过角平分线上的一点作角两边的垂线段,利用角平分线的判定或性质解决问题.【类型四】 线段垂直平分线与角平分线的综合运用如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O .(1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系.解析:(1)由垂直平分线的性质可得出相等的线段;(2)由条件可证明△AOC ≌△AOD ,可得AO 平分∠DAC ,根据角平分线的性质可得OE =OF .解:(1)∵AB 、CD 互相垂直平分,∴OC =OD ,AO =OB ,且AC =BC =AD =BD ;(2)OE =OF ,理由如下:在△AOC 和△AOD 中,∵⎩⎪⎨⎪⎧AC =AD ,OC =OD ,AO =AO ,∴△AOC ≌△AOD (SSS),∴∠CAO =∠DAO .又∵OE ⊥AC ,OF ⊥AD ,∴OE =OF .方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.三、板书设计1.角平分线的性质定理角平分线上的点到这个角的两边的距离相等.2.角平分线的判定定理 在一个角的内部,到角的两边距离相等的点在这个角的平分线上.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.第2课时 平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究 探究点一:对角线互相平分的四边形是平行四边形【类型一】 利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 中点.求证:(1)△AOC ≌△BOD ; (2)四边形AFBE 是平行四边形. 解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 就可以了.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧AO =OB ,∠AOC =∠BOD ,∠C =∠D ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】 利用平行四边形的判定定理(3)证明线段或角相等 如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,F 分别是OA ,OC 的中点,请判断线段BE ,DF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA =OC ,OB =OD ,利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .因为四边形ABCD 是平行四边形,所以OA =OC ,OB =OD .因为E ,F 分别是OA ,OC 的中点,所以OE =OF ,所以四边形BFDE 是平行四边形,所以BE =DF ,BE ∥DF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴S △EGO =S △FHO .方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD 中,AD∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG .(1)求证:四边形DEGF 是平行四边形; (2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.解析:(1)求出平行四边形AGCD ,推出CD =AG ,推出EG =DF ,EG ∥DF ,根据平行四边形的判定推出即可;(2)由点G 是BC 的中点,BC =12,得到BG =CG =12BC=6,根据四边形AGCD 是平行四边形可知AG =DC =10,根据勾股定理得AB =8,求出四边形AGCD 的面积为6×8=48.解:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形,∴AG =DC .∵E 、F 分别为AG 、DC 的中点,∴GE =12AG ,DF =12DC ,即GE =DF ,GE ∥DF ,∴四边形DEGF 是平行四边形;(2)∵点G 是BC 的中点,BC =12,∴BG =CG =12BC =6.∵四边形AGCD 是平行四边形,DC =10,AG =DC =10,在Rt △ABG 中,根据勾股定理得AB =8,∴四边形AGCD 的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计 1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.六、词语点将(据意写词)。

相关文档
最新文档