1.均值不等式(含答案)
均值不等式含答案

课时作业15均值不等式时间:45分钟满分:100分课堂训练5 31.已知-+-=l(.r>0,)>0),则小的最小值是( )A V【答案】当且仅当3x=5y时取等号.42・函数f(x)=x+~+3在(一8,一2]上( )xA.无最大值,有最小值7B.无最大值,有最小值一1C.有最大值7,有最小值一1D.有最大值一1,无最小值【答案】D4【解析】Vx^-2, :.f(x)=x+~+3✓V= __(r)+(—羽+3W_2 寸(-弓+34=—1,当且仅当一x=—即x=—2时,取等号,有最大值一1,无最小值.1 43・己知两个正实数小y 满足x+y=4,则使不等式三+^上加恒 兀y 成立的实数m 的取值范围是 _____________ .【答案】(-8,計 【分析】 对于本题中的函数,可把x+1看成一个整体,然后 将函数用x+1来表示,这样转化一下表达形式,可以暴露其内在的 形式特点,从而能用均值定理来处理.【解析】因为x>—1, 所以x+ l>0.“ r «+7x+10 (X +1)2+5(X +1)+4 所以尸x+1= 吊4 / f+D+吊+5N2 屮 +1)•苗+5=94当且仅当x+l= 勒,即X=1时,等号成立.mx+n = t,那么/(X )与g(x)都可以转化为关于t 的函数• 课后作业一、选择题(每小题5分,共40分)・••当x=\时,工+7x+l° 灯仆-1 — $函数〉'一 丫+1 (x>—1),取侍取:小值为9.【规律方法】 形如 f(x) — mx _^n (加工°, dHO)或者 g(x) —【解析】斤胃字E+芥沁+树+2胡畔4. 求函数y=以+7卄10~x+1(Q-1)的最小值. mx+n1.设X>0,则y=3-3x--的最大值是(A. 3 B・ 3—3也C. 3-2\/3 D・一1【答案】C[解析】y=3 —3x—2=3 —(3x+g)W3— =3_2^/5.当且仅当3x=p即兀=平时取“=”・2.下列结论正确的是()A.当x>0 且xH 1 时,lgx+占$2C.当诈2时,x+2的最小值为2D.当0<A W2时,x—丄无最大值X【答案】B【解析】A中,当x>0且兀工1时,lgx的正负不确定,・°・lgx +占M2或lgx+吉W—2; C中,当诈2时,(x+£)min=|; D中当1 I 30aW2 时,),=兀一?在(0,2]上递增,(x--).…ax=2-3.如果d, b 满足0<a<b, a+b= 1,则g, u,2ub, a2+b2中值最大的是()A. 3C. 3-2^3A iB • aD. cr+b 1【答案】D【解析】 方法一:*.* 0<ci<b,・ *. 1 =a+b>2a i 又 a 2+b 2^2cib 9・•・最大数一定不是“和2", 又 a 2+b 2=(a + b)2—lab = 1 — 2ab, V \ =a+b>2\[ab,ab<^,1 — 2ab> 1 —[=[, 即 cP+Z?2>^.I ? 45方法二:特值检验法:取a=y b=y 则2ab=§, a 2+b 2=^ / ^>2>Q >3,^cr+b 1 最大.4. 己知a>b>c>0.则下列不等式成立的是() 1,1 _______ 2 a~b b —f^a —c1 ___2 b~c a~c]a~b【答案】A【解析】*.\/>Z?>c>0, *.a —b>0, b —c>0, a — c>0,••・("_4士+爲C. lab 1<21 b —c= [(a~b) + (b~c)Y b~c a —b =2+三+口匚+丄宀丄5. 下列函数中,最小值为4的是(C. /(x) = 3x +4X3"v【答案】D ・ /(x) = lgx+log v 10«+5 工+4+1 —•血)=2X 严=2X = 2X(尸 +寸;+4)24,要取等号,必须寸卫+4=^^^,即工+4=1,这是不 可能的,排除.故选C.6. 今有一台坏天平,两臂长不等,其余均精确.有人说要用它 称物体的重量,只需将物体放在左、右托盘各称一次,则两次称量结 果的和的一半就是物体的真实重量•设物体放在左右托盘称得的重量 分别为“,则物体的实际重量为多少?实际重量比两次称量 的结果的一半大了还是小了?()a+bA.—^―;大 C.\[ab ;大 【答案】D4A. f(x)=x+~ 工+5B ・・22X 严 【解析】 A 、D 选项中,不能保证两数为正,排除;B 选项不 b~c a~b22+2、/三•戸=4能取等号, B ・¥力 D.\[cib ;小【解析】 设物体真实重量为血,天平左.右两臂长分别为d 12,则ml [=al2® m 【2 = bh ②①X ②得加2川2 =如2 • • m =yfcib又・・•字鼻颁且“Hb,・・・等号不能取得,故g 字. 7・已知x>0,)>0, x+2y+2xy=8,则x+ly 的最小值是( )A. 3B. 49 C 2【答案】B•: — l<x<8,8—x 9 I Q・・・+)=卄2•百亍(卄1)+吊-222屮+1)•吊—2 = 94,当且仅当x+l=—y 时“="成立,此时x=2, y=l,故选B.1 F -HxH -18 .在区间[㊁,2]上,函数.心)=工+加+c (Z?、c G R )与g (x )=: --------------------------------------------------------------------------- ---- 在同一点取得相同的最小值,那么/(对在区间百,2]上的最大值是 ( )5D 4F+x+11【解析】 Tx+2y+2x)=88—x2x+2>0, C. 8【解析】•••g(x) = -—=X+£+1N3,当x=l时取等号,即当x=l时取最小值3, :.fix)的对称轴是x=l, ・•”=—2,将(1,3)代入即得c=4, 5)=工一加+4,易得在右,2]上的最大值是4.二、填空题(每小题10分,共20分)工+29.比较大小:-7=7= ________ 2(填“>”y,“N” 或“W”)・帖+1【答案】2Q+2 J ________ 1【解析】脅7T声1+肩百浓10.当X>1时,不等式^+土鼻“恒成立,则实数"的取值范X— 1围是_______ .【答案】(一8, 3]【解析】Tx>l, ・°・x+— >0,x— 1要使x+JryNd 恒成立,设f{x) =x+-^~r(x> 1),则dW/(X)min 对x>\恒成立.又./W=x+=7=x—1+7^7+1鼻2寸(%^)><^^+1=3,当且仅当x—1=亠即兀=2时取“=”・X— 1・・・aW3.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.设兀,yWR*,且x+y+xy=2,(1)求x+y的取值范围;(2)求厂的取值范围.Y-H V【解析】(1) 2 = x+y+xy W x+y+(2,当且仅当x=y时取“•二(x+yF+4(x+y) — 8 $0.・:[(x+y)+2]2212.*/x+y>0, .*.x+y+2・・」+〉—2也一2,当且仅当x=y=羽一1时取“ ="•故x+y的取值范围是[2萌一2, +8).(2)2=x+y+xy2y[xy+xy,当且仅当x=y=\[3— 1 时取“=”.•: (y[xy)2~\~2ylxy^2.1)?W3.又x、)>0, .\y[xy+1>0. .\y[xy+ 1羽—1.・・・()5W4—2萌,即厂的取值范围是(0,4—2羽].12.某渔业公司今年初用98万元购进一艘渔船用于捕捞,每一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.(1)问捕捞几年后总盈利最大,最大是多少?(2)问捕捞几年后的平均利润最大,最大是多少?【解析】(1)设船捕捞刃年后的总盈利y万元.则,n(n— 1)y=50/?-98-[12Xn+ 2X4]= -2/r+40/?-98=-2(/1-10)2+102・:捕捞10年后总盈利最大,最大是102万元.v 4W(2)年平均利润为匚=—2 n+—-20r~49W_2〔2\” •万_20,= 1249当且仅当”=节,即n=7时上式取等号.所以,捕捞7年后的平均利润最大,最大是12万元.【规律方法】在应用均值不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定31域内,求出函数的最大值或最小值;(4)正确写出答案.。
3-2-1《均值不等式》含答案

基 础 巩 固一、选择题1.若a 、b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2[答案] D[解析] ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误. 对于B 、C ,当a <0,b <0时,明显错误. 对于D ,∵ab >0,∴b a +ab ≥2b a ·a b =2.2.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<b C .a <ab <b <a +b2 D.ab <a <a +b2<b[答案] B[解析] ∵0<a <b ,∴a <a +b2<b ,A 、C 错误;ab -a =a (b -a )>0,即ab >a ,故选B. 3.设x 、y ∈R ,且x +y =5,则3x +3y 的最小值为( ) A .10B .6 3C .4 6D .18 3[答案] D[解析] x +y =5,3x +3y ≥23x ·3y =23x +y =235=18 3. 4.已知正项等差数列{a n }中,a 5+a 16=10则a 5a 16的最大值为( )A .100B .75C .50D .25[答案] D[解析] ∵a 5>0,a 16>0,a 5+a 16=10, ∴a 5·a 16≤(a 5+a 162)2=(102)2=25, 当且仅当a 5=a 16=5时,等号成立.5.(2012~2013学年度湖南师大附中高二期中测试)设a >0,b >0,若3是3a与3b的等比中项,则1a +1b 的最小值为( )A .8B .4C .1 D.14[答案] B[解析] 根据题意得3a ·3b =3,∴a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥4. 当a =b =12时“=”成立.故选B.6.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是( )A .a 2+b 2B .2abC .2abD .a +b[答案] D[解析] 解法一:∵0<a <1,0<b <1,∴a 2+b 2>2ab ,a +b >2ab ,a >a 2,b >b 2, ∴a +b >a 2+b 2,故选D.解法二:取a =12,b =13,则a 2+b 2=1336,2ab =63,2ab =13,a +b =56,显然56最大.二、填空题7.设实数a 使a 2+a -2>0成立,t >0,比较12log a t 与log a t +12的大小,结果为________________.[答案] 12log a t ≤log a t +12[解析] ∵a 2+a -2>0,∴a <-2或a >1, 又a >0且a ≠1,∴a >1,∵t >0,∴t +12≥t ,∴log a t +12≥log a t =12log a t , ∴12log a t ≤log a t +128.函数y =x ·(3-2x ) (0≤x ≤1)的最大值为______________. [答案] 98[解析] ∵0≤x ≤1,∴3-2x >0,∴y =122x ·(3-2x )≤12[2x +(3-2x )2]2=98,当且仅当2x =3-2x 即x =34时,取“=”号. 三、解答题9.已知a 、b 是正数,试比较21a +1b 与ab 的大小.[解析] ∵a >0,b >0,∴1a +1b ≥21ab >0. ∴21a +1b ≤221ab=ab . 即21a +1b≤ab . 能 力 提 升一、选择题1.已知x >0,y >0,lg2x+lg8y=lg2,则 1x +13y 的最小值是( )A .2B .2 2C .4D .2 3[答案] C[解析] 由lg2x +lg8y =lg2,得lg2x +3y =lg2, ∴x +3y =1,1x +13y =(1x +13y )(x +3y )=2+x 3y +3yx ≥4, 当且仅当x 3y =3y x ,即x =12,y =16时,等号成立.2.(2012~2013学年度山西忻州一中高二期中测试)a =(x -1,2),b =(4,y )(x 、y 为正数),若a ⊥b ,则xy 的最大值是( )A.12 B .-12 C .1 D .-1[答案] A[解析] 由已知得4(x -1)+2y =0,即2x +y =2. ∴xy =x (2-2x )=2x (2-2x )2≤12×(2x +2-2x 2)2=12.3.设函数f (x )=2x +1x -1(x <0),则f (x )( ) A .有最大值 B .有最小值 C .是增函数 D .是减函数[答案] A[解析] ∵x <0,∴f (x )=2x +1x -1 ≤-2(-2x )(-1x )-1=-22-1,等号在-2x =1-x ,即x =-22时成立.∴f (x )有最大值.4.已知x >0,y >0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则(a +b )2cd 的最小值是( )A .0B .1C .2D .4[答案] D[解析] 由等差、等比数列的性质得 (a +b )2cd =(x +y )2xy =x y +yx +2≥2y x ·xy +2=4.当且仅当x =y 时取等号,∴所求最小值为4.二、填空题5.已知a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg(a +b 2),则P 、Q 、R 的大小关系是________.[答案] P <Q <R[解析] 因为a >b >1,所以lg a >lg b >0, 所以12(lg a +lg b )>lg a ·lg b ,即Q >P ,又因为a +b 2>ab ,所以lg a +b 2>lg ab =12(lg a +lg b ),所以R >Q .故P <Q <R .6.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1n 的最小值为________.[答案] 4[解析] 函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1). ∴m +n -1=0,即m +n =1.又mn >0,∴1m +1n =(1m +1n )·(m +n )=2+(n m +mn )≥2+2=4,当且仅当m =n =12时,等号成立.三、解答题7.今有一台坏天平,两臂长不等,其余均精确.有人说要用它称物体的质量,只需将物体放在左右托盘各称一次,则两次称量结果的和的一半就是物体的真实质量,这种说法对吗?证明你的结论.[解析] 不对.设左右臂长分别为l 1,l 2,物体放在左、右托盘称得重量分别为a 、b ,真实重量为G ,则由杠杆平衡原理有:l 1·G =l 2·a ,① l 2·G =l 1·b ,②①×②得G 2=ab ,∴G =ab ,由于l 1≠l 2,故a ≠b , 由均值不等式a +b2>ab 知说法不对, 真实重量是两次称量结果的几何平均数.8.求函数y =1-2x -3x 的值域. [解析] y =1-2x -3x =1-(2x +3x ). ①当x >0时,2x +3x ≥22x ·3x =2 6.当且仅当2x =3x ,即x =62时取等号. ∴y =1-(2x +3x )≤1-2 6.②当x <0时,y =1+(-2x )+(-3x ). ∵-2x +(-3x )≥2(-2x )·(-3x )=2 6.当且仅当-2x =-3x 时,即x =-62时取等号. ∴此时y =1-2x -3x ≥1+2 6综上知y ∈(-∞,1-26]∪[1+26,+∞).∴函数y =1-2x -3x 的值域为(-∞,1-26)∪[1+26,+∞).。
高中数学人教版必修5——第十三讲均值不等式(解析版)

高中数学人教版必修5——第十三讲均值不等式(解析版)第十三讲均值不等式(解析版)在高中数学的学习中,均值不等式是一条非常重要的数学定理。
它能够帮助我们找到一组数的平均值与其他特定的数值之间的关系。
本文将详细解析高中数学人教版必修5中的第十三讲——均值不等式。
一、均值不等式的定义和性质均值不等式实际上是按平均值来衡量一组数与其他数值之间的大小关系。
它包含了算术平均值、几何平均值和平方平均值等不同的形式。
算术平均值是最为熟悉的一种形式,它表示一组数相加后除以元素个数得到的结果。
几何平均值是将一组数相乘后开根号得到的结果。
平方平均值是将一组数的平方相加后除以元素个数再开根号得到的结果。
在不等式的关系中,对于正实数来说,有以下几个性质:1. 当所有元素相等时,算术平均值、几何平均值和平方平均值相等。
2. 当所有元素不相等时,算术平均值大于几何平均值,而几何平均值大于平方平均值。
3. 对于正实数来说,算术平均值大于几何平均值,并且它们都大于平方平均值。
二、均值不等式的应用均值不等式在数学问题的解决中具有广泛的应用。
它可以帮助我们证明和推导其他重要的数学关系。
1. 证明与推导在证明和推导方面,均值不等式可以帮助我们解决一些复杂的不等式问题。
通过运用不同形式的均值不等式,我们可以逐步地推导出更为严格的不等式关系。
例如,在求证某个不等式问题时,我们可以使用算术平均值与几何平均值之间的关系来逐步推导出正确的结论。
2. 理解与比较均值不等式还能够帮助我们理解和比较数列的大小关系。
通过对数列的算术平均值、几何平均值和平方平均值的比较,我们可以得出一些关于数列性质的结论。
例如,当一组数的算术平均值大于几何平均值时,就能够说明这组数存在着某种程度的波动和不均匀性。
三、均值不等式的例题解析下面,我们将通过一些例题来具体解析均值不等式的应用。
例题1:已知a、b、c为正实数,证明(a+b)(a+c)(b+c)≥8abc。
解析:我们可以通过均值不等式来证明这个不等式关系。
第6节 均值不等式及其应用

第6节 均值不等式及其应用知识梳理1.均值不等式如果a ,ba =b 时,等号成立.数a +b2称为a ,b a ,b 的几何平均值. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)(a +b )2≥4ab ;2(a 2+b 2)≥(a +b )2. 当且仅当a =b 时,等号成立. 3.利用均值不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0).4.应用均值不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用均值不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( ) (2)函数y =x +1x 的最小值是2.( ) (3)函数f (x )=sin x +4sin x 的最小值为4.( ) (4)x >0且y >0是x y +yx ≥2的充要条件.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)不等式a 2+b 2≥2ab 成立的条件是a ,b ∈R ; 不等式a +b2≥ab 成立的条件是a ≥0,b ≥0.(2)函数y =x +1x 的值域是(-∞,-2]∪[2,+∞),没有最小值. (3)函数f (x )=sin x +4sin x 没有最小值. (4)x >0且y >0是x y +yx ≥2的充分不必要条件.2.若x >0,y >0,且x +y =18,则xy 的最大值为( ) A.9 B.18C.36D.81答案 A解析 因为x +y =18,所以xy ≤x +y2=9,当且仅当x =y =9时,等号成立.3.(多选题)若x ≥y ,则下列不等式中正确的是( ) A.3x ≥3y B.x +y2≥xy C.x 2≥y 2D.x 2+y 2≥2xy答案 AD解析 由指数函数的单调性可知,当x ≥y 时,有3x ≥3y ,故A 正确; 当0>x ≥y 时,x +y2≥xy 不成立,故B 错误; 当0≥x ≥y 时,x 2≥y 2不成立,故C 错误;x 2+y 2-2xy =(x -y )2≥0成立,即x 2+y 2≥2xy 成立,故D 正确.4.(2021·滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A.1+2 B.1+3 C.3D.4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C.5.(2020·长沙月考)一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长 18 m ,则这个矩形的长为________m ,宽为________m 时菜园面积最大. 答案 15 152解析 设矩形的长为x m ,宽为y m.则x +2y =30(0<x ≤18),所以S =xy =12x ·(2y )≤12⎝ ⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.6.(2018·天津卷)已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为________.答案1 4解析由题设知a-3b=-6,又2a>0,8b>0,所以2a+18b≥22a·18b=2·2a-3b2=1 4,当且仅当2a=18b,即a=-3,b=1时取等号.故2a+18b的最小值为14.考点一 利用均值不等式求最值角度1 配凑法求最值【例1】 (1)(2021·乐山模拟)设0<x <32,则函数y =4x (3-2x )的最大值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)已知函数f (x )=-x 2x +1(x <-1),则( )A.f (x )有最小值4B.f (x )有最小值-4C.f (x )有最大值4D.f (x )有最大值-4答案 (1)92 (2)1 (3)A解析 (1)y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32,∴函数y =4x (3-2x )⎝ ⎛⎭⎪⎫0<x <32的最大值为92.(2)因为x <54,所以5-4x >0,则f (x )=4x -5+14x -5+3=-⎝⎛⎭⎪⎫5-4x +15-4x +3≤-2(5-4x )·15-4x+3=-2+3=1,当且仅当5-4x =15-4x,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. (3)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立.故f (x )有最小值4.角度2 常数代换法求最值【例2】(2021·武汉模拟)已知正数m ,n 满足m +2n =8,则2m +1n 的最小值为________,等号成立时m ,n 满足的等量关系是________. 答案 1 m =2n解析 因为m +2n =8,所以2m +1n =⎝ ⎛⎭⎪⎫2m +1n ×m +2n 8=18⎝ ⎛⎭⎪⎫4+4n m +m n ≥18⎝⎛⎭⎪⎫4+24n m ×m n =18(4+4)=1,当且仅当4n m =m n ,即m =4,n =2时等号成立. 角度3 消元法求最值【例3】(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.感悟升华 利用均值不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用均值不等式求解,但要注意利用均值不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.【训练1】(1)已知实数x,y>0,且x2-xy=2,则x+6x+1x-y的最小值为()A.6B.62C.3D.32(2)(多选题)(2021·烟台模拟)下列说法正确的是()A.若x,y>0,x+y=2,则2x+2y的最大值为4B.若x<12,则函数y=2x+12x-1的最大值为-1C.若x,y>0,x+y+xy=3,则xy的最小值为1D.函数y=1sin2x+4cos2x的最小值为9答案(1)A(2)BD解析(1)由x,y>0,x2-xy=2得x-y=2x,则1x-y=x2,所以x+6x+1x-y=x+6x+x 2=3⎝⎛⎭⎪⎫x2+2x≥3×2x2×2x=6,当且仅当x2=2x,即x=2,y=1时等号成立,所以x+6x+1x-y的最小值为6.(2)对于A,取x=32,y=12,可得2x+2y=32>4,A错误;对于B,y=2x+12x-1=-⎝⎛⎭⎪⎫1-2x+11-2x+1≤-2+1=-1,当且仅当x=0时等号成立,B正确;对于C ,易知x =2,y =13满足等式x +y +xy =3,此时xy =23<1,C 错误; 对于D ,y =1sin 2x +4cos 2x =⎝ ⎛⎭⎪⎫1sin 2x +4cos 2x (sin 2x +cos 2x )=cos 2x sin 2x +4sin 2x cos 2x +5≥24+5=9.当且仅当cos 2x =23,sin 2x =13时等号成立,D 正确.故选BD. 考点二 均值不等式的综合应用【例4】 (1)(2020·湘东七校联考)已知f (x )=13x 3+ax 2+(b -4)x +1(a >0,b >0)在x =1处取得极值,则2a +1b 的最小值为( ) A.3+223 B.3+22 C.3D.9(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)C (2)B解析 (1)因为f (x )=13x 3+ax 2+(b -4)x +1(a >0,b >0), 所以f ′(x )=x 2+2ax +b -4. 因为f (x )在x =1处取得极值,所以f ′(1)=0,所以1+2a +b -4=0,解得2a +b =3. 所以2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·13·(2a +b )=13⎝ ⎛⎭⎪⎫5+2b a +2a b ≥13⎝⎛⎭⎪⎫5+22b a ·2a b =3(当且仅当a =b =1时取等号).故选C. (2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵1+a +y x +axy ≥a +2a +1,当且仅当y =ax 时,等号成立, ∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4,故选B.感悟升华 1.当均值不等式与其他知识相结合时,往往是提供一个应用均值不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用均值不等式确定相关成立的条件,从而得到参数的值或范围.【训练2】 (1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B+sin Bsin C 的最小值为( ) A.32B.334C.32D.53(2)在△ABC 中,点D 是AC 上一点,且=4,P 为BD 上一点,向量=λ+μ(λ>0,μ>0),则4λ+1μ的最小值为( ) A.16B.8C.4D.2答案 (1)C (2)A解析 (1)由△ABC 的面积为2,所以S △ABC =12bc sin A =12bc sin π6=2,得bc =8, 在△ABC 中,由正弦定理得 2sin C sin C +2sin B +sin B sin C =2c c +2b +bc=2·8b8b +2b +b 8b=168+2b2+b 28=84+b2+b 2+48-12 ≥284+b 2·b 2+48-12=2-12=32, 当且仅当b =2,c =4时,等号成立,故选C.(2)由题意可知,=λ+4μ,又点B ,P ,D 共线,由三点共线的充要条件可得λ+4μ=1,又因为λ>0,μ>0,所以4λ+1μ=⎝ ⎛⎭⎪⎫4λ+1μ·(λ+4μ)=8+16μλ+λμ≥8+216μλ·λμ=16,当且仅当λ=12,μ=18时等号成立,故4λ+1μ的最小值为16.故选A. 考点三 均值不等式的实际应用【例5】网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2019年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元. 答案 37.5 解析 由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y =⎝ ⎛⎭⎪⎫48+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-⎣⎢⎡⎦⎥⎤16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.感悟升华 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用均值不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【训练3】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案 30解析 一年的总运费与总存储费用之和为y =6×600x +4x =3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时,y 有最小值240.A 级 基础巩固一、选择题1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( )A.a +b ≥2abB.a b +b a ≥2C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D.a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2. 2.若3x +2y =2,则8x +4y 的最小值为( )A.4B.42C.2D.22 答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x +2y =4, 当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.故选A.3.(多选题)(2021·山东新高考模拟)已知正实数a ,b 满足a +b =2,下列式子中,最小值为2的有( )A.2abB.a 2+b 2C.1a +1bD.2ab答案 BCD 解析 因为a ,b >0,所以2=a +b ≥2ab ,所以0<ab ≤1,当且仅当a =b =1时等号成立.由ab ≤1,得2ab ≤2,所以2ab 的最大值为2,A 错误;a 2+b 2=(a+b )2-2ab ≥4-2=2,B 正确;1a +1b =a +b ab =2ab ≥2,C 正确;2ab ≥2,D 正确,故选BCD.4.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A.3B.5C.7D.9 答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y )=2⎝ ⎛⎭⎪⎪⎫1+1+y x +1+x +1y ≥2⎝ ⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号,∴x +y ≥7,故x +y 的最小值为7.5.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元答案 C解析 由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4x m ,又设总造价是y 元,则y =20×4+10×(2x +8x )≥80+202x ·8x =160,当且仅当2x =8x ,即x =2时取得等号. 6.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是( )A.6B.233C.4D.23答案 B解析 x 2+y 2+xy =1⇒(x +y )2-xy =1,∵xy ≤⎝ ⎛⎭⎪⎫x +y 22,当且仅当x =y 时取等号, ∴(x +y )2-⎝ ⎛⎭⎪⎫x +y 22≤1, 即34(x +y )2≤1,∴-233≤x +y ≤233,∴x +y 的最大值是233.故选B.7.(2021·沈阳一模)若log 2x +log 4y =1,则x 2+y 的最小值为( )A.2B.23C.4D.22 答案 C解析 因为log 2x +log 4y =log 4x 2+log 4y =log 4(x 2y )=1,所以x 2y =4(x >0,y >0),则x 2+y ≥2x 2y =4,当且仅当x 2=y =2时等号成立,即x 2+y 的最小值为4.故选C.8.(2020·重庆联考)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A.2B.22C.4D.92 答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2n m 恒成立,∵m n +2n m ≥2m n ·2n m =22,当且仅当m n =2n m 即m =2n 时取等号,∴a ≤22,故a 的最大值为22,故选B.二、填空题 9.若直线x a +y b =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.答案 8解析 由题设可得1a +2b =1,∵a >0,b >0,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =4+b a +4a b ≥4+2b a ·4ab=8⎝ ⎛⎭⎪⎫当且仅当b a =4a b ,即b =2a =4时,等号成立. 故2a +b 的最小值为8.10.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.答案 6解析 法一(换元消元法)由已知得x +3y =9-xy ,因为x >0,y >0, 所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎫x +3y 22, 当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0,令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.法二 (代入消元法)由x +3y +xy =9,得x =9-3y 1+y, 所以x +3y =9-3y 1+y +3y=9+3y 21+y =3(1+y )2-6(1+y )+121+y=3(1+y )+121+y -6≥23(1+y )·121+y-6 =12-6=6,当且仅当3(1+y )=121+y,即y =1,x =3时取等号, 所以x +3y 的最小值为6.11.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b的最小值为__________.答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2·8a +b =4,当且仅当a +b 2=8a +b ,即a +b =4时,等号成立.故12a +12b +8a +b的最小值为4. 12.函数y =x 2+2x -1(x >1)的最小值为________. 答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.B 级 能力提升13.(多选题)(2021·石家庄一模)若a ,b ,c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( )A.a +b +c ≤3B.(a +b +c )2≥3C.1a +1b +1c ≥23D.a 2+b 2+c 2≥1答案 BD解析 由均值不等式可得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca )=2,∴a 2+b 2+c 2≥1,当且仅当a =b =c =±33时,等号成立.∴(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ca )≥3,∴a +b +c ≤-3或a +b +c ≥ 3.若a =b =c =-33,则1a +1b +1c =-33<2 3.因此,A ,C 错误,B ,D 正确.故选BD.14.(2020·山东名校联考)正实数a ,b 满足a +3b -6=0,则1a +1+43b +2的最小值为( ) A.13B.1C.2D.59 答案 B解析 由题意可得a +3b =6,所以1a +1+43b +2=19[(a +1)+(3b +2)]⎝ ⎛⎭⎪⎫1a +1+43b +2=19⎣⎢⎢⎡⎦⎥⎥⎤5+3b +2a +1+4(a +1)3b +2≥1, 当且仅当⎩⎪⎨⎪⎧2(a +1)=3b +2,a +3b =6,即a =2,b =43时等号成立.故1a +1+43b +2的最小值为1,选B.15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________. 答案 4解析 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-83,+∞ 解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3. 设g (x )=x +8x ,x ∈N *,则g (x )=x +8x ≥42,当且仅当x =22时等号成立,又g (2)=6,g (3)=173,∵g (2)>g (3),∴g (x )min =173.∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.。
均值不等式(基本不等式+知识点+例题+习题)pdf版

t
t
t
答案:[2, )
例 2 求函数 y x2 3 的最小值. x2 1
解析:令 x2 1 t,t 1,则 x2 t2 1 ,带入原式化简得 y t 2 2 2 , t
当 t 2 即 t 2 时等号成立. t
答案: 2 2
例 3 已知 x 1,求 f (x) x2 x 1 的最小值. 2x 1
2
2
2 | 10
[不等式] 练习答案:
1
2
38
对勾函数:
形如 f (x) ax b (ab 0) 的函数. x
利用对勾函数性质可解决均值不等式等号不成立时的情况.
性质
a 0,b 0
y
a 0,b 0 y
图像
2 ab
Obxab a NhomakorabeaO
x
-2 ab
定义域
值域 奇偶性 渐近线
{x | x 0}
2
题型四:分离换元法求最值(二次比一次或一次比二次时用)
例 1 求函数 y x2 3 (x 1) 的值域. x 1 2
解析:令 x 1 t,t 3 ,则 x t 1,带入原式得到 y (t 1)2 3 t 4 2 ,
2
t
t
t 4 2 2 t 4 2 2 ,当 t 4 即 t 2 时等号成立.
解析:构造对勾函数 y 3x 12 ,由函数性质可知 x (3, ) 时函数单调递减, x
故
y
3x
12 x
y(3)
13
.
答案: (, 13]
练习 1 练习 2
已知 x 0 ,求函数 y x 4 的最小值. x4
已知 x 3,求函数 y 2x 3 的值域. 2x
均值不等式

【方法小结】 (1)解应用题时,一定要注意变 量的实际意义,即其取值范围,这对最优化问 题起着关键作用. (2)在求函数的最值时,除应用均值不等式外, 有时会出现均值不等式取不到等号的情形,此 时要利用函数的单调性求解.
方法感悟 方法技巧 1.合理拆分项或配凑因式是常用的技巧,而拆 与凑的目标在于使等号成立,且每项为正值, 必要时出现积为定值或和为定值(如例2). 2.当多次使用均值不等式时,一定要注意每次 是否能保证等号成立,并且要注意取等号的条 件的一致性,否则就会出错,因此在利用均值 不等式处理问题时,列出等号成立的条件不仅 是解题的必要步骤,而且也是检验转换是否有 误的一种方法.
失误防范
a+b 应用均值不等式 ab≤ 时要注意的问题 2 (1)注意不等式成立的条件 a>0,b>0. (2)均值不等式具有将“和式”转化为“积式”和 将“积式”转化为“和式”的放缩功能, 在证明或 求最值时,要注意这种转化思想.
考向瞭望·把脉高考
考情分析
通过对近几年高考试题的统计和分析可以发现,本 节主要考查利用均值不等式求函数的最值.若单纯 考查均值不等式,一般难度不大,通常出现在选择 题和填空题中;若考查均值不等式的变形,即通过 对代数式进行拆、添项或配凑因式,构造出均值不 等式的形式再进行求解,难度就会提升.对均值不 等式的考查,若以解答题的形式出现时,往往是作 为工具使用,用来证明不等式或解决实际问题. 预测2012年高考仍将以求函数的最值为主要考点, 重点考查学生的运算能力和逻辑推理能力.
【思路分析】 利用a2+b2≥2ab两两结合即可求 证.但需两次利用不等式,注意等号成立的条 件. 【证明】 a4+b4+c4+d4≥2a2b2+2c2d2 =2(a2b2+c2d2)≥2·2abcd=4abcd. 故原不等式得证,等号成立的条件是a2=b2, 且c2=d2,ab=cd. 【名师点评】 证明不等式时要注意灵活变形, 多次利用均值不等式时,注意每次等号是否都成 立,同时也要注意应用均值不等式的变形形式.
2020-2021学年高一上数学新教材必修一第2章:均值不等式(含答案)

∴x≤ .当且仅当a=b时等号成立.]
8.已知函数y=4x+ (x>0,a>0)在x=3时取得最小值,则a=________.
36[y=4x+ ≥2 =4 (x>0,a>0),当且仅当4x= ,即x= 时等号成立,此时y取得最小值4 .又由已知x=3时,ymin=4 ,
∴ =3,即a=36.]
A. > B. + ≤1
C. ≥2D. ≤
D[由 ≤2得ab≤4,
∴ ≥ ,故A错;
B中, + = = ≥1,故B错;
由a+b=4,得 ≤ = =2,故C错;
由 ≥ 2得a2+b2≥2× 2=8,
∴ ≤ ,D正确.]
二、填空题
6.已知a>b>c,则 与 的大小关系是________.
≤ [∵a>b>c,
2020-2021学年高一上数学新教材必修一
第2章:均值不等式
一、选择题
1.设t=a+2b,s=a+b2+1,则t与s的大小关系是()
A.s≥tB.s>t
C.s≤tD.s<t
2.下列不等式中正确的是()
A.a+ ≥4B.a2+b2≥4ab
C. ≥ D.x2+ ≥2
3.已知a>0,b>0,则下列不等式中错误的是()
+ ≥2(当且仅当a=c时取“=”);
+ ≥2(当且仅当b=c时取“=”).
从而 + + ≥6(当且仅当a=b=c时取等号).
∴ + + -3≥3,
即 + + ≥3.
[等级过关练]
1.下列不等式一定成立的是()
A.x+ ≥2B. ≥
C. ≥2D.2-3x- ≥2
B[A项中当x<0时,x+ <0<2,∴A错误.
《均值不等式》例题-完整版课件

【解析】 (1)设污水池的长为 x,则宽为40x0,总造价
y=2x+2·40x0·200+2·250·40x0+80×400
= 400x+90x0 + 32 000≥400·2
•
某工厂拟建一座平面图为矩形且面
积为400平方米的三级污水处理池,平面图
如下图所示.池外ห้องสมุดไป่ตู้建造单价为每米200元,
中间两条隔墙建造单价每米250元,池底建
造单价为每平方米80元(池壁的厚度忽略不
计,且池无盖).
• (1)试设计污水池的长和宽,使总造价最低,并 求出最低造价;
• (2)若受场地限制,长与宽都不能超过25米,则 污水池的最低造价为多少?
【解析】 ∵a>2,∴a-2>0, 又∵m=a+a-1 2=(a-2)+a-1 2+2, ∴m≥2 a-2×a-1 2+2=4,即 m∈[4,+∞). 由 b≠0 得 b2≠0,∴2-b2<2,∴22-b2<4,即 n<4, ∴n∈(0,4),综上易得 m>n.
【答案】 A
已知 a、b、c 为正数,求证:b+ac-a+c+ab-b +a+bc-c≥3.
从而ba+ab+ac+ac+bc+bc≥6(当且仅当 a=b=c 时取 等号).
∴ba+ab+ac+ac+bc+bc-3≥3, 即b+ac-a+c+ab-b+a+bc-c≥3.
【思路点拨】 因为 x<54,∴4x-5<0,故应先处理符号, 再将 4x-2 化为 4x-5+3,然后用基本不等式.
【解析】 ∵x<54,∴5-4x>0, ∴y=4x-2+4x-1 5=-[(5-4x)+5-14x]+3≤-2+3 =1, 当且仅当 5-4x=5-14x时,即 x=1 时,上式等号成立. ∴x=1 时,ymax=1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②如果 a1 ,a2 ,⋯,an 都是正实数,那么
a1
+ a2
+⋯ + an n
≥
n
a1a2 ⋯ an
,当且仅当 a1
= a2
= ⋯ = an 时,等
号成立.
( 2)常用性质
①若 a > 0,b > 0,则
a2 + b2 a +b
≥
≥
ab ≥
2;
2
2
11 +
ab
②若 a > 0, b > 0, c > 0 ,则 a2 + b2 + c2 ≥ a + b + c ≥ 3 abc ≥ 3 ;
a3
b3 +
+
c3
≥ a+b+c.
bc ca ab
3.已知 a > 0, b > 0, n ∈ N * ,求证: (a + b)(an + bn ) ≤ 2(an +1 + bn +1) .
4.已知 a,b, c 都是实数,求证: a2 + b2 + c2 ≥ 1 (a + b + c )2 ≥ ab + bc + ca . 3
(6)若 a > b > 0, c > d > 0, 则 ac > bd > 0 ;
(7)若 a > b, ab > 0, 则 1 < 1 ; ab
(9)若 a > b > 0 ,整数 n > 1,则 n a > n b ;
(8)若 a > b > 0 ,整数 n > 1 ,则 a n > b n ; (10) | a | − | b | ≤ a +b ≤ a + b .
⇔ (1+ b )2 < 4 < (1 + a )2 ( a > b > 0)
a
b
⇔
b <1<
a . 由 a > b > 0 知,此时显然成立.
a
b
例 4.证明:对于任意的 n ∈ N * ,都有1+ 1 + 1 +⋯ + 1 < 2 n .
23
n
提示:当 k ≥ 2 时,有 1 = 2 <
2
= 2( k − k −1) .
x3
+
y3 +
z3
≥ 3.
(1 + y)(1 + z) (1 + z)(1 + x) (1 + x)(1 + y) 4
第4页共4页
换元 法是指对 结构较为 复杂 ,量与 量之间关 系不甚明 了的命题 ,通过 恰当引入 新变量 ,代换 原命题中 的部分式子,简化原有结构,使其转化为便于研究的形式.
第1页共4页
3.均值不等式及其性质
( 1)均值不等式
①如果 a,b 都是正实数,那么 a + b ≥ ab ,当且仅当 a = b 时,等号成立. 2
= r 2 | 3 cos 2θ − 4 sin 2θ | = 5r 2 | sin( 2θ + ϕ) | ≤ 5r 2 ≤ 20 ,得证!
例
8.已知正实数 a,b, c 满足 a2
+ b2
+ c2
= 1 ,求 S
=
1 a2
1 + b2
1 +c2
−
2(a3
+ b3 + c3 ) 的最小值. abc
提示 :由 a2
1
+
1
+
1
≤ 1.
a3 + b3 + abc b 3 + c 3 + abc c3 + a3 + abc abc
提示 : 由
a3
+ b3
≥
ab(a
+ b)
可得
a3
+ b3
+
abc
≥
ab(a
+b
+
c)
,故
a3
1 + b3 + abc
≤
1 abc
⋅
a
c +b
+
c
,
第3页共4页
同理有
b3
1 + c3 + abc
8.已知实数 x, y 满足 1 ≤ x 2 + y 2 ≤ 2, z = x 2 + xy + y 2 ,求 z 的取值范围.
9.已知 a,b, c 是不全相等的正实数,求证: lg a + b + lg b + c + lg c + a > lg a + lg b + lg c .
2
2
2
10.已知正实数 x, y, z 满足 xyz =1 ,求证:
2.不等式的证明方法
( 1)比较法
①作差比较法: a ≥ b ⇔ a − b ≥ 0; ②作商比较法: a > 1, b > 0 ⇒ a > b . b
( 2)综合法 利用某些已经证明过的不等式作为基础,再运用不等式的性质推导出所求证的不等式 ,这种证明方法
叫做综合法.综合法的证明思路是:“由因导果”.
+ b2
+ c2
=1 ,可得
S
= 3+
b2 a2
+
c2 a2
c2 + b2
+
a2 b2
+
a2 c2
+
b2 c2
a2 − 2(
bc
+
b2 ca
+
c2 )
ab
,从而可得
S ≥3+2
c2
b2 +2
a2 +2
a2 − 2(
+
b2
+
c2
)
= 3 ,即 S 得最小值为 3 .
ab ca bc bc ca ab
例 9.求证:对任意正实数 a,b, c ,均有
例 3.已知 a > b > 0 ,求证: (a − b)2 < a + b − ab < (a − b)2 .
8a
2
8b
提示:原不等式 ⇔ (
a−
b)2(
a+
b)2 ( <
a−
b)2 ( <
a−
b)2(
a+
b)2
8a
2
8b
( a + b)2
( a + b)2
⇔
<1<
(a > b > 0)
4a
4b
第2页共4页
243
53
+ c)
≥
28
3
⋅
−
3
28
−
⋅ (abc) 28
243 159
≥
283
⋅
−
3
28
+
28
= ( 28)3 .
a2
b2
c2
3
三、及时巩固提高
A组 1.已知 x, y, z 满足 x + y + z = 1,求证: x 2 + y2 + z 2 ≥ 1 .
3
2.求证:对任意正实数 a,b, c ,均有
不等式(1)--不等式基础
一、基础知识点击
1.不等式的基本性质
(1)若 a > b, 则 a + c > b + c ;
(2)若 a > b, b > c ,则 a > c ;
(3)若 a > b, c > 0, 则 ac > bc ;
(4)若 a > b, c < 0, 则 ac < bc ;
(5)若 a > b, c > d ,则 a + c > b + d ;
+
1 27a2
+⋯+
1 27a2
+a
≥
1
28⋅ (27−27 ⋅ a−53 )28
81
53
−
−
= 28 ⋅ 3 28 ⋅ a 28 ,
同理,可得: 1 b2
+b≥
81 −
28⋅ 3 28
53
⋅ b− 28 ,
1 c2
+c
≥
81
53
−
−
28⋅ 3 28 ⋅ c 28
.
将以上三式相乘可得
(
1 a2
1 + a)( b2
k k + k k + k −1
例 5.已知 n, k 均为大于 1 的整数,求证:1ቤተ መጻሕፍቲ ባይዱ 1 + 1 + ⋯ + 1 < 2.
2k 3k
nk
提示 :当
m
≥
2
时,有
1 mk
1 ≤
m2
< 1 = 1 −1. m(m −1) m −1 m
例 6.已知 a + b + c > 0,ab +bc + ca > 0,abc > 0 ,求证: a > 0,b > 0, c > 0 .