改性尼龙需要注意的问题点
尼龙的增韧改性要点

《聚合物复合材料设计与加工》课程报告题目:尼龙的增韧改性专业:10材料化学姓名:李**学号:*************尼龙的增韧改性摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。
但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。
本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。
对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。
其中聚烯烃应用范围广泛。
采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。
关键词:聚酰胺玻璃纤维增强增韧共混改性1.前言当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。
尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。
尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。
为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。
机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。
因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。
尼龙的成型及加工时的注意事项

尼龙的成型及加工时的注意事项玩注塑了解更多详情尼龙聚酰胺纤维俗称尼龙(Nylon),英文名称Polyamide(简称PA),密度1.15g/cm3,尼龙有优良的韧性、自润滑性、耐磨性、耐化学性、气体透过性、及耐油性、无毒和容易着色等优点,所以尼龙在工业上得到广泛应用。
冲击强度高(高过ABS` POM但比PC低) 。
热变形温度低, 吸湿性大, 尺寸稳定性差。
最常用的PA66 在尼龙材料中结构最强, PA6具有最佳的加工性能。
尼龙的工艺特性流变特性尼龙大多数为结晶性树脂,当温度超过其熔点后,其熔体粘度较小,熔体流动性极好,应防止溢边的发生。
同时由于熔体冷凝速度快,应防止物料阻塞喷嘴、流道、浇口等引起制品不足现象。
模具溢边值0.03,而且熔体粘度对温度和剪切力变化都比较敏感,但对温度更加敏感,降低熔体粘度先从料筒温度入手。
吸水性与干燥尼龙的吸水性较大,潮湿的尼龙在成型过程中,表现为粘度急剧下降并混有气泡制品表面出现银丝,所得制品机械强度下降,所以加工前材料必需干燥。
结晶性除透明尼龙外,尼龙大都为结晶高聚物,结晶度高,制品拉伸强度、耐磨性、硬度、润滑性等项性能有所提高,热膨胀系数和吸水性趋于下降,但对透明度以及抗冲击性能有所不利。
模具温度对结晶影响较大,模温高结晶度高,模温底结晶度低。
收缩率与其他结晶塑料相似,尼龙树脂存在收缩率较大的问题,一般尼龙的收缩同结晶关系最大,当制品结晶度大时制品收缩也会加大 ,在成型过程中降低模具温度加大注射压力降低料温都会减小收缩,但制品内应力加大易变形.比如PA66收缩率1.5-2%对于没有添加剂的产品,PA6的收缩率在1%到1.5%之间。
加入玻璃纤维添加剂可以使收缩率降低到0.3%(但和流程相垂直的方向还要稍高一些)。
成型设备尼龙成型时,主要注意防止“喷嘴的流涎现象”,因此对尼龙料的加工一般选用自锁式喷嘴。
另外最好选择塑化容量适当大些的注塑机。
制品与模具尼龙的流长比为150-200之间,尼龙的制品壁厚不底于0.8mm 一般在1-3.2mm之间选择,而且制品的收缩与制品的壁厚有关,壁厚越厚收缩越大。
尼龙板注意什么细节

尼龙板注意什么细节尼龙板是一种常见的塑料板材,在各个领域都有广泛的应用。
使用尼龙板时,需要注意一些细节以确保其正确的使用和维护。
下面是关于尼龙板注意事项的一些重要细节:1. 温度范围:尼龙板的使用温度范围是非常重要的。
尼龙在不同的温度下具有不同的性能。
通常情况下,尼龙板的使用温度范围为-40C至100C。
在高于或低于这个温度范围的条件下使用,尼龙板可能会失去其性能,并导致性能变差甚至破裂。
2. 耐化学品性:尼龙板一般具有优异的耐化学品性能,但不是所有化学品都能与其兼容。
在使用尼龙板时,应注意避免与强酸、强碱和有机溶剂等具有腐蚀性的物质接触。
如果必须与这些物质接触,应该事先进行充分的试验,以确保尼龙板不会被损坏。
3. 力学性能:尼龙板具有良好的力学性能,如高强度、高刚度和耐冲击性。
但由于其热塑性特性,尼龙板在高温下可能会变软并失去一部分强度。
因此,在设计和使用尼龙板时,要考虑到所需的力学性能和使用条件,以确保尼龙板的性能不会受到限制。
4. 表面处理:尼龙板的表面处理可以影响其外观和性能。
一般情况下,尼龙板表面较为光滑,在某些应用中需要增加其润滑性能,可以进行表面处理,如涂覆聚四氟乙烯(PTFE)等。
此外,在与其他材料进行接触时,也可选择适当的表面处理方式,以提高尼龙板与其他材料的黏附强度。
5. 应力开裂:尼龙板在受到持续的应力作用下容易发生应力开裂。
因此,在运输、安装和使用尼龙板时,要避免产生过大的应力。
此外,尼龙板的切割和加工也可能会导致应力集中,因此要选择合适的加工方法和切割工具,以减少应力开裂的风险。
6. 防潮和防紫外线:尼龙板对潮湿环境和紫外线的敏感性较高。
在潮湿环境下,尼龙板可能会吸湿并导致尺寸变化。
在长时间暴露在紫外线下,尼龙板的颜色可能会发生变化并逐渐老化。
因此,在使用尼龙板时,要注意防潮和防紫外线措施,以延长其使用寿命。
总之,尼龙板的正确使用和维护对于确保其性能和寿命至关重要。
通过遵守温度范围、注意耐化学品性和力学性能、进行适当的表面处理、避免应力开裂、防潮和防紫外线等方式,可以最大限度地发挥尼龙板的优势,并确保其长时间稳定可靠的使用。
尼龙的改性特性以及应用范围

本文摘自再生资源回收-变宝网()尼龙的改性特性以及应用范围由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。
随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。
特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。
尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。
因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。
主要在以下几方面进行改性:①改善尼龙的吸水性,提高制品的尺寸稳定性。
②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。
③提高尼龙的机械强度,以达到金属材料的强度,取代金属④提高尼龙的抗低温性能,增强其对耐环境应变的能力。
⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。
⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。
⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。
⑧降低尼龙的成本,提高产品竞争力。
总之,通过上述改进,实现尼龙复合材料的高性能化与功能化,进而促进相关行业产品向高性能、高质量方向发展。
改性PA产品的最新发展前面提到,玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自1976年美国杜邦公司开发出超韧PA66后,各国大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA 投放市场。
20世纪80年代,相容剂技术开发成功,推动了PA合金的发展,世界各国相继开发出PA/PE、PA/PP、PA/ABS、PA/PC、PA/PBT、PA/PET、PA/PPO、PA/PPS、PA/I.CP(液晶高分子)、PA/PA等上千种合金,广泛用于汽车、机车、电子、电气械、纺织、体育用品、办公用品、家电部件等行业。
尼龙挤出操作注意事项

改性尼龙挤出机操作步骤改性尼龙拥有很多的改性技术方向,比如增强、增韧、阻燃、抗静电、抗紫外线等,这些技术的应用自然而然离不开挤出机的操作和运转,改性尼龙行业主要使用单螺杆挤出机和双螺杆挤出机两种,其中单螺杆挤出机主要以造粒为主,挤出技术的应用受到一些限制,所以应用较多的是双螺杆挤出机,无论是混炼还是塑化都能达到很好的效果,下面我们衡水金轮塑业就简单介绍一下挤出机操作步骤及相关说明。
开车前的准备:首先要确实使用物料的种类准确性,由于改性尼龙在生产之前要将大部分助剂和改性剂都提前混合好,随改性尼龙物料运来的会有物料配比单,做到一一核对才能确保质量合格。
检查设备中水、电、气的系统是否正常、畅通,根据产品的品种选择机头规格和出料嘴大小,检查温度、压力等监测环节是否正常,设备的正常维护和运行工作是产品品质的守护神。
调节温控升温,一般为三个小时左右,将料筒内残存的材料熔化,以便开车螺杆转动时更加顺利,避免由于升温不到位而引起螺杆断裂造成生产事故。
开车:按开车钮,然后缓慢旋转螺杆,一定要满色启动,等机器有了惯性以后再慢慢加速,同时少量入料,密切关注主机电流、温度、压力各指示表数据,发现有问题马上汇报技术人员及时调整。
当出料均匀且塑化良好时方可按生产流程入水冷却、风干、造粒,时刻关注颗粒有无光泽、杂质、发泡、焦料、变色。
塑化好坏小技巧:用手将挤出改性尼龙料挤细到一定程度不出现毛刺、裂口,有一定弹性,说明塑化良好。
若塑化不好,可适当调整螺杆转速、温度,直到达标。
停车:首先停止加料,将挤出机内的塑料尽量排出,漏出螺杆时,关闭螺筒和机头电源,停止加热。
关闭挤出机及辅机电源,使螺杆和辅机停止运转。
然后打开机头连接法兰,拆卸机头,清理多孔板、机头的各个部件,这个工作需要细心一些,以免部件在拆卸过程中损坏,尤其是螺丝断裂在内,阻碍清理进程。
接下来螺杆螺筒的清理,拆下机头,重新启动助剂,加入停车料或者挤出机清洗剂,清洗螺杆、机筒,尽量低速运转,减小磨损。
尼龙产品的生产注意事项

尼龙产品的生产注意事项
1. 在用尼龙原料的时候,可不能随随便便啊!就像做饭不能乱放调料一样,一定要选对合适的尼龙材料啊,不然生产出来的东西能好吗?比如做齿轮,就得用那种高强度的尼龙啊。
2. 温度控制太重要啦!尼龙对温度很敏感的呀,这就好比人对环境温度有感觉一样,温度不合适就容易出问题呀。
生产的时候一定要时刻注意温度的变化呀!就像你时刻关注自己体温一样。
3. 模具可不能有一点马虎哟!那可是尼龙产品成型的关键呀,就如同给孩子塑形一样,要精细再精细呀。
想想看,如果模具出问题了,那产品能好吗?
4. 搅拌尼龙材料得均匀才行呀!这和调饮料一个道理呀,如果搅拌不均匀,那效果能好吗?你可别不当回事呀,不然生产出来的东西质量差异会很大的哦!
5. 生产环境要干净整洁呀!不能有乱七八糟的杂质混进去,这就好像我们吃东西不希望有脏东西一样。
要是有杂质,那尼龙产品不就被污染了吗?
6. 工人操作可绝对不能马虎呀!每一个步骤都得认真对待,这就像走钢丝一样,一丝差错都不行啊。
你想想看,如果操作失误了,那不是前功尽弃啦!
7. 注意检查呀,不要等到最后才发现问题呀!这就跟我们定期体检一样,早发现问题早解决嘛。
别总是等出了大麻烦才后悔莫及呀!比如有个小瑕疵没看到,后面不就麻烦啦?
8. 包装也不能忽视哦!要好好保护尼龙产品呀,就像给宝贝穿衣服一样。
要是包装不好,运输过程中出了问题怎么办呀?
总的来说,尼龙产品的生产每一个环节都要认真对待,不能有丝毫懈怠!只有这样,才能生产出高质量的尼龙产品呀!。
尼龙材料加工注意事项

尼龙材料加工注意事项:1.干燥处理:尼龙易吸湿,生产过程发现尼龙料受潮后,挤出护套就会起泡,如泡沫、出现粒状物或破损,所以加工之前应保证含水量在0.05%以下。
如果材料是暴露在空气中储存(运输过程破损、密封不良、开包未用完等情况下),使用前建议要在90~100℃热空气中干燥2~3小时。
如果材料在铝箔袋没有破包,密封完好的情况下,若水分含量达标,理论上可以直接进行生产,稳妥起见,最好经过1~2小时温度平衡(在线干燥设备中)即可直接使用。
2.设备要求:可采用一般的挤出机进行加工,建议螺杆长径比L/D≥25,螺杆的压缩比建议在2.5:1—5:1之间;为防止尼龙在加工过程中吸湿,挤出机配置在线加热设备。
加工前在在线干燥设备中直接预热刚开包的尼龙料1~2小时后进行生产,生产过程中通过自动补料可以实现连续生产,不需额外进行干燥。
3.温度的设置:尼龙的挤出温度区间相对较窄,温度控制要求较高,温度太高会引起尼龙材料的降解变黄,温度太低,尼龙材料会冷凝固化,造成模具的堵塞或材料包螺杆。
挤出机自进料口至挤出模具的各区段控制温度:1区段2区段3区段4区段5区段6区段7区段225℃235℃240℃240℃240℃240℃240℃根据机器大小和材料出胶量,温度设置略有不同,可以按±5℃进行调节。
特别要注意挤出机机颈的温度,因为这是连接处,再加上这个区域中有过滤板、滤网、法兰夹套等,散热面积大,因此很难加热到位,若加热未达到要求,很容易在刚开机时此处区域形成部分尼龙固化,使挤出机无法出胶,这时螺杆有断裂的危险。
因此刚启动时机颈温度或紧靠机颈两头的温度要偏高5℃,以利于传热,待各区段温度达到规定值后要再保持5-10min,以保证机颈处温度达到预定的要求,这样就不会产生凝结及堵塞。
4.模具选择:如采用挤管式模具,采用抽真空挤出,更能有效的提高塑料层与包覆的线芯或缆芯结合的紧密程度,通过调整牵伸比,也能一定程度上提高结合紧密性能。
尼龙工程材料的改性

尼龙工程材料的改性摘要:尼龙66是由Du pont公司于1935年研制成功的,1939年实现工业化,1956年开始作为工程塑料使用。
它是国际上产量最大,应用最广的工程塑料之一,也是我国主要的尼龙产品。
尼龙66优越的力学性能、耐磨性、自润滑性、耐腐蚀性等使其在汽车部件、机械部件、电子电器、胶粘剂以及包装材料及领域得到了广泛的应用。
但尼龙66在使用过程中还存在许多不足之处,如成型周期长、脱模性能差、尺寸不稳定、易脆断、耐热性差,还有不透明性、溶解性差等。
因此对尼龙66的改性受到人们的广泛关注。
国外对尼龙改性多集中在共混、填充、共缩聚、接枝共聚等技术领域。
1.尼龙改性的研究进展对尼龙66的改性主要有接枝共聚、共混、增强和添加助剂等方法,使其向多功能方向发展。
本实验主要从快速成型和缩短成型周期的角度出发来改善尼龙66的综合性能,并使其得到更广泛的应用。
1.1共混改性在尼龙改性研究中,高分子合金是最常用的一种手段。
其中尼龙合金在所有工程塑料合金中发展最快,其原因是与周期长、投资大的新PA基础品种的开发相比, 尼龙合金的工艺简单、成本低、使用性能良好,且能满足不同用户对多元化、高性能化和功能化的要求。
国外各大公司均十分重视尼龙合金的开发,很多产品已经商品化并具有一定市场规模。
就尼龙合金而言,主要的研究集中在以下几个方面。
1.1.1尼龙与聚烯烃(PO)共混改性聚酰胺(PA)和聚丙烯(PP)是一对性能不同且使用场合也不一样的聚合物,但通过熔融混合工艺可以克服两者的固有缺点,取其各自的特点,得到所需性能的合金材料。
此类合金可以提高尼龙在低温、干态下的冲击强度和降低吸湿性,特别使尼龙与含有烃基的烯烃弹性体或弹性体接枝共聚物等组成的共混合金可以得到超韧性的尼龙。
在极性的聚酰胺树脂和非极性的聚烯烃树脂共混改性的时候,最重要的一个问题是两者之间的相容性。
PA 和PO 是一对热力学不相容体系,该共混物呈现相分离的双相结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。
包括脂肪族PA,脂肪—芳香族PA和芳香族PA。
其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。
是美国著名化学家卡罗瑟斯和他的科研小组发明的。
尼龙中的主要品种是尼龙6和尼龙66,占绝对主导地位,其次是尼龙11,尼龙12,尼龙610,尼龙612,另外还有尼龙1010,尼龙46,尼龙7,尼龙9,尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。
尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。
尼龙[1],是聚酰胺纤维(锦纶)是一种说法. 可制成长纤或短纤。
尼龙是美国杰出的科学家卡罗瑟斯(Carothers)及其领导下的一个科研小组研制出来的,是世界上出现的第一种合成纤维。
尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个重要里程碑。
1928年,美国最大的化学工业公司——杜邦公司成立了基础化学研究所,年仅32岁的卡罗瑟斯博士受聘担任该所的负责人。
他主要从事聚合反应方面的研究。
他首先研究双官能团分子的缩聚反应,通过二元醇和二元羧酸的酯化缩合,合成长链的、相对分子质量高的聚酯。
在不到两年的时间内,卡罗瑟斯在制备线型聚合物特别是聚酯方面,取得了重要的进展,将聚合物的相对分子质量提高到10 000~25 000,他把相对分子质量高于10 000的聚合物称为高聚物(Superpolymer)。
1930年,卡罗瑟斯的助手发现,二元醇和二元羧酸通过缩聚反应制取的高聚酯,其熔融物能像制棉花糖那样抽出丝来,而且这种纤维状的细丝即使冷却后还能继续拉伸,拉伸长度可达到原来的几倍,经过冷却拉伸后纤维的强度、弹性、透明度和光泽度都大大增加。
这种聚酯的奇特性质使他们预感到可能具有重大的商业价值,有可能用熔融的聚合物来纺制纤维。
然而,继续研究表明,从聚酯得到纤维只具有理论上的意义。
因为高聚酯在100 ℃以下即熔化,特别易溶于各种有机溶剂,只是在水中还稍稳定些,因此不适合用于纺织。
随后卡罗瑟斯又对一系列的聚酯和聚酰胺类化合物进行了深入的研究。
经过多方对比,选定他在1935年2月28日首次由己二胺和己二酸合成出的聚酰胺66(第一个6表示二胺中的碳原子数,第二个6表示二酸中的碳原子数)。
这种聚酰胺不溶于普通溶剂,熔点为263 ℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。
从其性质和制造成本综合考虑,在已知聚酰胺中它是最佳选择。
接着,杜邦公司又解决了生产聚酰胺66原料的工业来源问题,1938年10月27日正式宣布世界上第一种合成纤维诞生了,并将聚酰胺66这种合成纤维命名为尼龙(Nylon)。
尼龙后来在英语中成了“从煤、空气、水或其他物质合成的,具有耐磨性和柔韧性、类似蛋白质化学结构的所有聚酰胺的总称”。
聚酰胺(尼龙)聚癸二酸癸二胺(尼龙1010)聚十一酰胺(尼龙11)聚十二酰胺(尼龙12)聚己内酰胺(尼龙6)聚癸二酰乙二胺(尼龙610)聚十二烷二酰乙二胺(尼龙612)聚己二酸己二胺(尼龙66) CAS编码:32131-17-2聚辛酰胺(尼龙8)聚9-氨基壬酸(尼龙9)尼龙6与尼龙66* 结构:尼龙6为聚己内酰胺,而尼龙66为聚己二酸己二胺。
尼龙66比尼龙6要硬12%,而理论上说,硬度越高,纤维的脆性越大,从而越容易断裂。
但在地毯使用中这点微小的差别是无法分别的。
* 清洗性及防污性:影响这两种性能的是是纤维的截面形状及后道的防污处理。
而纤维本身的强度及硬度对清洗及防污性影响很小。
* 熔点及弹性:尼龙6的熔点为220C而尼龙66的熔点为260C。
但对地毯的使用温度条件而言,这并不是一个差别。
而较低的熔点使得尼龙6与尼龙66相比具有更好的回弹性,抗疲劳性及热稳定性。
* 色牢度:色牢度并不是尼龙的一个特性,是尼龙中的染料而不是尼龙本身在光照下褪色。
* 耐磨性及抗尘性:美国Clemson大学曾在Tampa国际机场分别用巴斯夫Zeftron500尼龙6地毯和杜邦Antron XL尼龙66地毯进行了一个长达两年半的实验。
地毯处于人流量极高的状态下,结果表明:巴斯夫Zeftron500尼龙在颜色保持性及绒头耐磨性方面要稍好于杜邦Antron XL。
两种纱线的抗尘性能没有差别。
尼龙的改性由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构:、交通器材、纺织、造纸机械等方面得到广泛应用。
随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。
特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。
尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。
因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。
主要在以下几方面进行改性。
①改善尼龙的吸水性,提高制品的尺寸稳定性。
②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。
③提高尼龙的机械强度,以达到金属材料的强度,取代金属④提高尼龙的抗低温性能,增强其对耐环境应变的能力。
⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。
⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。
⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。
⑧降低尼龙的成本,提高产品竞争力。
总之,通过上述改进,实现尼龙复合材料的高性能化与功能化,进而促进相关行业产品向高性能、高质量方向发展。
改性PA产品的最新发展前面提到,玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自1976年美国杜邦公司开发出超韧PA66后,各国大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA 投放市场。
20世纪80年代,相容剂技术开发成功,推动了PA合金的发展,世界各国相继开发出PA /PE、PA/PP、PA/ABS、PA/PC、PA/PBT、PA/PET、PA/PPO、PA/PPS、PA/I.CP(液晶高分子)、PA/PA等上千种合金,广泛用于汽车、机车、电子、电气械、纺织、体育用品、办公用品、家电部件等行业。
20世纪90年代,改性尼龙新品种不断增加,这个时期改性尼龙走向商品化,形成了新的产业,并得到了迅速发展,20世纪90年代末,世界尼龙合金产量达110万吨/年。
在产品开发方面,主要以高性能尼龙PPO/PA6,PPS/PA66、增韧尼龙、纳米尼龙、无卤阻燃尼龙为主导方向;在应用方面,汽车部件、电器部件开发取得了重大进展,如汽车进气歧管用高流动改性尼龙已经商品化,这种结构复杂的部件的塑料化,除在应用方面具有重大意义外,更重要的是延长了部件的寿命,促进了工程塑料加工技术的发展。
改性尼龙发展的趋势尼龙作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、通讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业的飞速发展,促进了工程塑料高性能化的进程,改性尼龙未来发展趋势如下。
①高强度高刚性尼龙的市场需求量越来越大,新的增强材料如无机晶须增强、碳纤维增强PA将成为重要的品种,主要是用于汽车发动机部件,机械部件以及航空设备部件。
②尼龙合金化将成为改性工程塑料发展的主流。
尼龙合金化是实现尼龙高性能的重要途径,也是制造尼龙专用料、提高尼龙性能的主要手段。
通过掺混其他高聚物,来改善尼龙的吸水性,提高制品的尺寸稳定性,以及低温脆性、耐热性和耐磨性。
从而,适用车种不同要求的用途。
③纳米尼龙的制造技术与应用将得到迅速发展。
纳米尼龙的优点在于其热性能、力学性能、阻燃性、阻隔性比纯尼龙高,而制造成本与背通尼龙相当。
因而,具有很大的竞争力。
④用于电子、电气、电器的阻燃尼龙与日俱增,绿色化阻燃尼龙越来越受到市场的重视。
⑤抗静电、导电尼龙以及磁性尼龙将成为电子设备、矿山机械、纺织机械的首选材料。
⑥加工助剂的研究与应用,将推动改性尼龙的功能化、高性能化的进程。
⑦综合技术的应用,产品的精细化是推动其产业发展的动力。
聚酰胺纤维是大分子链上具有C9-NH基伪一类纤维的总称。
常用的为脂肪族聚酯胺夕主要品种有聚酰胺6和'聚酰胺66,我国商品名称为锦纶6和锦纶66。
.•锦纶纤维以长丝为主,少量的短纤维主要用于和棉,毛或其它化纤混纺。
锦纶长丝大量用于变形加工制造弹力丝,作为机织或针织原料。
锦纶纤维一般采用熔体法纺丝。
锦纶6和锦纶66纤维的强度为4~5.3cN/dtex,高强涤纶可达7.9cN/dtex以上,伸长率18%~45%,在10%伸长时的弹性回复率在90%以上。
据测定,锦纶纤维的耐磨为棉纤维的20倍、羊毛的20倍、粘胶的50倍。
耐疲劳性能居各种纤维之首。
在民用上大量用于加工袜子和其他混纺制品,提高织物的耐磨牢度,但锦纶纤维模量低,抗摺皱性能不及涤纶,限制了锦纶在衣着领域的应用。
锦纶帘子线的寿命比粘胶大3倍,冲击吸收能大,因此轮胎能在坏的路面上行驶,但由于锦纶帘子线伸长大,汽车停止时,轮胎变形产生平点,起动初期汽车跳动厉害。
因此只能用于货车的轮胎,不宜作客车的轮胎帘子线之用。
锦纶纤维表面平整,不加油剂的纤维摩擦系数很高,锦纶油剂贮存日久易失效,纺织加工时还需要重新添加油剂。
锦纶纤维的吸湿比涤纶高,锦纶6与锦纶66在标准条件下的回潮率为4.5%,在合纤中仅次于维纶。
染色性能好,可用酸性染料,分散性染料及其他染料染色。
[编辑本段]尼龙的历史:人们对尼龙并不陌生,在日常生活中尼龙制品比比皆是,但是知道它历史的人就很少了。
尼龙是世界上首先研制出的一种合成纤维。
二十世纪初,企业界搞基础科学研究还被认为是一种不可思议的事情。
1926年美国最大的工业公司-杜邦公司的出于对基础科学的兴趣,建议该公司开展有关发现新的科学事实的基础研究。
1927年该公司决定每年支付25万美元作为研究费用,并开始聘请化学研究人员,到1928年杜邦公司成立了基础化学研究所,年仅32岁的卡罗瑟斯(Wallace H.Carothers,1896~1937)博士受聘担任该所有机化学部的负责人。