分式的恒等变形

合集下载

奥数-分式恒等变形师

奥数-分式恒等变形师

分式恒等变形方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。

例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求111a b c bc ca ab a b c++---的值。

(1/8) 例2. 若0abc ≠,0a b c ++=,求222a b c bc ac ab++的值。

(3)例3. 求证:2220()()()()()()a bcb ac c baa b a c a b b c c b a c ---++=++++++例4. 设正数x ,y ,z 满足不等式2222x y z xy +-+2222y z x yz +-+2222z x y xz+->1,求证x ,y ,z 是某个三角形的三边长【分析与证明】原不等式可变形为z(x^2+y^2-z^2)+x(y^2+z^2-x^2)+y(x^2+z^2-y^2)-2xyz>0 因式分解得(x+y-z)(y+z-x)(z+x-y)>0所以三个括号内的数全正或者1正2负,因为x ,y ,z 全正,所以不可能1正2负(证明略)所以三个括号内均为正数,所以x ,y ,z 是某个三角形的三边长例5. 求分式248161124816111111a a a a a a +++++-+++++,当2a =时的值. 【解析】 先化简再求值.直接通分较复杂,注意到平方差公式:()()22a b a b a b -=+-,可将分式分步通分,每一步只通分左边两项.原式()()()()248161124816111111a a a a a a a a ++-=++++-+++++22481622481611111a a a a a =++++-++++ ()()()()224816222121481611111a a a a a a a +++=++++++-+44816448161111a a a a =+++-+++1616161611a a =+-+32323232112a ==--例6. 若实数a ,b ,c 满足1111a b c a b c++=++,求证: 7777771111a b c a b c++=++.【证明】:由已知得到()()bc ac ab a b c abc ++++=,有()()()0a b b c a c +++=,则a ,b ,c 中一定有两个数互为相反数。

分式的概念和性质+答案

分式的概念和性质+答案

分式的概念和性质(提高)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0 的条件. 2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【要点梳理】【高清课堂403986 分式的概念和性质知识要点】要点一、分式的概念A 一般地,如果A、B 表示两个整式,并且B 中含有字母,那么式子A叫做分式. 其中AB叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的. 分数是整式,不是分式,分式是两个整式相除的商式. 分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母” ,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式2不能先化简,如x y是分式,与xy 有区别,xy 是整式,即只看形式,x不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1. 分式有意义的条件:分母不等于零.2. 分式无意义的条件:分母等于零.3. 分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0 的整式,分式的值不变,这个性质叫做A A M A A M分式的基本性质,用式子表示是: A A M,A A M(其中M是不等于零的整式).B B M B B M要点诠释:(1)基本性质中的A、B、M表示的是整式. 其中B≠0 是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠ 0 是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0 这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化. 例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变2 4解:整式有:23,2y 2, 2y 2;其中任何一个或三个,分式成为原分式的相反数 要点诠释: 根据分式的基本性质有 b a b bb. 分式a与 a 互为相反数a a ab b重要的作用 .要点五、分式的约分,最简分式 与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的 值,这样的分式变形叫做分式的约分 . 如果一个分式的分子与分母没有相同的因式 (1 除外), 那么这个分式叫做最简分式 .要点诠释: (1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分 母再没有公因式 .( 2)约分的关键是确定分式的分子与分母的公因式. 分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式 的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子 与分母是不能再分解的因式积的形式,然后再进行约分 .要点六、分式的通分与分数的通分类似, 利用分式的基本性质, 使分式的分子和分母同乘适当的整式, 不改 变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分 .要点诠释:(1)通分的关键是确定各分式的最简公分母: 一般取各分母所有因式的最高 次幂的积作为公分母 .2)如果各分母都是单项式, 那么最简公分母就是各系数的最小公倍数与相 同字母的最高次幂的乘积; 如果各分母都是多项式, 就要先把它们分解 因式,然后再找最简公分母 .3)约分和通分恰好是相反的两种变形, 约分是对一个分式而言, 而通分则 是针对多个分式而言 .典型例题】 类型一、分式的概念高清课堂 403986 分式的概念和性质 例 1】. 根据有理数除法的符号法则有分式的符号法则在以后关于分式的运算中起着1、指出下列各式中的整式与分式:1 ,1 ,a b ,x , 3 ,, , , ,2 ,x x y 2 x 12y 2,2 x ,思路点拨】 判断分式的依据是看分母中是否含有字母, 如果含有字母则是分式, 如果不含有字母则不是分式. 【答案与解析】∵ x 2 为非负数,不可能等于- 1, ∴ 对于任意实数 x ,分式都有意义; 当 x 0 时,分式的值为零.(2)当 x 2 0即 x 0时,分式有意义; 当 x 0, 即 x 5 时,分式的值为零x 5 0,(3)当 x 5 0,即 x 5 时,分式有意义; 当 x 5 0, ①时,分式的值为零,2x 10 0 ②由①得 x 5时,由②得 x 5 ,互相矛盾.2x 10∴ 不论 x 取什么值,分式 2x 10 的值都不等于零.x5【总结升华】 分母不为零时,分式有意义;分子的值为零,而分母的值不为零时,分式的值 为零. 举一反三:【变式 1】若分式的值为 0,则的值为 _________________________ . 【答案】 - 2;|x| 2 0 |x| 2 0 提示:由题意 2, ,所以 x 2.x 2 5x 6 0 x 3 x 2 0分式有:1,1 , 3 , x2 x x y x 2 1 x总结升华】 判断分式的依据是看分母中是否含有字母.此题判断容易出错的地方有两处: 一个是把 π 也看作字母来判断, 没有弄清 π 是一个常数; 另一个就是将分式化简成整式后2再判断,如 x 和 x x,前一个是整式,后一个是分式,它们表示的意义和取值范围是不相同的.类型二、分式有意义, 分式值为 0 高清课堂 403986当 x 取什么数时,下列分式有意义?当2、 分式的概念和性质 例 2】x 取什么数时,下列分式的值为零?( 1) 2x x 2 答案与解析】2)x52;x3) 2x 10 x5解:( 1)当 x 20,即 x21时,分式有意义.x2变式 2】当 x 取何值时,分式 的值恒为负数? 2x 6 答案】 x 2 0, 或 x 2 0, 2x 6 0, 2x 6 0. 解不等式组x 2 0,该不等式组无解.2x 6 0,解不等式组x 2 0,得 3 x 2. 2x 6 0.所以当 3x 2 时,分式x 2的值恒为负数. 2x 6类型三、分式的基本性质高清课堂 403986 分式的概念和性质 例 4】 3、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数(1) ; (2) ; (3) . 答案与解析】解:(1) ;(3).【总结升华】 (1) 、根据分式的意义, 分数线代表除号, 又起括号的作用; (2) 、添括号法则: 当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号 举一反三:解: 由题意可知(2)a1 a 2 2a 1 ;2;a 22变式】 列分式变形正确的是(A .2 x2ymn(m n)2 (m n)(m n)(m n)2答案】C .x 21x 2x 11 x1ab 2 aD ;提示:条件.将分式变形时,注意将分子、分母同乘(或除以)同一个不为 其中A 项分子、分母乘的不是同一整式,B 项中 m n 0 的整式这一0这一条件不知是1x 否成立,故 A 、B 两项均是错的. C 项左边可化为: 1 x 2(1 x)21 1x11,故 C x1项亦错,只有 D 项的变形是正确的.类型四、分式的约分、通分如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,也就是分子、分母系数的最大公约数与相同字母的最低次幂. 通分的关键是确定几个分式的最简公分 母,若分母是多项式, 则要因式分解, 要防止遗漏只在一个分母中出现的字母以及符号的变 化情况. 类型五、分式条件求值225、若 x 2,求 x 22 2xy 3y 22 的值.y x 2 6xy 7 y 2【思路点拨】 本题可利用分式的基本性质, 采用整体代入法, 或把分式的分子与分母化成只 含同一字母的因式,使问题得到解决. 【答案与解析】x 解法一:因为 2 ,可知 y 0 ,y222(x 22xy3y 2) g12x2x g3所以x 22xy3y 2yyy所以2x 26xy7y 2(x 26xy 7y 2)g12 y2x6 x g7yy4、约分:(1)2;(2) 2n 2 m 3 ;2mn 4n通分:3)3 2a 2ba b ;ab 2c4)x 24x42 x2答案与解析】解:(1) a 2 2a 1a 21(a1)2 ( a 1)(a 1)1;a12) 2 n 2 m2mn 4n 32n 2 m2n (m 2n 2)(m2n 2) 2n (m 2n 2 )1 2n ;3)最简公分母是 222a 2b 2c . 3 g bc222a 2b 2a 2b g bc3bc22 2a b cb ab 2c(a b) g 2a ab 2c g 2a22a 22ab2a 2b 2c4)最简公分母是(x 2)(x 2) ,1 x2x2 (x 2)( x 2)x 2 ,4 xx 2 4 x 2 44x x 2 42(x 2)x 2 (x 2)( x 2)2x 4 x 2 4总结升华】( 2)2 2 ( 2) 3 5 ( 2)2 6 ( 2) 7 9解法二:因为 x 2 , y所以 x 2y ,且 y 0 ,22x 2 2xy 3y 2 (x 3y)(x y) x 3y x 2 6xy 7y 2 (x 7y)(x y) x 7y【总结升华】 本题的整体代入思想是数学中一种十分重要的思想. 一般情况下, 在条件中含 有不定量时,不需求其具体值,只需将其作为一个“整体”代入进行运算,就可以达到化简 的目的. 举一反三: 【变式】已知x 3 y4z(xyz 0) ,求xy 26x 2yz 2 y zx 2的值.z 2【答案】x解: 设yz k(k 0) ,则 x 3k,y4k , z 6k3 46∴xyyz zx3k g4k 4k g6k 6k g3k54k 2 54 ∴2x2 y2z22(3k)2 (4k)2(6k) 261k 2 61【巩固练习】 一. 选择题a 2 91.若分式 2a 9 的值为 0,则 a 的值为( )a 2 a 6A .3B .-3C .±3D . a ≠- 2中的 x 、y 都扩大 m 倍( m ≠ 0),则分式的值()2.把分式 2x2y 3y 5 2y 7y 9xy14. 已知 13. A .扩大 m 倍 5a b若分式 5a b 有意义,则 a 、 3a 2b B .缩小 m 倍C .不变 b 满足的关系是( 4. 5. 6.D .不能确定A . 3a 2b 1b 若分式 12 b 2b 2 A . b < 0 面四个等式: ④xy 2 0个 A . 化简B . a 15bC . b D.23b的值是负数,则 1 b 满足( B .b ≥1 C . b <1 D. b >1 ① x 2 y x 2y ;② xy 2 x 2y ;③ xy 2x y;2xy 2 b 22a a 2 2ab b 2 ab ab 二. 填空题 A .7. 使分式 (x 2x 其中正确的有( B . 1 个 的正确结果是( B . a a b b 2 有意义的条件为 3)2 C . 2个 D . 3个C .1 2abD .2a 1b8. 分式 (x 2x 51)2有意义的条件为 2 分式 |x| 4 x4 m n ( mn 11.填入适当的代数式,使等式成立.9.当 时, 的值为零.10.填空: (1) ) n m m n ;(2) mn 2a 2b2a)2b1) a 2 ab 2b 2 a 2 b 2 ( ) ( 2) ab1a1a b ( ba 2 m 12. 分式 2m 2 1 约分的结果是 m 2 三. 解答题 2 x 13. 若 2 x 23x1的值为零,求 2 的值.2 (x 1)21 x 2,求 3x 7xy 3y 的值.2x 3xy 2y7. 8.15. (1)阅读下面解题过程:已知 2,求 524x的值.x 4 11. 解:∵ 2xx 21 ∴1∴1xx2 5,2,即 5,即 2x 4x1 21 x2 x1 (x 1x )2 2 x2)请借鉴( 已知2 x 2 答案与解析】 . 选择题 答案】 B ; 解析】 由题意 2. 答案】 C ; 解析】 3. 答案】 解析】 4. 答案】 解析】 5. 6. 9. 1)x 3x 2mxmx my D;中的方法解答下面的题目: 2, 求 4 x 0且am 2x m(x y)由题意, 3a D;因为 2b 2 1 答案】 解析】①④正确 . 答案】 解析】. 填空题【答案】【答案】【解析】【答案】2b 0 , C;B; 22ab 22 a 2ab b2x 2x2x xy所以的值.0,所以 1 b aba2abx 3.x 为任意实数;x 为任意实数,分母都大于零x 4 ;1 (52)2 2 170 ,解得 a 3.23b .0,即 b >1.ab ab2,| x| 4 0 解析】 ,所以 x 4 . x40x 2 x 0 ,即 x(x 1) 0 x 2 3x 2 0 (x 1)(x 2) 0x 0 或 x 1 0x 1 0且 x 2 0 x 0或 x 1, x 1且 x 2, x 0 ,14. 【解析】 解:方法一:∵ 1 1 y x 2 ,x y xy等式两边同乘以 xy ,得 2xy y x .x y 2xy .3x 7xy 3y 3(x y) 7 xy 2x 3xy 2y 2( x y) 3xy11 xy【解析】2a ab 2b 2a b a 2b ;1 b ba 2b 2abab1 a bab b12. 【答案】 11m;;m【解析】2m 2m 1 2m 1 1 m10. 【答案】(1)-;(2)+;11. 【答案】(1) a 2b ;(2) b a ;a ab 21 m 1 m 1 m 1 m三. 解答题13. 【解析】ab ba解:由已知得: 将 x 0 代入得:1 ( x 1)2 1 (0 1)2 1 (0 1)21.3 2 xy 7xy xy 2 2 xy 3xy 7xy方法15. 【解析】解:∵ 2xx23x 1 ∴1x13x2x42x x 1121x 2 1x12 x1 21x3x7xy3y3 y72x3xy2y23y 3 x31x1 y73271 2x21 x1 y322372,2 ,∴ x1 4.72 45.12。

分式(基础)知识讲解

分式(基础)知识讲解

分式的概念和性质(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算. 【要点梳理】要点一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a π是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).要点诠释:(1)基本性质中的A、B、M表示的是整式.其中B≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有b ba a-=-,b ba a-=-.根据有理数除法的符号法则有b b ba a a-==--.分式ab与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd ⋅=,其中a b c d 、、、是整式,0bd ≠.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分. (4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭.【学习目标】1.能利用分式的基本性质通分.2.会进行同分母分式的加减法.3.会进行异分母分式的加减法.【要点梳理】要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:a b a b c c c±±=. 要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.要点二、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点三、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则可用式子表为:a c ad bc ad bcb d bd bd bd±±=±=. 要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式. 要点四、分式的混合运算与分数的加、减乘、除混合运算一样,分式的加、减乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式.要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正确进行分式运算的基础,要牢牢掌握..(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.分式方程的解法及应用(基础)【学习目标】1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2. 会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.分式全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±= ;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.。

分式的恒等变形精讲精练

分式的恒等变形精讲精练

一、化分式为部分分式的和【例1】 (4级)(第10届华罗庚金杯决赛)下面的等式成立:22465()()x y x y x y A x y B -+--=--++,求A 、B .【例2】 (4级)若代数式(1)(2)(3)x x x x p ++++恰好能分解为两个二次整式的乘积(其中二次项系数均为1,且一次项系数相同),则p 的最大值是 .【例3】 (5级)若213111a M Na a a -=+--+,求M 、N 的值.【例4】 (3级)(06年宁波市重点中学提前考试招生试题)已知2a x +与2b x -的和等于244xx -,求a ,b .【例5】 (4级)(2004年第15届培训题)已知正整数,a b 满足1114a b +=,则a b +的最大值是 .【例6】 (4级)若对于3±以外的一切数,28339m n xx x x -=+--均成立,求mn .【例7】 (5级)若关于x 的恒等式222Mx N c x x x a x b +=-+-++中,22Mx Nx x ++-为最简分式,且有a b >,a b c +=, 求N .【例8】 (4级)将269x -化为部分分式.分式恒等变形(竞赛部分)【例9】 (4级)化21(1)(2)x x x ---为部分分式.【例10】 (4级)将下列分式写成部分分式的和的形式:2342x x x +--.【例11】 (4级)将下列分式写成部分分式的和的形式:32222361(1)(3)x x x x x -++++.【例12】 (5级)将下列分式写成部分分式的和的形式:32241338(1)(2)(1)x x x x x x -+++--.【例13】 (4级)计算:2132x x x -++262x x ---2104x x ---.【例14】 (4级)将下列分式写成部分分式的和的形式:4322231(1)(1)x x x x x ++-+-.二、分式的恒等证明【例15】 (4级)(1994广东潮州市初中数学竞赛)求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ⎛⎫⎛⎫++--+-=++-+ ⎪⎪-+⎝⎭⎝⎭【例16】 (5级)已知x 、y 、z 为三个不相等的实数,且111x y z y z x+=+=+,求证:2221x y z =.【例17】 (5级)已知:a c b d=,求证:22222222a b c d a b c d abcd ----++++++=.【例18】 (5级)若a b x a b -=+,b c y b c -=+,c az c a-=+,求证:(1)(1)(1)(1)(1)(1)x y z x y z +++=---【例19】 (5级)若1abc =,求证:1111a b ca ab b bc c ca++=++++++.【例20】 (5级)(2003年第1届“创新杯”数学邀请赛初中二年级第二试试题)已知1111a b ca ab b bc c ca++=++++++,求证:1abc =.【例21】 (6级)(1986年中国数学奥林匹克竞赛赛前培训试题) 已知2220a b cbc a ca b ab c ++=---,求证:()()()2222220a b cbc a ca b ab c ++=---.【例22】 (6级)已知0a b cb c c a a b++=---,求证:2220()()()a b c b c c a a b ++=---.【例23】 (5级)(2002年北京市中学生数学竞赛初二复赛题二)已知0abc ≠,证明:下列四个数3333()()()(),,,a b c b c a c a b a b c abc abc abc abc++------中至少有一个不小于6.【例24】 (5级)已知223344371642a b a b a b a b x y x y x x x y +=+=+=+=,,,,求证:5520a bx y+=。

初中数学精品教案:《分式的基本性质》

初中数学精品教案:《分式的基本性质》

课题:分式的基本性质 教材:浙江版七年级下册教学目标: 知识技能目标:1. 让学生理解分式的基本性质及其内涵要点;2. 让学生灵活运用分式的基本性质进行分式的恒等变形;3. 让学生了解类比、归纳、分类等思维方法; 过程性目标:4. 让学生体会学习分式基本性质的必要性及其意义;5. 让学生经历观察、实验、推理等活动,类比、归纳得到分式基本性质及运用其进行恒等变形时的注意要点,并且在这一过程中获得一些探索数学性质的初步经验。

教学重点:组织学生探索发现并掌握(运用)分式的基本性质。

教学难点:从“形”的角度解释分式的变形;分式的负号变化特征和分子、分母是多项式的分式的约分。

教学方法和手段:发现探究 小组合作 主体性讲解 教学过程:一、 创设情景,引入主题(让学生了解学习分式基本性质的必要性)由欣赏“利郎男装的广告”“简约美”过渡到数学的美;齐声朗读“数学因简约、对称、和谐而美”。

引入分式32201R R ,由学生根据“简约、对称、和谐”这一“审美”标准来审视以上分式的和谐性,从而引出用来“美化”这些分式的必需的知识——分式的基本性质。

(设计说明:“追求分式的简约、和谐美”是整节课的主线) 二、 探究发现分式的基本性质1.复习分数的基本性质(为通过“类比”得到分式的基本性质及其运用作铺垫)引出三个等分数41、82、164,通过以下问题组来复习分数的基本性质及其运用:(1) 根据我们的“审美标准”,哪个分数最具“简约美”?(2) 从164、82到41,我们是通过怎样的变形实现的?(3) 请问约分的依据是什么?(分数的基本性质的内容是什么?) 2.探究分式的变形(为通过“归纳”得到分式的基本性质及其运用作铺垫)问题探究:以下分式的变形是否成立?请简要说明理由。

m m 221= mm 122=让学生从“欣赏”的角度来看“矩形模型”:(1)m m 221=(在原来的矩形上拼上(宽重合)相同的矩形,所得面积为2的矩形与原矩形的宽相等)(1)mm 122=(面积为2的矩形沿长的中间部位分开,所得面积为1的小矩形与原矩形宽相等) 注:抽象出矩形,在矩形上分割进行(设计说明:在浙江版的教材中多处(例如:合并同类项、多项式的乘法、乘法公式等)出现了用几何图形的面积来解释代数恒等式,因此这里用图形的面积来解释分式的变形,这是一种学生易于接受的方式,也是对“数形结合”思想的进一步渗透。

分式的恒等变形习题

分式的恒等变形习题

一、化分式为部分分式的和【例1】 若213111a M N a a a -=+--+,求M 、N 的值.【巩固】已知正整数,a b 满足1114a b +=,则a b +的最小值是 .【例2】 已知2a x +与2b x -的和等于244x x -,求a ,b .【例3】 若关于x 的恒等式222Mx N c x x x a x b +=-+-++中,22Mx N x x ++-为最简分式,且有a b >,a b c +=, 求N .【例4】 将269x -化为部分分式.【例5】 化21(1)(2)x x x ---为部分分式.【例6】 将下列分式写成部分分式的和的形式:2342x x x +--. 例题精讲分式恒等变形(竞赛部分)【巩固】将下列分式写成部分分式的和的形式:32222361(1)(3)x x x x x -++++.【例7】 将下列分式写成部分分式的和的形式:4322231(1)(1)x x x x x ++-+-.二、分式的恒等证明 【例8】 求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ⎛⎫⎛⎫++--+-=++-+ ⎪⎪-+⎝⎭⎝⎭【例9】 已知:a c b d=,求证:22222222a b c d a b c d abcd ----++++++=.【例10】 若a b x a b -=+,b c y b c -=+,c a z c a-=+,求证:(1)(1)(1)(1)(1)(1)x y z x y z +++=---【例11】 若1abc =,求证:1111a b c a ab b bc c ca++=++++++.【巩固】已知1111a b c a ab b bc c ca++=++++++,求证:1abc =.【例12】 已知0a b c b c c a a b++=---,求证:2220()()()a b c b c c a a b ++=---.【例13】 已知3142a b ab c d cd +==+==,,,,且a b c d B b c d c d a d a b a b c+++=++++++++。

分式方程与反比例函数知识点总结

分式方程与反比例函数知识点总结

分 式1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。

2) 分式有意义的条件:分母不为零,即坟墓中的代数式的值不能为零。

3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

用式子表示 其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。

(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。

(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。

3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。

2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。

4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。

4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。

用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。

5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。

例:已知 ,则求2)参数法:当出现连比式或连等式时,常用参数法。

例:若 ,则求6. 分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式恒等变形公式

分式恒等变形公式

分式恒等变形公式分式恒等变形公式可是数学里的一个重要“武器”,它就像是一把神奇的钥匙,能帮咱们打开很多数学难题的大门。

咱先来说说啥是分式恒等变形。

简单来讲,就是把一个分式通过各种操作,变成跟它完全等价,但形式不同的另一个分式。

这就好比你有一块橡皮泥,你可以把它捏成各种形状,但本质上还是那块橡皮泥。

就拿一个简单的例子来说,比如说分式$\frac{a}{b}$,给分子分母同时乘以一个数 c ,就变成了$\frac{ac}{bc}$,这就是一种恒等变形。

在分式恒等变形中,有几个特别重要的公式。

比如说,通分,这可是个常用的手段。

假设咱们有两个分式,$\frac{a}{b}$和$\frac{c}{d}$,要把它们相加,就得先通分,通分后的结果就是$\frac{ad}{bd} +\frac{bc}{bd} = \frac{ad + bc}{bd}$。

这就像是把两条不同粗细的绳子,搓成一股更粗的绳子。

还有约分,这就像是把一个复杂的图形简化,只留下最关键的部分。

比如$\frac{ac}{bc}$,分子分母同时除以 c ,就变成了$\frac{a}{b}$。

我记得有一次给学生讲这个知识点的时候,有个学生特别迷糊,怎么都搞不明白为啥要通分约分。

我就拿分蛋糕来给他打比方。

我说,假如有一块大蛋糕要分给 b 个人,每个人能分到的就是$\frac{1}{b}$。

现在有 a 块这样的蛋糕,那总共不就是$\frac{a}{b}$嘛。

然后又来 c 块小一点的蛋糕,要分给 d 个人,每个人能分到$\frac{1}{d}$,那这 c 块蛋糕总共就是$\frac{c}{d}$。

现在要把这两种蛋糕合在一起分给大家,那不得先把它们变成一样大小的份额,才能好分嘛,这就是通分的道理。

这孩子一听,恍然大悟,眼睛都亮了。

再说说分式的乘法和除法。

分式相乘,就是分子乘分子,分母乘分母。

比如$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲 分式的恒等变形
【专题知识点概述】
分式的恒等变形是代数式恒等变形的一种。

它以整式恒等变形为基础,并结合分式自身的特点,因此更具有独特的复杂性和技巧性,在数学竞赛中常常出现有关这方面的命题。

分式的恒等变形涉及到的主要内容有:分式性质、概念的灵活应用,分式的各种运算、化简、求值及恒等证明等等。

一:基本知识
1.分式的运算规律
(1)加减法:
)(同分母c
b a
c b c a ±=± )(异分母bc
bd
ac c d b a ±=± (2)乘法:bd ac
d c b a =•
(3)除法:bc ad
d c b a =÷
(4)乘方:n n
n b
a b a =)(
2.分式的基本性质
(1)
)0(,≠÷÷==m m
b m a b a bm
am b a (2)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3.比例的重要性质
(1)如果
e
f
b a e f
c
d c d b a ===那么,(传递性)
(2)如果bd ac c d
b a ==那么(内项积等于外项积) (3)如果)(合比性质那么
c d
c b b a
d c b a ±=±=
(4)如果)()0(,合分比性质那么d b d
b c a c a d b d c b a -+=-+≠-=
(5)如果,0,≠+++==n d b n m
d c b a 且
那么)(等比性质b a
n d b m c a =++++++
4.倒数性质
(1)如果两个数互为倒数,那么这两个数的乘积为1。

(2)如果两个数互为倒数,那么这两个数的同次幂仍互为倒数。

(3)如果两个正数互为倒数,那么这两个正数的和不小于2。

二、有关分式的运算求值问题
乘法公式是进行整式恒等变形的常用的重要的工具,我们通过下面的例题来说明在整式的恒等变形中,如何灵活巧妙的运用乘法公式。

➢ 例1.若a 、b 、c 均为非零常数,且满足
a
c
b a b
c b a c c b a ++-=
+-=-+, 又abc
a c c
b b a x )
)()((+++=,且0<x ,求x 的值。

➢ 例2.已知的值求y
xy x y
xy x y x ---+=-2232,311
➢ 例3.已知三个正数a 、b 、c 满足abc=1, 求1
11+++
+++++c ac c
b b
c b a ab a 的值
➢ 例4.已知02
22=-+-+-c ab c
b a
c b a bc a 求2
22222)()()(c ab c
b a
c b a bc a -+-+-的值。

➢ 例5.已知,0,1=++=++z
c y
b x
a c
z b
y a
x
求22
2222c
z b y a x ++的值。

➢ 例6.已知x+y+z=3a (0≠a ,且x 、y 、z 不全相等), 求2
22)()()()
)(())(())((a z a y a x a x a z a z a y a y a x -+-+---+--+--的值。

➢ 例7.已知1222222222222=-++-++-+ab
c b a ca b a c bc a c b ,n 是自然数, 求1
22221222212222)2()2()2(
+++-++-++-+n n n ab
c b a ca b a c bc a c b 的值。

➢ 例8.的值求若22
1
,123+--+=x x x a x 。

➢ 例9.已知4
1
12=++x x x ,试求分式12
4
2++x x x 的值。

➢ 例10.已知三个不全为零的数x 、y 、z 满足0634=--z y x ,
072=-+z y x 。

求2
222
2275632z y x z y x ++++的值。

➢ 例11.若x 、y 、z 为有理数,且
222)()()(y x x z z y -+-+-222)2()2()2(z y x y x z x z y -++-++-+=
求)
1)(1)(1()
1)(1)(1(2
22++++++z y x xy zx yz 的值
➢ 例12.已知a 、b 、c 互不相等,且满足a+b+c=0,
求ab
c c ac b b bc a a +++++22
2222222的值。

➢ 例13.已知b a ab x b a b a b a +=≠+≠≠≠4,0,0,0,,求b
x b
x a x a x 2222-++-+的值。

➢ 例14.若a c b a b c b a c c b a ++-=
+-=-+,求abc
c b c a b a )
)()((+++的值。

➢ 例15.如果的值求都是整数,且q p q p p
q q p q p +>>--,1,11
2,12,,。

三、有关分式的化简问题
➢ 例16.化简)
)()(()
)()((a c c b b a a c c b b a a c a c c b c b b a b a +++---++-++-++-。

➢ 例17.化简3221311]1111[)1(222222+--++--+
÷
---+-+x
x x x x x x x x x x x x x 。

➢ 例18.化简
)
)(())(()(211213212132112
n n n x x x x x x x x x x x x x x x x x +++++++++++++-
➢ 例19.已知2
2
2
)(c b a b a -+=+,并且0≠b ,化简2
22
2)
()(c b b c a a -+-+。

➢ 例20.若02≠-=n
m mn
x ,化简
m ax n mx ax --2。

➢ 例21.化简:
)
2)(2()
)(()2)(2())(()2)(2())((z y x x z y z y z x x y z z y x y x y z z y x z y x x z x y +--+--+-+-+--+-++---
三、有关分式的证明问题
➢ 例22.若00=-+-+-=++c
b
a b a c a c b c b a 且
,求证: 02
22222=-++-++-+b a b
a a
b a
c a c ca c b c b bc
➢ 例23.已知有理数a 、b 、c 满足a+b+c=0,abc=8.试判断c
b
a
111++是 正数、负数、还是零。

➢ 例24.已知有理数a 、b 、c 满足c
b a c
b
a
++=
++1
111,求证:
a c c
b b a -=-=-=或或。

➢ 例25.若n 为自然数,且c
b a c
b
a
++=
++1
111,求证:
1
212121
21
21
21
111++++++++=
++n n n n n n c b a c b a
➢ 例26.证明:对于任意自然数n ,分数3
144
21++n n 不可约。

➢ 例27.已知00都不等于、、,且c b a c b a ≠++, 求证:03)11()11()11(=++++++b
a c c a
b
c b a 。

➢ 例28.证明:
]
)1([1
])1(][)2([1)2)((1)(1d n a a n d n a d n a d a d a d a a -+-=-+-+++++++
➢ 例29.设n 为正整数,求证:2
1
)12)(12(1531311<+-++⨯+⨯n n 。

➢ 例30.若,0,0,0,0≠+≠+≠+≠++x z z y y x z y x
y x z c z x y b z y x a +=+=+=
,,,求证11
11=+++++c c b b a a 。

➢ 例31.设a 、b 、c 均为正数,且1=++c b a ,证明:9111
≥++c
b a 。

➢ 例32.求证a
c c b b a b c a c c a a b c b a c c a b a c b -+-+-=---+---+---2
22))(())(())((。

➢ 例33.能否找出6个奇数,使其倒数之和为1.。

相关文档
最新文档