分式的恒等变形(一)
奥数-分式恒等变形师

分式恒等变形方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。
例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求111a b c bc ca ab a b c++---的值。
(1/8) 例2. 若0abc ≠,0a b c ++=,求222a b c bc ac ab++的值。
(3)例3. 求证:2220()()()()()()a bcb ac c baa b a c a b b c c b a c ---++=++++++例4. 设正数x ,y ,z 满足不等式2222x y z xy +-+2222y z x yz +-+2222z x y xz+->1,求证x ,y ,z 是某个三角形的三边长【分析与证明】原不等式可变形为z(x^2+y^2-z^2)+x(y^2+z^2-x^2)+y(x^2+z^2-y^2)-2xyz>0 因式分解得(x+y-z)(y+z-x)(z+x-y)>0所以三个括号内的数全正或者1正2负,因为x ,y ,z 全正,所以不可能1正2负(证明略)所以三个括号内均为正数,所以x ,y ,z 是某个三角形的三边长例5. 求分式248161124816111111a a a a a a +++++-+++++,当2a =时的值. 【解析】 先化简再求值.直接通分较复杂,注意到平方差公式:()()22a b a b a b -=+-,可将分式分步通分,每一步只通分左边两项.原式()()()()248161124816111111a a a a a a a a ++-=++++-+++++22481622481611111a a a a a =++++-++++ ()()()()224816222121481611111a a a a a a a +++=++++++-+44816448161111a a a a =+++-+++1616161611a a =+-+32323232112a ==--例6. 若实数a ,b ,c 满足1111a b c a b c++=++,求证: 7777771111a b c a b c++=++.【证明】:由已知得到()()bc ac ab a b c abc ++++=,有()()()0a b b c a c +++=,则a ,b ,c 中一定有两个数互为相反数。
分式的概念和性质+答案

分式的概念和性质(提高)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0 的条件. 2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【要点梳理】【高清课堂403986 分式的概念和性质知识要点】要点一、分式的概念A 一般地,如果A、B 表示两个整式,并且B 中含有字母,那么式子A叫做分式. 其中AB叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的. 分数是整式,不是分式,分式是两个整式相除的商式. 分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母” ,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式2不能先化简,如x y是分式,与xy 有区别,xy 是整式,即只看形式,x不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1. 分式有意义的条件:分母不等于零.2. 分式无意义的条件:分母等于零.3. 分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0 的整式,分式的值不变,这个性质叫做A A M A A M分式的基本性质,用式子表示是: A A M,A A M(其中M是不等于零的整式).B B M B B M要点诠释:(1)基本性质中的A、B、M表示的是整式. 其中B≠0 是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠ 0 是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0 这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化. 例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变2 4解:整式有:23,2y 2, 2y 2;其中任何一个或三个,分式成为原分式的相反数 要点诠释: 根据分式的基本性质有 b a b bb. 分式a与 a 互为相反数a a ab b重要的作用 .要点五、分式的约分,最简分式 与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的 值,这样的分式变形叫做分式的约分 . 如果一个分式的分子与分母没有相同的因式 (1 除外), 那么这个分式叫做最简分式 .要点诠释: (1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分 母再没有公因式 .( 2)约分的关键是确定分式的分子与分母的公因式. 分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式 的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子 与分母是不能再分解的因式积的形式,然后再进行约分 .要点六、分式的通分与分数的通分类似, 利用分式的基本性质, 使分式的分子和分母同乘适当的整式, 不改 变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分 .要点诠释:(1)通分的关键是确定各分式的最简公分母: 一般取各分母所有因式的最高 次幂的积作为公分母 .2)如果各分母都是单项式, 那么最简公分母就是各系数的最小公倍数与相 同字母的最高次幂的乘积; 如果各分母都是多项式, 就要先把它们分解 因式,然后再找最简公分母 .3)约分和通分恰好是相反的两种变形, 约分是对一个分式而言, 而通分则 是针对多个分式而言 .典型例题】 类型一、分式的概念高清课堂 403986 分式的概念和性质 例 1】. 根据有理数除法的符号法则有分式的符号法则在以后关于分式的运算中起着1、指出下列各式中的整式与分式:1 ,1 ,a b ,x , 3 ,, , , ,2 ,x x y 2 x 12y 2,2 x ,思路点拨】 判断分式的依据是看分母中是否含有字母, 如果含有字母则是分式, 如果不含有字母则不是分式. 【答案与解析】∵ x 2 为非负数,不可能等于- 1, ∴ 对于任意实数 x ,分式都有意义; 当 x 0 时,分式的值为零.(2)当 x 2 0即 x 0时,分式有意义; 当 x 0, 即 x 5 时,分式的值为零x 5 0,(3)当 x 5 0,即 x 5 时,分式有意义; 当 x 5 0, ①时,分式的值为零,2x 10 0 ②由①得 x 5时,由②得 x 5 ,互相矛盾.2x 10∴ 不论 x 取什么值,分式 2x 10 的值都不等于零.x5【总结升华】 分母不为零时,分式有意义;分子的值为零,而分母的值不为零时,分式的值 为零. 举一反三:【变式 1】若分式的值为 0,则的值为 _________________________ . 【答案】 - 2;|x| 2 0 |x| 2 0 提示:由题意 2, ,所以 x 2.x 2 5x 6 0 x 3 x 2 0分式有:1,1 , 3 , x2 x x y x 2 1 x总结升华】 判断分式的依据是看分母中是否含有字母.此题判断容易出错的地方有两处: 一个是把 π 也看作字母来判断, 没有弄清 π 是一个常数; 另一个就是将分式化简成整式后2再判断,如 x 和 x x,前一个是整式,后一个是分式,它们表示的意义和取值范围是不相同的.类型二、分式有意义, 分式值为 0 高清课堂 403986当 x 取什么数时,下列分式有意义?当2、 分式的概念和性质 例 2】x 取什么数时,下列分式的值为零?( 1) 2x x 2 答案与解析】2)x52;x3) 2x 10 x5解:( 1)当 x 20,即 x21时,分式有意义.x2变式 2】当 x 取何值时,分式 的值恒为负数? 2x 6 答案】 x 2 0, 或 x 2 0, 2x 6 0, 2x 6 0. 解不等式组x 2 0,该不等式组无解.2x 6 0,解不等式组x 2 0,得 3 x 2. 2x 6 0.所以当 3x 2 时,分式x 2的值恒为负数. 2x 6类型三、分式的基本性质高清课堂 403986 分式的概念和性质 例 4】 3、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数(1) ; (2) ; (3) . 答案与解析】解:(1) ;(3).【总结升华】 (1) 、根据分式的意义, 分数线代表除号, 又起括号的作用; (2) 、添括号法则: 当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号 举一反三:解: 由题意可知(2)a1 a 2 2a 1 ;2;a 22变式】 列分式变形正确的是(A .2 x2ymn(m n)2 (m n)(m n)(m n)2答案】C .x 21x 2x 11 x1ab 2 aD ;提示:条件.将分式变形时,注意将分子、分母同乘(或除以)同一个不为 其中A 项分子、分母乘的不是同一整式,B 项中 m n 0 的整式这一0这一条件不知是1x 否成立,故 A 、B 两项均是错的. C 项左边可化为: 1 x 2(1 x)21 1x11,故 C x1项亦错,只有 D 项的变形是正确的.类型四、分式的约分、通分如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,也就是分子、分母系数的最大公约数与相同字母的最低次幂. 通分的关键是确定几个分式的最简公分 母,若分母是多项式, 则要因式分解, 要防止遗漏只在一个分母中出现的字母以及符号的变 化情况. 类型五、分式条件求值225、若 x 2,求 x 22 2xy 3y 22 的值.y x 2 6xy 7 y 2【思路点拨】 本题可利用分式的基本性质, 采用整体代入法, 或把分式的分子与分母化成只 含同一字母的因式,使问题得到解决. 【答案与解析】x 解法一:因为 2 ,可知 y 0 ,y222(x 22xy3y 2) g12x2x g3所以x 22xy3y 2yyy所以2x 26xy7y 2(x 26xy 7y 2)g12 y2x6 x g7yy4、约分:(1)2;(2) 2n 2 m 3 ;2mn 4n通分:3)3 2a 2ba b ;ab 2c4)x 24x42 x2答案与解析】解:(1) a 2 2a 1a 21(a1)2 ( a 1)(a 1)1;a12) 2 n 2 m2mn 4n 32n 2 m2n (m 2n 2)(m2n 2) 2n (m 2n 2 )1 2n ;3)最简公分母是 222a 2b 2c . 3 g bc222a 2b 2a 2b g bc3bc22 2a b cb ab 2c(a b) g 2a ab 2c g 2a22a 22ab2a 2b 2c4)最简公分母是(x 2)(x 2) ,1 x2x2 (x 2)( x 2)x 2 ,4 xx 2 4 x 2 44x x 2 42(x 2)x 2 (x 2)( x 2)2x 4 x 2 4总结升华】( 2)2 2 ( 2) 3 5 ( 2)2 6 ( 2) 7 9解法二:因为 x 2 , y所以 x 2y ,且 y 0 ,22x 2 2xy 3y 2 (x 3y)(x y) x 3y x 2 6xy 7y 2 (x 7y)(x y) x 7y【总结升华】 本题的整体代入思想是数学中一种十分重要的思想. 一般情况下, 在条件中含 有不定量时,不需求其具体值,只需将其作为一个“整体”代入进行运算,就可以达到化简 的目的. 举一反三: 【变式】已知x 3 y4z(xyz 0) ,求xy 26x 2yz 2 y zx 2的值.z 2【答案】x解: 设yz k(k 0) ,则 x 3k,y4k , z 6k3 46∴xyyz zx3k g4k 4k g6k 6k g3k54k 2 54 ∴2x2 y2z22(3k)2 (4k)2(6k) 261k 2 61【巩固练习】 一. 选择题a 2 91.若分式 2a 9 的值为 0,则 a 的值为( )a 2 a 6A .3B .-3C .±3D . a ≠- 2中的 x 、y 都扩大 m 倍( m ≠ 0),则分式的值()2.把分式 2x2y 3y 5 2y 7y 9xy14. 已知 13. A .扩大 m 倍 5a b若分式 5a b 有意义,则 a 、 3a 2b B .缩小 m 倍C .不变 b 满足的关系是( 4. 5. 6.D .不能确定A . 3a 2b 1b 若分式 12 b 2b 2 A . b < 0 面四个等式: ④xy 2 0个 A . 化简B . a 15bC . b D.23b的值是负数,则 1 b 满足( B .b ≥1 C . b <1 D. b >1 ① x 2 y x 2y ;② xy 2 x 2y ;③ xy 2x y;2xy 2 b 22a a 2 2ab b 2 ab ab 二. 填空题 A .7. 使分式 (x 2x 其中正确的有( B . 1 个 的正确结果是( B . a a b b 2 有意义的条件为 3)2 C . 2个 D . 3个C .1 2abD .2a 1b8. 分式 (x 2x 51)2有意义的条件为 2 分式 |x| 4 x4 m n ( mn 11.填入适当的代数式,使等式成立.9.当 时, 的值为零.10.填空: (1) ) n m m n ;(2) mn 2a 2b2a)2b1) a 2 ab 2b 2 a 2 b 2 ( ) ( 2) ab1a1a b ( ba 2 m 12. 分式 2m 2 1 约分的结果是 m 2 三. 解答题 2 x 13. 若 2 x 23x1的值为零,求 2 的值.2 (x 1)21 x 2,求 3x 7xy 3y 的值.2x 3xy 2y7. 8.15. (1)阅读下面解题过程:已知 2,求 524x的值.x 4 11. 解:∵ 2xx 21 ∴1∴1xx2 5,2,即 5,即 2x 4x1 21 x2 x1 (x 1x )2 2 x2)请借鉴( 已知2 x 2 答案与解析】 . 选择题 答案】 B ; 解析】 由题意 2. 答案】 C ; 解析】 3. 答案】 解析】 4. 答案】 解析】 5. 6. 9. 1)x 3x 2mxmx my D;中的方法解答下面的题目: 2, 求 4 x 0且am 2x m(x y)由题意, 3a D;因为 2b 2 1 答案】 解析】①④正确 . 答案】 解析】. 填空题【答案】【答案】【解析】【答案】2b 0 , C;B; 22ab 22 a 2ab b2x 2x2x xy所以的值.0,所以 1 b aba2abx 3.x 为任意实数;x 为任意实数,分母都大于零x 4 ;1 (52)2 2 170 ,解得 a 3.23b .0,即 b >1.ab ab2,| x| 4 0 解析】 ,所以 x 4 . x40x 2 x 0 ,即 x(x 1) 0 x 2 3x 2 0 (x 1)(x 2) 0x 0 或 x 1 0x 1 0且 x 2 0 x 0或 x 1, x 1且 x 2, x 0 ,14. 【解析】 解:方法一:∵ 1 1 y x 2 ,x y xy等式两边同乘以 xy ,得 2xy y x .x y 2xy .3x 7xy 3y 3(x y) 7 xy 2x 3xy 2y 2( x y) 3xy11 xy【解析】2a ab 2b 2a b a 2b ;1 b ba 2b 2abab1 a bab b12. 【答案】 11m;;m【解析】2m 2m 1 2m 1 1 m10. 【答案】(1)-;(2)+;11. 【答案】(1) a 2b ;(2) b a ;a ab 21 m 1 m 1 m 1 m三. 解答题13. 【解析】ab ba解:由已知得: 将 x 0 代入得:1 ( x 1)2 1 (0 1)2 1 (0 1)21.3 2 xy 7xy xy 2 2 xy 3xy 7xy方法15. 【解析】解:∵ 2xx23x 1 ∴1x13x2x42x x 1121x 2 1x12 x1 21x3x7xy3y3 y72x3xy2y23y 3 x31x1 y73271 2x21 x1 y322372,2 ,∴ x1 4.72 45.12。
初二数学网课优选例习题--分式与分式的基本性质

初二数学网课优选例习题--分式与分式的基本性质【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【基础知识】一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.注意:(1)分式和分数的区别:分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.注意:分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).注意:(1)基本性质中的A、B、M表示的是整式.其中B≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x的取值范围变大了.四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.注意:根据分式的基本性质有b ba a-=-,b ba a-=-.根据有理数除法的符号法则有b b ba a a-==--.分式ab与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用. 五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式. 注意:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式. (2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分. 六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.注意:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母. (2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.【考点剖析】 考点一:分式的判断例1.(2022·四川·广安中学八年级月考)下列式子:22222123,,,,,x y a ax a a xy y aπ--+--,其中是分式的有( ) A .2个B .3个C .4个D .5个考点二:分式有意义的条件例2.(2022·湖南益阳·八年级期末)分式13x -有意义,则x 的取值范围是( ) A .3x >B .3x <C .3x ≠D .3x ≠-考点三:分式的值为正为负为零的条件例3.(2022·重庆市育才中学八年级月考)若分式22x x -+的值为0,则( )A .2x =B .2x =-C .2x =±D .12x =考点四:判断分式变形是否正确例4.(2022·河南·扶沟县第一初级中学八年级月考)下列化简中正确的是( )A .0.220.55a b a b a b a b ++=--B .a aa b a b=----C .22b b a a=D .22a b a b a b-=+-考点五:利用分式的基本性质判断分式值的变化例5.(2022·北京二中八年级月考)把分式a bab+中的a 、b 都扩大2倍,则分式的值( ) A .不变B .扩大2倍C .缩小2倍D .扩大4倍考点六:分式的约分例6.(2022·湖南·桂阳县第二中学八年级期中)下列分式中,不是最简分式的是( )A .22x y x y++B .243y xC .2ab aab- D .361xx + 考点七:分式的通分例7.下列各式计算正确的是( )A .623x x x=B .21221x x-=-- C .2933m m m-=+-D .11111x x x x +⋅=++ 【真题演练】1.(2021·江苏苏州·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b aa b+等于( )A .2-B .1-C .1D .22.(2021·江苏扬州·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x +B .21x -C .11x + D .()21x +3.(2022·江苏南通·中考真题)分式22x -有意义,则x 应满足的条件是___________. 4.(2021·江苏泰州·中考真题)函数:1y x 1=+中,自变量x 的取值范围是_____. 【过关检测】 一、单选题1.(2022·黑龙江·哈尔滨德强学校八年级期中)在式子3a,7a b +,5,11x -,8x ,2212x y +中,分式的个数为( ) A .2个B .3个C .4个D .5个2.(2022·重庆实验外国语学校八年级月考)若代数式3xx-无意义,则实数x 的取值范围是( ) A .3x =B .3x ≠C .0x ≠D .0x =3.(2022·广西贵港·八年级期中)若分式12x +有意义,则( ) A .2x =-B .2x ≠C .2x =±D .2x ≠-4.(2022·河南·扶沟县第一初级中学八年级月考)已知分式a bab+(a ,b 均为正数),若分式中每个字母的值都扩大为原来的3倍,则分式的值( )A .扩大为原来3倍B .缩小为原来的13C .不变D .缩小为原来的195.(2022·重庆实验外国语学校八年级月考)下列各式从左到右的变形正确的是( )A .22a ax b bx=B .(1)(1)y a yx a x +=+ C .y m yx m x +=+ D .2111x x x -=--6.(2022·广西贵港·八年级期中)下列各式从左边到右边的变形正确的是( ) A .22x y y xx y x y--=++ B .a b a bc c-+-=- C .0.220.22a b a ba b a b++=++ D .1x y x y --=+ 二、填空题7.(2022·吉林省实验中学八年级期中)约分:25abab=___________. 8.三个分式3x,21x x -,31x +的最简公分母是___________.9.(2022·湖南·芷江侗族自治县第一中学八年级期中)分式22222,,121x x xx x x x x----++-的最简公分母是___________.10.(2022·山东烟台·八年级期中)若分式2x yx y-=+中的x ,y 的值都变为原来的3倍.则此分式的值为______. 11.(2022·江苏·张家港市梁丰初级中学八年级月考)如果分式21628x x -+的值为零,那么x =________.12.(2022·江苏·张家港市梁丰初级中学八年级月考)已知:45x y =,则32x y x y+-的值为______. 三、解答题13.(2022·湖南·新化县东方文武学校八年级期末)当x 为何值时,分式2256x x x -++的值为零?14.(2022·山东·龙口市龙矿学校八年级月考)化简下列分式(1)524371218x y z x z -(2)2239m m m --(3)2222a ab a ab b +++ (4)2()2()b a a b -- 15.将下列各分式通分: (1)212,3x x ax -;(2)31,22a a b b a---;(3)2212,969a a a -++;(4)21,442x x x --. 16.(2022·湖南永州·八年级期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①2222a b a b +-; ②22121x x x --+;③222)m n m n -+(;④3322a b a b ++其中不是“和谐分式”的是(填写序号即可);(2)若a 为整数,且2216x x ax +++为“和谐分式”请求出a 的值.考点一:分式的判断例1.(2022·四川·广安中学八年级月考)下列式子:22222123,,,,,x y a ax a a xy y aπ--+--,其中是分式的有( ) A .2个 B .3个 C .4个 D .5个【答案】C【分析】根据分式的定义逐个判断即可.【详解】解:根据分式定义得:222212,,,-+-x y aa a xy ay 是分式,共4个 故选:C考点二:分式有意义的条件例2.(2022·湖南益阳·八年级期末)分式13x -有意义,则x 的取值范围是( ) A .3x >B .3x <C .3x ≠D .3x ≠-【答案】C【分析】根据分式有意义的条件:分母不能为0,得出30x -≠,解得x 的取值范围. 【详解】解:分式13x -有意义, 30x ∴-≠, 3x ∴≠.故选:C考点三:分式的值为正为负为零的条件例3.(2022·重庆市育才中学八年级月考)若分式22x x -+的值为0,则( )A .2x =B .2x =-C .2x =±D .12x =【答案】A【分析】根据分式值为0的条件求解即可. 【详解】解:由题意,得20x -=,20x +≠, 解得2x =. 故选:A .考点四:判断分式变形是否正确例4.(2022·河南·扶沟县第一初级中学八年级月考)下列化简中正确的是( )A .0.220.55a b a b a b a b ++=--B .a aa b a b=----C .22b b a a=D .22a b a b a b-=+-【答案】D【分析】根据分式的性质一一判断即可.【详解】解:A 、0.22100.5510a b a ba b a b++=--,原式化简错误,不符合题意;B 、a aa b a b=---+,原式化简错误,不符合题意; C 、22b b a a≠,原式化简错误,不符合题意;D 、22()()a b a b a b a b a b a b -+-==+--,原式化简正确,符合题意;故选:D .考点五:利用分式的基本性质判断分式值的变化例5.(2022·北京二中八年级月考)把分式a bab+中的a 、b 都扩大2倍,则分式的值( ) A .不变 B .扩大2倍 C .缩小2倍 D .扩大4倍【答案】C【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【详解】解:分式a bab+中的a 和b 都扩大2倍,得 分式的值缩小2倍, 故选:C .考点六:分式的约分例6.(2022·湖南·桂阳县第二中学八年级期中)下列分式中,不是最简分式的是( )A .22x y x y++B .243y xC .2ab aab- D .361xx + 【答案】C【分析】根据将每个选项的分子和分母分别进行因式分解,然后进行约分化简,如果无法继续进行化简则选项是最简分式,如果可以继续化简,则选项是最简分式.【详解】解:A 、22x y x y++无法继续化简,故是最简分式,不符合题意;B 、243y x无法继续化简,故是最简分式,不符合题意;C 、()11222a b ab a b ab ab b---==,可以继续化简,故不是最简分式,符合题意; D 、361xx +无法继续化简,故是最简分式,不符合题意; 故选:C .考点七:分式的通分例7.下列各式计算正确的是( )A .623x x x =B .21221x x-=-- C .2933m m m-=+-D .11111x x x x +⋅=++ 【答案】B【分析】根据分式的性质以及分式的混合运算法则进行计算即可.【详解】解:A 、633x x x =,原式计算错误,不符合题意;B 、221222(1)1x x x--==----,原式计算正确,符合题意; C 、29(3)(3)333m m x m m m -+-==----,原式计算错误,不符合题意;D 、11121111x x x x x x ++=+=+++,原式计算错误,不符合题意; 故选:B .【真题演练】1.(2021·江苏苏州·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b+等于( )A .2-B .1-C .1D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab++,∴()2222==a b ab b a b a a b ab ab+-++,∵两个不等于0的实数a 、b 满足0a b +=, ∴()22-2===-2a b ab b a ab a b ab ab+-+, 故选:A .2.(2021·江苏扬州·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x - C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断. 【详解】解:A 、当x =-1时,x +1=0,故不合题意; B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意; 故选C .3.(2022·江苏南通·中考真题)分式22x -有意义,则x 应满足的条件是___________. 【答案】2x ≠【分析】根据分式有意义的条件是分母不为0得出不等式,求解即可. 【详解】解:分式22x -有意义,即20x -≠, ∴2x ≠, 故答案为:2x ≠.4.(2021·江苏泰州·中考真题)函数:1y x 1=+中,自变量x 的取值范围是_____. 【答案】x 1≠-【详解】解:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x 1+在实数范围内有意义,必须x 10+≠,即x 1≠-. 故答案为:x 1≠-. 【过关检测】 一、单选题1.(2022·黑龙江·哈尔滨德强学校八年级期中)在式子3a,7a b +,5,11x -,8x ,2212x y +中,分式的个数为( ) A .2个 B .3个 C .4个 D .5个【答案】A【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】解:在式子3a,7a b +,5,11x -,8x ,2212x y +中,分式有:3a,11x -,共有2个.故选:A .2.(2022·重庆实验外国语学校八年级月考)若代数式3xx-无意义,则实数x 的取值范围是( ) A .3x = B .3x ≠ C .0x ≠ D .0x =【答案】A【分析】直接利用分式有意义的条件分析得出答案.分式有意义的条件是分母不等于零. 【详解】解:代数式3xx-在实数范围内无意义, 30x ∴-=,解得3x =. 故选:A .3.(2022·广西贵港·八年级期中)若分式12x +有意义,则( ) A .2x =- B .2x ≠ C .2x =± D .2x ≠-【答案】D【分析】分式有意义的条件是分母不为零,据此解题即可. 【详解】解:由分式12x +有意义可得:20x +≠, 解得:2x ≠-. 故选:D .4.(2022·河南·扶沟县第一初级中学八年级月考)已知分式a bab+(a ,b 均为正数),若分式中每个字母的值都扩大为原来的3倍,则分式的值( ) A .扩大为原来3倍 B .缩小为原来的13C .不变D .缩小为原来的19【答案】B【分析】根据分式的基本性质进行计算即可解答. 【详解】解:由题意可得:333()13393a b a b a ba b ab ab+++==⨯⨯,∴分式的值缩小为原来的13,故选:B .5.(2022·重庆实验外国语学校八年级月考)下列各式从左到右的变形正确的是( )A .22a ax b bx=B .(1)(1)y a yx a x +=+ C .y m yx m x +=+ D .2111x x x -=--【答案】B【分析】根据分式的基本性质对各个选项进行判断.【详解】解:A .分式的分子和分母同时乘上一个不为0的数时,分式的值不改变,2x 可能等于0,故A 错,不符合题意; B .(1)(1)y a yx a x+=+正确,分式的分子和分母同时除一个不为0的数时值不变,故B 正确,符合题意;C .分式的分子和分母同时加减一个相同的数,值可能会改变,故C 错,不符合题意;D .2111x x x -=+-,故D 错,不符合题意;故选:B .6.(2022·广西贵港·八年级期中)下列各式从左边到右边的变形正确的是( ) A .22x y y xx y x y--=++ B .a b a bc c-+-=- C .0.220.22a b a ba b a b++=++ D .1x y x y --=+ 【答案】B【分析】根据分式的基本性质作答.【详解】解:A 、22x y y x x y x y --=-++,此选项变形错误; B 、a b a b c c -+-=-,此选项变形正确; C 、0.22100.2102a b a b a b a b ++=++,此选项变形错误; D 、1x y x y--=-+,此选项变形错误; 故选B .二、填空题7.(2022·吉林省实验中学八年级期中)约分:25ab ab=___________. 【答案】25 【分析】先找出分式的分子和分母的公因式,再根据分式的基本性质进行计算即可. 【详解】解:2255ab ab =, 故答案为:25. 8.三个分式3x ,21x x -,31x +的最简公分母是___________. 【答案】2(1)x x -【分析】根据最简公分母的定义求解即可.【详解】解:∵()()2111x x x -=+-, ∴三个分式3x ,21x x -,31x +的最简公分母是()()11x x x +-,即2(1)x x -. 故答案为:2(1)x x -.9.(2022·湖南·芷江侗族自治县第一中学八年级期中)分式22222,,121x x x x x x x x ----++-的最简公分母是___________.【答案】()()211x x x -+【分析】先对每个分母进行因式分解,再根据最简公分母的含义进行求解即可.【详解】()()222211,1x x x x x x x ++=+-=-,∴最简公分母是()()211x x x -+,故答案为:()()211x x x -+.10.(2022·山东烟台·八年级期中)若分式2x y x y-=+中的x ,y 的值都变为原来的3倍.则此分式的值为______.【答案】2【分析】根据分式基本性质解答即可.【详解】解:由题意可知:当x ,y 的值都变为原来的3倍时, 分式变为33233--==++x y x y x y x y. 故答案为:211.(2022·江苏·张家港市梁丰初级中学八年级月考)如果分式21628x x -+的值为零,那么x =________. 【答案】4【分析】先将分式化简,再根据分式的值为0,可知分式分子的值为0,分母的值不为0,据此作答即可. 【详解】()()()24416428242x x x x x x +---==++, 根据题意,有:40280x x -=⎧⎨+≠⎩, 解得:4x =,故答案为:4.12.(2022·江苏·张家港市梁丰初级中学八年级月考)已知:45x y =,则32x y x y+-的值为______. 【答案】193 【分析】根据45x y =,设4x k =,则:5y k =,代入分式求值即可. 【详解】解:∵45x y =,设4x k =, 则:5y k =, 把4x k =,5y k =代入,得:34351919224533x y k k k x y k k k ++⨯===-⨯-; 故答案为:193. 三、解答题13.(2022·湖南·新化县东方文武学校八年级期末)当x 为何值时,分式2256x x x -++的值为零? 【答案】2【分析】分式值为零,按照分子为零且分母不为零求解即可 【详解】解:∵2256x x x -++的值为零 ∴20x -=且2560x x ++≠解得:2x =±,当x =2时,256200x x ++=≠当x =-2时,2560x x ++=,故舍去综上:x =214.(2022·山东·龙口市龙矿学校八年级月考)化简下列分式 (1)524371218x y z x z - (2)2239m m m -- (3)2222a ab a ab b +++ (4)2()2()b a a b -- 【答案】(1)22332x y z - (2)3m m -+ (3)a ab + (4)2a b - 【分析】(1)将分子和分母的公因式约去即可;(2)先将分子和分母分解因式,然后约分即可;(3)先将分子和分母分解因式,然后约分即可;(4)先将分子和分母分解因式,然后约分即可.【详解】(1)解:524371218x y z x z -=34223432663x z x y x z z ⋅-⋅=22332x y z -; (2)解:2239m m m --=(333))()(m m m m -+--=3m m -+; (3)解:2222a ab a ab b +++=2(())a a a b b ++=a a b +; (4)解:2()2()b a a b --=2()2()a b a b --=2a b -. 15.将下列各分式通分:(1)212,3x x ax -;(2)31,22a a b b a---;(3)2212,969a a a -++;(4)21,442x x x --. 【答案】(1)()213a x ax -,263x ax ;(2)32a a b -,12a b -;(3)()()2333a a a ++-,()()()22333a a a +--;(4)()()2222x x +-,()()()2222x x x x ++-.【分析】将分母两式取各式的最小公倍式,相同因式的次数取最高次幂,分子分母同乘分母的最小公倍式即可得出答案.【详解】解:(1)221(1)33x a x x ax --=,2263x ax ax =; (2)32a a b -,1122b a a b -=--; (3)22139(3)(3)a a a a +=-+-,2222(3)69(3)(3)a a a a a -=+++-; (4)21124(2)(2)2(2)(2)x x x x x ==-+-+-,(2)422(2)2(2)(2)x x x x x x x x +=-=---+-. 16.(2022·湖南永州·八年级期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①2222a b a b +-; ②22121x x x --+;③222)m n m n -+(;④3322a b a b ++其中不是“和谐分式”的是(填写序号即可); (2)若a 为整数,且2216x x ax +++为“和谐分式”请求出a 的值. 【答案】(1)②③④(2)17a =±或10a =-或8a =±【分析】(1)根据“和谐分式”的定义,进行判断即可;(2)根据“和谐分式”的定义,可知216x ax ++可以进行因式分解,且不能有因式2x +,进行求解即可.【详解】(1)解:由题意,得: ①()()222222a b a b a b a b a b ++=--+,是“和谐分式”; ②()()()22211112111x x x x x x x x -+-+==-+--,分式可以约分,不是“和谐分式”; ③()()2222()()m n m n m n m n m n m n m n-+--==+++,分式可以约分,不是“和谐分式”; ④()()()3322222222a b a b a b a ab b a b a ab b ++==+-++-+,分式可以约分,不是“和谐分式”; 综上,不是“和谐分式”的是②③④;故答案为:②③④;(2)解:∵2216x x ax +++为“和谐分式”, ∴216x ax ++可以进行因式分解,且不能有因式2x +,∴()()216116x ax x x ++=++或()()216116x ax x x ++=--或()()21628x ax x x ++=--或()22164x ax x ++=±, ∴17a =±或10a =-或8a =±.。
代数式的恒等变形

代数式的恒等变形一、常值代换求值法——“1”的妙用例1 、 已知ab=1,求221111ba +++的值 [解] 把ab=1代入,得221111b a +++ =22b ab aba ab ab +++ =b a a b a b +++=1例2 、已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理练习:1111,1=++++++++=c ca cb bc b a ab a abc 证明:若二、配方法例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b +之值。
[解] ∵a2b2+a2+b2-4ab+1=(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2则有(ab-1)2+(a-b)2=0∴⎩⎨⎧==-.1,0ab b a解得⎩⎨⎧==;1,1b a ⎩⎨⎧-=-=.1,1b a当a=1,b=1时,b aa b +=1+1=2 当a=-1,b=-1时,b a a b +=1+1=2 例1 设a 、b 、c 、d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数的平方和,其形式是______.解mn=(a2+b2)(c2+d2)=a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2=(ac-bd)2+(ad+bc)2,所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.例 2 设x 、y 、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.求的值.解 将条件化简成2x2+2y2+2z2-2xy-2x2-2yz=0 ∴ (x-y)2+(x-z)2+(y-z)2=0 ∴ x=y=z,∴原式=1.练习:,0146422222=+---++x cx bx ax c b a 已知求证:3:2:1::=c b a三、因式分解法例6 已知a4+b4+c4+d4=4abcd ,且a ,b ,c ,d 都是正数,求证:a=b=c=d . 证 由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0, 所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以 a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a ,b ,c ,d 都为正数,所以a+b≠0,c+d≠0,所以 a =b ,c=d . 所以ab-cd=a2-c2=(a+c)(a-c)=0, 所以a =c .故a=b =c=d 成立.例4 已知|a|+|b|=|ab|+1, 求a+b 之值 [解] ∵|a|+|b|=|ab|+1∴|a|·|b|-|a|-|b|+1=0 (|a|-1)(|b|-1)=0 |a|=1 |b|=1 ∴a=±1或b=±1. 则当a=1,b=1时,a+b=2 当a=1,b=-1时,a+b=0 当a=-1,b=1时,a+b=0当a=-1,b=-1时,a+b=-2[评注] 运用该法一般有两种途径求值,一是将已知条件变形为一边为0,另一边能分解成几个因式的积的形式,运用“若A ·B=0,则A=0或B=0”的思想来解决问题。
分式恒等变形

分式恒等变形分式恒等变形是数学中的一种重要的概念,它通过对分式进行一系列的等式变形,从而得到与原分式等价的新的分式。
在进行分式恒等变形时,我们需要遵循一定的规则和方法,以确保变形过程的准确性和合理性。
首先,我们来了解一下分式的基本结构。
一个分式通常由一个分子和一个分母组成,分子表示分式的上部,而分母则表示分式的下部。
例如,分式"1/2"中,1是分子,2是分母。
分式恒等变形的目的是通过对分式的分子和分母进行等式变形,得到与原分式等价的新的分式。
在进行变形时,我们可以使用一系列的代数运算和性质,如乘法、除法、加法、减法、分配律等。
下面,我们将介绍一些常见的分式恒等变形方法。
1.乘法法则:对分式的分子和分母同时乘以同一个数,可以得到一个与原分式等价的新的分式。
例如,对于分式"1/2",我们可以将其乘以2,得到"2/4",这两个分式是等价的。
2.除法法则:对分式的分子和分母同时除以同一个数,可以得到一个与原分式等价的新的分式。
例如,对于分式"2/4",我们可以将其除以2,得到"1/2",这两个分式是等价的。
3.加法法则:对分式的分子和分母同时加上同一个数,可以得到一个与原分式等价的新的分式。
例如,对于分式"1/2",我们可以将其分子和分母都加上1,得到"2/3",这两个分式是等价的。
4.减法法则:对分式的分子和分母同时减去同一个数,可以得到一个与原分式等价的新的分式。
例如,对于分式"2/3",我们可以将其分子和分母都减去1,得到"1/2",这两个分式是等价的。
在进行分式恒等变形时,我们需要确保变形过程的准确性和合理性。
我们可以使用代数运算和性质来推导和验证变形结果,以确保其正确性。
总结起来,分式恒等变形是数学中一种重要的概念,通过对分式的分子和分母进行等式变形,可以得到与原分式等价的新的分式。
分式的恒等变形精讲精练

一、化分式为部分分式的和【例1】 (4级)(第10届华罗庚金杯决赛)下面的等式成立:22465()()x y x y x y A x y B -+--=--++,求A 、B .【例2】 (4级)若代数式(1)(2)(3)x x x x p ++++恰好能分解为两个二次整式的乘积(其中二次项系数均为1,且一次项系数相同),则p 的最大值是 .【例3】 (5级)若213111a M Na a a -=+--+,求M 、N 的值.【例4】 (3级)(06年宁波市重点中学提前考试招生试题)已知2a x +与2b x -的和等于244xx -,求a ,b .【例5】 (4级)(2004年第15届培训题)已知正整数,a b 满足1114a b +=,则a b +的最大值是 .【例6】 (4级)若对于3±以外的一切数,28339m n xx x x -=+--均成立,求mn .【例7】 (5级)若关于x 的恒等式222Mx N c x x x a x b +=-+-++中,22Mx Nx x ++-为最简分式,且有a b >,a b c +=, 求N .【例8】 (4级)将269x -化为部分分式.分式恒等变形(竞赛部分)【例9】 (4级)化21(1)(2)x x x ---为部分分式.【例10】 (4级)将下列分式写成部分分式的和的形式:2342x x x +--.【例11】 (4级)将下列分式写成部分分式的和的形式:32222361(1)(3)x x x x x -++++.【例12】 (5级)将下列分式写成部分分式的和的形式:32241338(1)(2)(1)x x x x x x -+++--.【例13】 (4级)计算:2132x x x -++262x x ---2104x x ---.【例14】 (4级)将下列分式写成部分分式的和的形式:4322231(1)(1)x x x x x ++-+-.二、分式的恒等证明【例15】 (4级)(1994广东潮州市初中数学竞赛)求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ⎛⎫⎛⎫++--+-=++-+ ⎪⎪-+⎝⎭⎝⎭【例16】 (5级)已知x 、y 、z 为三个不相等的实数,且111x y z y z x+=+=+,求证:2221x y z =.【例17】 (5级)已知:a c b d=,求证:22222222a b c d a b c d abcd ----++++++=.【例18】 (5级)若a b x a b -=+,b c y b c -=+,c az c a-=+,求证:(1)(1)(1)(1)(1)(1)x y z x y z +++=---【例19】 (5级)若1abc =,求证:1111a b ca ab b bc c ca++=++++++.【例20】 (5级)(2003年第1届“创新杯”数学邀请赛初中二年级第二试试题)已知1111a b ca ab b bc c ca++=++++++,求证:1abc =.【例21】 (6级)(1986年中国数学奥林匹克竞赛赛前培训试题) 已知2220a b cbc a ca b ab c ++=---,求证:()()()2222220a b cbc a ca b ab c ++=---.【例22】 (6级)已知0a b cb c c a a b++=---,求证:2220()()()a b c b c c a a b ++=---.【例23】 (5级)(2002年北京市中学生数学竞赛初二复赛题二)已知0abc ≠,证明:下列四个数3333()()()(),,,a b c b c a c a b a b c abc abc abc abc++------中至少有一个不小于6.【例24】 (5级)已知223344371642a b a b a b a b x y x y x x x y +=+=+=+=,,,,求证:5520a bx y+=。
分式的恒等变形习题

一、化分式为部分分式的和【例1】 若213111a M N a a a -=+--+,求M 、N 的值.【巩固】已知正整数,a b 满足1114a b +=,则a b +的最小值是 .【例2】 已知2a x +与2b x -的和等于244x x -,求a ,b .【例3】 若关于x 的恒等式222Mx N c x x x a x b +=-+-++中,22Mx N x x ++-为最简分式,且有a b >,a b c +=, 求N .【例4】 将269x -化为部分分式.【例5】 化21(1)(2)x x x ---为部分分式.【例6】 将下列分式写成部分分式的和的形式:2342x x x +--. 例题精讲分式恒等变形(竞赛部分)【巩固】将下列分式写成部分分式的和的形式:32222361(1)(3)x x x x x -++++.【例7】 将下列分式写成部分分式的和的形式:4322231(1)(1)x x x x x ++-+-.二、分式的恒等证明 【例8】 求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ⎛⎫⎛⎫++--+-=++-+ ⎪⎪-+⎝⎭⎝⎭【例9】 已知:a c b d=,求证:22222222a b c d a b c d abcd ----++++++=.【例10】 若a b x a b -=+,b c y b c -=+,c a z c a-=+,求证:(1)(1)(1)(1)(1)(1)x y z x y z +++=---【例11】 若1abc =,求证:1111a b c a ab b bc c ca++=++++++.【巩固】已知1111a b c a ab b bc c ca++=++++++,求证:1abc =.【例12】 已知0a b c b c c a a b++=---,求证:2220()()()a b c b c c a a b ++=---.【例13】 已知3142a b ab c d cd +==+==,,,,且a b c d B b c d c d a d a b a b c+++=++++++++。
初中分式中的分母有理化繁分式的化简题目

初中分式中的分母有理化繁分式的化简题目【原创实用版】目录1.分式中的分母有理化2.繁分式的化简题目正文一、分式中的分母有理化在初中数学中,我们经常会遇到一些分式的分母中含有无理数的情况,这时候我们需要对分母进行有理化处理,使得分母变为有理数。
有理化处理可以简化计算过程,使问题变得容易解决。
分母有理化的方法主要有以下两种:1.乘法公式法:根据平方差公式或完全平方公式,将分母中的无理数消去。
例如,对于分式 $frac{1}{sqrt{2}+1}$,我们可以利用平方差公式,将分母有理化为$frac{1}{(sqrt{2}+1)(sqrt{2}-1)}=frac{1}{1}=boxed{1}$。
2.恒等变形法:这种方法主要利用分式的基本性质,对分母进行变形,使其成为有理数。
例如,对于分式 $frac{sqrt{3}+1}{2sqrt{3}-1}$,我们可以将分子、分母同时乘以分母的共轭复数,即$frac{sqrt{3}+1}{2sqrt{3}-1}timesfrac{2sqrt{3}+1}{2sqrt{3}+1}=f rac{(2sqrt{3}+1)(sqrt{3}+1)}{(2sqrt{3}-1)(2sqrt{3}+1)}=frac{7+4 sqrt{3}}{7-4sqrt{3}}$。
然后,我们再利用差平方公式将分母有理化为$boxed{frac{7+4sqrt{3}}{7-4sqrt{3}}}$。
二、繁分式的化简题目繁分式是指分母中含有多个不同变量的分式,对于这类分式的化简,我们需要运用分母有理化的方法,结合分式的基本性质,进行逐步化简。
以下是一个繁分式化简的例子:例题:化简分式 $frac{2x^3+3xy^2-y^3}{x^2y^2-2x^2y+y^3}$。
解:首先,我们可以将分子、分母进行因式分解,得到$frac{(2x^3+3xy^2-y^3)}{(xy-y^2)(xy-x^2)}$。
然后,我们发现分子可以提出公因式 $(xy-y^2)$,于是化简为$frac{(xy-y^2)(2x^2+3y-y^2)}{(xy-y^2)(xy-x^2)}$。