水分胁迫

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科技名词定义

中文名称:水分胁迫

英文名称:water stress

定义1:因土壤水分不足或外液的渗透压高,植物可利用水分缺乏而生长明显受到抑制的现象。

所属学科:生态学(一级学科);生理生态学(二级学科)

定义2:因土壤水分不足而明显抑制植物生长的现象。

所属学科:土壤学(一级学科);土壤物理(二级学科)

本内容由全国科学技术名词审定委员会审定公布

1水分胁迫

water stress

水分胁迫(water stress)植物水分散失超过水分吸收,使植物组织含水量下降,膨压降低.正常代谢失调的现象。

植物除因土壤中缺水引起水分胁迫外,干旱、淹水、冰冻、高温或盐演条件等不良环境作用于植物体时,都可能引起水分胁迫。不同植物及品种对水分胁迫的敏感性不同,影响不一。在淹水条件下,有氧呼吸受抑制,影响水分吸收,也会导致细胞缺水失去膨压,冰冻引起细胞间隙结冰,特别是在严重冰冻后遇晴天,细胞间隙的冰晶体融化后又因燕腾大量失水,易引起水分失去平衡而姜蔫。高温及盐演条件下亦易引起植物水分代谢失去平衡,发生水分胁迫。干旱缺水引起的水分胁迫是最常见的,也是对植物产量影响最大的。水分胁迫对植物祝谢的影响在植物水分亏缺时,反应最快的是细胞伸长生长受抑制,因为细胞膨压降低就使细胞伸长生长受阻,因而叶片较小,光合面积减小;随着胁迫程度的增高,水势明显降低,且细胞内脱落酸(ABA)含量增高,使净光合率亦随之下降,另一方面,水分亏缺时细胞合成过程减弱而水解过程加强,淀粉水解为糖,蛋白质水解形成氨基酸,水解产物又在呼吸中消耗;水分亏缺初期由于细胞内淀粉、蛋白质等水解产物增亥,吸呼底物增加,促进了呼吸,时间稍长,呼吸底物减少,呼吸速度即降低,且因氧化碑酸化解联,形成无效呼吸,导致正常代谢进程紊乱,代谢失调。水分胁迫对植物的严重影:由于水分胁迫引起植物脱水,导致细胞膜结构破坏。在正常情况下,由于细胞膜结构的存在,植物细胞内有一定的区域化 (compartmentation),不同的代谢过程在

不同的部位进行而彼此又相互联系;如果膜结构破坏就引起代谢紊乱。不同植物或品种对水分胁迫的反应不同植物或品种在干旱条件下的反应不同。旱生植物长期生活在干旱的环境中,在生理或形态上具有一定的适应特性。例如具有强大的根系,燕腾量高时。可吸收深层土中的水分,这是一种积极的抗旱方式。有的角质层发达,避免水分过多散失或气孔夜开昼闭等避免水分散失。如仙人掌,白天气孔关闭减少水分消耗量,夜间气孔张开,吸收的CO2,固定于苹果酸中,白天又释放出CO2,用于光合作用中。栽培植物的抗旱性虽不及早生植物,但不同植物或品种之间对水分胁迫的敏感性亦不同,一般C.植物比C:植物的水分利用率高,抗旱性亦较强,C;植物中高粱的抗旱性又比玉米强。在水分亏缺时,高粱叶片中的ABA 含量明显低于玉米,干旱后复水,高粱亦较玉米易于恢复正常。在生产上应注意合理施肥,提高植物抗旱性的问题,例如钾有渗透调节功能,在施肥时应适当配合钾肥,发挥其渗透调节功能,提高作物抗旱性。

胁迫是指一种显著偏离于植物最适生活条件的环境条件[1]。按照Levitt的分类,水分胁迫是指环境中水分不足—干旱,或水分过多—洪涝。

当今全球有1/3以上的土地处于干旱和半干旱地区,其他地区在作物生长季节也发生不同程度的干旱[2]。人类早期在农业方面的各种打算,特别是在近东干旱地区孕育的农业生产方面的各种打算,被干旱所打击比其他灾害引起的失败更多。同时,水分胁迫对植物产生的影响以及植物对此所产生的反应与适应是植物生理生态学研究的重要课题之一,所以,无论从农业发展或是植物生理生态学理论的发展来说,植物水分胁迫特别是干旱胁迫都是非常重要的,事实上,也确实有一大批的中外科学家置身于这方面的研究。

植物对水分胁迫的反应与适应性的研究中有二个主要方面:一是植物形态解剖对水分胁迫的反应和适应性,主要包括:叶片和根系的生长、排列和结构的变化;二是植物对水分胁迫的生理生化反应和适应性,主要包括:渗透调节、光合和呼吸代谢、蒸腾作用、氮代谢、气孔反应、活性氧代谢、糖代谢、核酸代谢和内源激素等。本文结合我们的研究工作,从上述二个方面综述了植物水分胁迫的研究情况。

1 植物形态解剖水分胁迫的反应和适应性

1.1 根

根系是植物的吸水器官,根/冠比在衡量植物抗旱性上有很重要的价值。实验证明:调控土壤水分可明显改变冬小麦根、冠生长量比率。适宜的土壤水分胁迫可促进冬小麦根系发育,高土壤水分更有利于地上部生长。

1.2叶

植物的水分散失主要由叶子来承担,因此,水分胁迫对叶子的影响也很大。植物叶片对水分

胁迫的适应性变化表现在二个方面:第一,叶面积减少;(1)叶面积的减少可减少失水,从而保存土壤水分,维持有利的水势;(2)减少土壤—植物系统内单位水压通道横截面积的蒸发表面,从而减少土壤水势以下的下降。第二,叶片发生运动;(1)叶片发生萎蔫;(2)叶片方位的改变;(3)叶角的改变;

2 水分胁迫对植物的生理生态影响与植物的适应性

2.1 气孔

气孔反应适应性关键在于水分胁迫时,植物既要保住水分,又要获得自身所需的CO2,在空气湿度和Ψ1(叶水势)变化的一定范围内保持一定的Gs(气孔导度),叶片Gs为零时的水势越低,表示气孔对水分胁迫的忍耐力越大。

在水分胁迫下,果树可以通过关闭气孔而减少或防止失水,这在果树中占有特别重要的地位。因为与冠幕紧密的一年生作物相比,果园常具有高的边界层导度(boundary layer conductance),其蒸腾作用更受控于气孔行为[8],在正常情况下,多数果树气孔白天开放,夜间关闭,有的中午短时关闭,在干旱条件下,有的果树在早晨迅速开放后,即迅速关闭,没有重新开放的现象。果树气孔对干旱的适应方式有二种:即前馈式反应(feed-forward manner)和反馈式反应(feedback manner)。

气孔的前馈式反应是指果树气孔对空气湿度的变化所表现的一种直接反应,是由水气压亏缺直接作用而引起的气孔关闭[10],可以主动阻止Ψ1进一步下降[11],因而也称气孔的这种反应为“预警系统”(early warning system)。这种现象最早是由Schulze等[12]在以色列Negev沙漠气候下生长的杏树上发现的,以后相继在柑桔类、苹果、葡萄、草莓、桃、樱桃、李、巴旦杏、荔枝等果树上发现这种现象[8,12,13]。

气孔的反馈式反应是指土壤干旱时果树Ψ1下降而引起的气孔关闭。可减缓叶子失水,甚至在一定条件下有助于Ψ1的恢复。Ψ1的恢复会进一步促进气孔的重新开放[14],有些果树,如葡萄[15]、苹果[16]、柑桔[7,171],在一定水势范围内,Gs可以不受影响,一旦低于这一范围,Gs就呈直线或曲线下降。有些果树如荔枝[13],没有上述Gs气孔导度不变的水势范围,从Ψ1下降开始Gs就相伴而下降。目前已在苹果[16]、葡萄[15]、柑桔类[11]、巴旦杏18)、核桃[19]等多种果树上发现了这种现象。

应该指出,在控制的实验条件下,已观察到许多植物的气孔开度、蒸腾速率和光合速率以20 min~100 min的周期振动(Oscillation)。已发现有这种振动的果树有柑桔类、香蕉等[11]。目前,对这种周期性变化的生理意义还不清楚,但有人认为这种周期性的振动可能具有调整CO2的吸收和控制水分耗失之间的矛盾以及使水分利用最佳化的作用[11]。对北京杨水分生理生态的研究表明,生长期北京杨蒸腾速率的日变化呈早晚低、中午高的抛物线型。生长期北京杨蒸腾速率(Tr)的平均值为598.8mg/gld.h。蒸腾速率的日变化分别与光照强度(L)及光照强度(L)与气温(T)和相对湿度(H)的复合因子(L.T;L/H)相关性极显著。生长期北京杨小枝水势(Wp)的平均值为-1.0506MPa;早、晚高、午间低。小枝水势日变化与L及复合因子L.T、L/H相关性极显著。8~10月光合速率(Pn)的平均值为11.94mg/dm2.h;光合速率日变化与L日变化的关系显著。北京杨饱和含水时的最大渗透势(Ψsat)、膨压为零时的渗透势(Ψtlp)和质外体水相对含量(AWC)的变化规律表现为从生长期初到生长期末(绝对值)逐渐升高的趋势;而膨压为零时的渗透水相对含量(ROWCtlp)和膨压为零时的相对含水量

相关文档
最新文档