高一数学-三角函数的图像和性质练习题

合集下载

高一三角函数的图像及性质基础题小测卷

高一三角函数的图像及性质基础题小测卷

高一数学三基小测1、已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的中心角的弧度数是 ( )A .1B .4C .1或4D .2或42、若sin cos 2sin cos θθθθ+=-,则3sin(5)sin 2πθπθ⎛⎫-⋅- ⎪⎝⎭等于( ) A .34 B .310± C .310 D .310- 3、若,24παπ<<则( ) A. αααtan cos sin >> B. αααsin tan cos >>C. αααcos tan sin >>D. αααcos sin tan >>4、函数23cos()56y x π=-的最小正周期是( ) A.52π B. 25π C. π2 D. π5 5、函数sin()2y x π=+)(x ∈[-,22x ππ⎡⎤∈-⎢⎥⎣⎦是( ) A.增函数 B.减函数C.偶函数D.奇函数 6、函数)252sin(π+=x y 的一条对称轴方程( ) A .2π-=x B .4π-=x C .8π=x D .=x π45 7、若函数cos()3y x πω=+(0)ω>的图象相邻两条对称轴间距离为2π,则ω等于 . A .12B .12C .2D .4 8、在下列各区间中,函数sin()4y x π=+的单调递增区间是( )A .,2ππ⎡⎤⎢⎥⎣⎦B .0,4π⎡⎤⎢⎥⎣⎦C .[],0π-D .,42ππ⎡⎤⎢⎥⎣⎦9、函数2cos 3cos 2y x x =-+的最小值为( )A.2B.0C.-41D.610、在[0,2]π上满足1sin 2x ≥的x 的取值范围是 ( )A .[0,6π]B .[6π,65π]C .[6π,32π]D .[65π,π] 11、用五点作图法画出函数1sin()3y x π=-+在一个周期上的图象。

高一数学三基小测1、sin(1560)- 的值为( )A 12-B 12C D2、设α是第二象限角,(P x 为其终边上一点,且cos x α=,则sin α的值是( )A B .4 D . 3、函数sin(2)y x =-的单调递增区间是( ) A.π32π2π()22k k k ⎡⎤++∈⎢⎥⎣⎦Z , B.π3πππ()44k k k ⎡⎤++∈⎢⎥⎣⎦Z , C.[]π2π3π2π()k k k ++∈Z , D.πππππ()44k k k ⎡⎤-++∈⎢⎥⎣⎦Z , 4、函数cos(2)2y x π=-为( )A .奇函数 B.偶函数 C.非奇非偶函数 D.以上都不对5、下列函数中,最小正周期是π且在区间ππ2⎛⎫ ⎪⎝⎭,上是增函数的是( ) A.sin 2y x = B.sin y x = C.tan 2x y = D.cos 2y x = 6、记M 和m 为函数1cos 213y x =-+的最大值和最小值,则M m +=_________. 7、已知tan1a =,tan 2b =,tan 3c =,则 ( )A a b c <<B c b a <<C b c a <<D b a c <<8、已知sin()cos(2)tan()()tan()sin()f παπααπααππα---+=----. (1)化简()f α; (2)若α是第三象限角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值.9、求函数⎪⎭⎫ ⎝⎛-=32tan πx y 的定义域、值域,并指出它的周期性、奇偶性、单调性(求出单调区间).。

高一数学三角函数图象变换试题答案及解析

高一数学三角函数图象变换试题答案及解析

高一数学三角函数图象变换试题答案及解析1.为了得到函数的图像,只需将函数的图像( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】先用诱导公式将化为= =,由平移知识知,只需将函数的图像向右平移个长度单位,故选B.考点:诱导公式;平移变换2.为了得到函数的图像,只需把函数的图像()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【答案】B【解析】=sin2(x-),为了得到函数的图象,只需将的图象向右平移个单位即可,故选A.【考点】函数y=Asin(ωx+φ)的图象变换.三角函数图像的平移.3.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )A.B.C.D.【答案】C【解析】将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数,再将所得的图象向左平移个单位,得函数,即故选C.【考点】函数y=Asin(ωx+φ)的图象变换.4.函数(其中,的图象如图所示,为了得到的图象,可以将的图象A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】A【解析】由图知,,∴,∴.又由图可得,∵,∴,∴,∴为了得到的图象,可以将的图象向右平移个单位长度,故选A.【考点】1、三角函数的图象;2、函数的图象变换.5.要得到函数y=cos()的图像,只需将y=sin的图像( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】本题考查三角函数的图像平移问题,要注意将函数解析式变为,然后根据“左加右减”的口诀平移即可.【考点】三角函数图像平移.6.函数的图象向右平移个单位后与函数的图象重合.则的解析式是( )A.B.C.D.【答案】C【解析】根据反方向知:的图像向左平移个单位后得到,根据左加右减的平移原理得到:,故选C.【考点】的图像变换7.函数的最小正周期为()A.B.C.D.【答案】【解析】由三角函数的最小正周期得.解决这类问题,须将函数化为形式,在代时,必须注意取的绝对值,因为是求最小正周期.【考点】三角函数的周期计算8.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为()A.B.C.0D.【答案】B【解析】根据题意,由于将函数的图象沿轴向左平移个单位后,得到,故可知的一个可能取值为,故答案为B.【考点】三角函数的图象变换点评:主要是考查了三角函数的图象变换的运用,属于基础题。

高一数学三角函数的图象与性质试题

高一数学三角函数的图象与性质试题

高一数学三角函数的图象与性质试题1.设函数,为常数.(1)若的图象中相邻两对称轴之间的距离不小于,求的取值范围;(2)若的最小正周期为,且当时,的最大值是,又,求的值.【答案】(1);(2)或【解析】(1)利用两角和正弦公式和降幂公式化简,得到的形式,利用公式计算周期,进而求出的取值范围;(2)求三角函数的最小正周期一般化成,,形式,利用周期公式即可.求解较复杂三角函数的最值时,首先化成形式,在求最大值或最小值;(3)三角函数的给值求值的问题一般是正用公式将“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角三角函数值,代入展开即可,注意角的范围.试题解析:(1)==由题意知,得的取值范围为(2)若的最小正周期为,得=1=,有在区间上为增函数,所以的最大值为,则,所以=,所以=+=或【考点】(1)三角函数周期的应用;(2)三角函数的化简和求值.2.函数(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,则的值是________.【答案】.【解析】由图可知,,因此,由于为第三个点,因此,解得,,.【考点】求三角函数的解析式.3.由函数的图象得到的图象,需要将的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B【解析】,即函数的图象得到,需要将的图象向左平移个单位,故选择B.【考点】三角函数图象变换.4.函数f(x)=Asin(wx+j)(A>0,w>0,-<j<,x∈R)的部分图象如图所示:,(1)求函数y=f(x)的解析式;(2)当x∈时,求f(x)的取值范围.【答案】(1)f(x)=sin(x+);(2)[-1,].【解析】(1)图像离平衡位置最高值为1可知A=1,又从图可看出周期的四分之一为,根据可求得w的值,对于j可通过代入(,1)点求得,但要注意j的范围;(2)本小题考查三角函数求值域问题,由x的范围可先求出x+的范围,结合正弦函数图像可求出sin(x+)的取值范围.试题解析:(1)由图象得A=1,,所以T=2p,则w="1." 将点(,1)代入得sin(+j)=1,而-<j<,所以j=,因此函数f(x)=sin(x+).(2)由于x∈,-≤x+≤,所以-1≤sin(x+)≤,所以f(x)的取值范围[-1,].【考点】由三角函数的图像求函数的解析式,,三角函数的值域问题.5.已知f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)的表达式为().A.B.C.D.【答案】B【解析】由图像,得,则,所以,又因为图像过,所以,所以可取,得;故选B.【考点】三角函数的图像与性质.6.已知函数 ,其中对恒成立,且,则的单调递增区间是()A.B.C.D.【答案】C【解析】又(1)又由,(2),由(1)、(2)可得,,由,得:的单调增区间是.【考点】1、由y=Asin(ωx+φ)的部分图象确定其解析式;2、函数y=Asin(ωx+φ)的图象变换.7.若函数().A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数【答案】D【解析】,是偶函数,且.【考点】二倍角公式的逆用、三角函数的性质.8.已知函数(1)求函数的周期;(2)求函数的单调递增区间;(3)若时,的最小值为– 2 ,求a的值.【答案】(1)(2)(3)【解析】利用正余弦和差角公式以及辅助角公式化简三角函数式.(1)根据求周期;(2)根据化简所得的函数名称,确定单调增区间.根据单调性可求最值.(1)(2)当即函数单调递增,故所求区间为.(3),所以当,即时,函数取最小值,所以,解得.【考点】三角函数的化简;周期;单调性;最值.9.函数的部分图象如图所示,则的值分别是()A.B.C.D.【答案】C【解析】,由,可知,将代入,又,可得.【考点】的图象和性质.10.已知函数.(1)求值;(2)求的最小值正周期;(3)求的单调递增区间.【答案】(1) (2)(3)【解析】(1)中直接带入角求值即可.(2)要求最值及周期,得将函数解析式转化为或.所以化简三角函数.需要用到辅助角公式化简,而后直接判断最小值,利用周期公式求周期.(3)根据(2)中的化简后的函数式,利用三角函数单调性解决.(1) .(2)因为所以所以所以的最小正周期为(3)令所以所以的单调递增区间为【考点】三角函数求特殊值,三角函数化简求最值和周期,三角函数求单调区间.11.知函数,,则是()A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数【答案】C【解析】将函数化简为,所以函数是的偶函数.【考点】1.三角函数的化简;2.三角函数的性质.12.若函数在区间上的值域是,则的最大值是.【答案】【解析】结合三角函数图像知,当的点均匀分布在最小值点两边时,区间长度最大.令为函数取最小值点,则分布在其两侧且使的点为和,所以的最大值是【考点】三角函数图像与性质13.为了得到函数的图像,只需将函数图像上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】A【解析】,故要得到的图像,只需将函数的图像向左平移个单位长度,故选A.【考点】三角函数的图像变换.14.函数图像的一条对称轴方程是()A.B.C.D.【答案】A【解析】,由的对称轴可知,所求函数图像的对称轴满足即,当时,,故选A.【考点】1.三角函数图像与性质中的余弦函数的对称性;2.诱导公式.15.已知,(0°<A<90°)求的值。

高一数学三角函数试题

高一数学三角函数试题

高一数学三角函数试题1.已知向量.(1)若,且,求角的值;(2)若,且,求的值.【答案】(1);(2)【解析】(1)根据向量垂直其数量积为0,可得到的关系式,从而得出的值,再根据角的范围得角的大小。

(2)根据数量积公式可得的关系式,用两角和差公式的逆用即化一公式将其化简为再根据角的范围找整体角的范围,从而可计算出的值。

用凑角的方法将写成的形式,用正弦的两角和公式展开计算即可。

(1)∵ , ∴ , 即 3分∴,又∴∴. 6分(2) 8分∴,又∵ , ∴, ∴ 10分∴. 12分【考点】1数量积公式;2两角和差公式。

2.如图,在中,已知,是上一点,,则【答案】【解析】由余弦定理得:,在三角形中,再由正弦定理得:【考点】正余弦定理综合3.已知,函数.(1)设,将函数表示为关于的函数,求的解析式和定义域;(2)对任意,不等式都成立,求实数的取值范围.【答案】(1),定义域为;(2)实数的取值范围是.【解析】(1)由恒等变换公式可求得,并可以表示出定义域;(2)由求出的取值范围,化简成形式,用函数单调性即可求出实数的取值范围.试题解析:(1)∴2分由可得4分∴6分定义域为 8分(2)∵∴10分∵恒成立∴恒成立化简得又∵∴ 12分令得∴在上为减函数14分∴∴ 16分【考点】恒等变换公式、恒成立问题.4.已知函数(1)用五点法画出它在一个周期内的闭区间上的图象;(2)求函数的单调增区间;(3)若,求的最大值和最小值.【答案】(1)(2)(3),【解析】(1)列表、作图 .4分6303(2)由得所以所以函数的单调增区间为 8分(3)因为所以,所以,所以当即时,当即时, -12分【考点】三角函数的性质点评:主要是考查了三角函数的图象与性质的求解运用,属于基础题。

5.已知函数(1)写出函数的单调递减区间;(2)设,的最小值是,最大值是,求实数的值.【答案】(1)(2)【解析】(1)为所求(2)【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。

高一数学三角函数的图象与性质试题

高一数学三角函数的图象与性质试题

高一数学三角函数的图象与性质试题1.已知函数的周期为,且 ,将函数图像上的所有点的横坐标伸长为原来的倍(纵坐标不变),再将所得图像向右平移个单位长度后得到函数的图像.(1)求函数与的解析式;(2)是否存在,使得按照某种顺序成等差数列?若存在,请求出的值,若不存在,说明理由;(3)求实数与正整数,使得在内恰有2013个零点.【答案】(1);(2)假设存在,当时,,,又,则,所以,即,化简得或与矛盾,所以不存在,使得按照某种顺序成等差数列;(3),.【解析】(1)依题意可求得和,利用三角函数的图像变换可求得;(2)依题意,当时,,和,问题转化为方程在内是否有解,通过求解该方程即可判断是否有解即可;(3)将“函数有零点的问题”转化为“方程有实数根”的问题,可分种情况进行讨论:①当时,由题意知其不成立;②当时,先令将其换元为,然后根据函数的图像及其性质判断在内有解所满足的条件,最后由零点的个数,判断出正整数的取值即可.试题解析:(1)由函数的周期为可得,,又由,得,所以;将函数的图像上所有点的横坐标伸长到原来的2倍(保持纵坐标不变)后可得的图像,再将的图象向右平移个单位长度后得到函数. (2)假设存在,当时,,,又,则,所以,即,化简得或与矛盾,所以不存在,使得按照某种顺序成等差数列.(3)令,即,当时,显然不成立;当时,,令,则当时,.由函数及,的图像可知,当时,在内有3个解.再由可知,,综上所述,,.【考点】函数的图象变换,函数与方程.2.已知函数()的部分图象如图所示,则的解析式是___________.【答案】【解析】由图可知,,得,从而,所以,然后将代入,得,又,得,因此,,注意最后确定的值时,一定要代入,而不是,否则会产生增根.【考点】三角函数的图象与性质.3.是否存在实数a,使得函数在闭区间上的最大值是1?若存在,求出对应的a值?若不存在,试说明理由.【答案】存在符合题意.【解析】将原函数化简为,令,0≤t≤1,可将问题转化为一元二次函数中来解决,,其中0≤t≤1,对称轴与给定的范围进行讨论,得出最值,验证最值是否取到1 即可.解:,当0≤x≤时,0≤cos x≤1,令则0≤t≤1,∴,0≤t≤1.当,即0≤a≤2时,则当,即时.,解得或a=-4(舍去).当,即a<0时,则当t=0,即时,,解得 (舍去).当,即a>2时,则当t=1,即时,,解得 (舍去).综上知,存在符合题意.【考点】同角三角函数的基本关系式,二次函数求最值.4.已知函数的最小正周期为,则该函数图象()A.关于直线对称B.关于点对称C.关于点对称D.关于直线对称【答案】B【解析】∵的最小正周期为,∴,即,对于A,B:当时,,∴A错误,B正确;对于C,D:当时,,∴C,D均错误,故选B.【考点】正弦型函数的图像和性质.5.如图是函数的图像,是图像上任意一点,过点A作轴的平行线,交其图像于另一点B(A,B可重合),设线段AB的长为,则函数的图像是 ( )A B C D【答案】A【解析】∵是函数上的一点,由图及诱导公式,可知:,∴当时,,当时,有,故选B.【考点】三角函数的图像与性质.6. [2014·郑州质检]要得到函数y=cos2x的图象,只需将函数y=sin2x的图象沿x轴() A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【答案】B【解析】∵y=cos2x=sin(2x+),∴只需将函数y=sin2x的图象沿x轴向个单位,即得y=sin2(x+)=cos2x的图象,故选B.7.函数和函数在内都是()A.周期函数B.增函数C.奇函数D.减函数【答案】C【解析】由正弦函数与正切函数的性质可知,在是奇函数,减函数,在是奇函数,增函数. 故选C.【考点】正弦函数与正切函数的性质.8.已知函数的一部分图象如图所示,如果,则()A.B.C.D.【答案】C【解析】由图象振幅知,由图象中心位置知,由,知,故,所以选C. 可将代入,可得时,取.【考点】的图象与性质.9.已知函数的部分图象,如图所示.(1)求函数解析式;(2)若方程在有两个不同的实根,求的取值范围.【答案】(1)函数解析式为;(2).【解析】(1)由图知:,∴;把点带入得;(2)当时,,结合的图象,可求的取值范围.解: (1) 5分(2) 9分【考点】三角函数的图象和性质.10.已知函数的最大值为3,最小值为.(1)求的值;(2)当求时,函数的值域.【答案】(1);(2)函数在的值域为.【解析】(1)先由余弦函数的图像与性质及得到函数的最值,从而列出方程组,求解即可得到的值;(2)将(1)求出的值代入得到,将当整体,先算出,进而由正弦函数的图像与性质得到,进而可确定函数的值域.试题解析:(1)由余弦函数的性质可知,又,所以,所以,所以因为函数的最大值为3,最小值为所以,求解得到(2)由(1)可得因为,所以,由正弦函数的性质可得,所以所以函数的值域为.【考点】1.三角函数的图像与性质;2.不等式的性质.11.函数y=sin(πx+)(>0)的部分图象如图所示,设P是图像的最高点,A,B是图像与x轴的交点,记∠APB=θ,则sin2θ的值是( )A.B.C.-D.-【答案】A【解析】由周期公式可知函数周期为2,∴AB=2,过P作PD⊥AB与D,根据周期的大小看出直角三角形中直角边的长度,解出∠APD与∠BPD的正弦和余弦,利用两角和与差公式求出sinθ,进而求得sin2θ.【考点】(1)三角函数的性质;(2)解三角形.12.下列函数同时具有“最小正周期是,图象关于点(,0)对称”两个性质的函数是()A.B.C.D.【答案】B【解析】排除C,D,因为这两个选项中函数的周期均为。

高一数学三角函数的图象与性质(二)

高一数学三角函数的图象与性质(二)

三角函数的图象与性质(二)一、基本知识:了解正弦函数、余弦函数、正切函数的图象,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的图象,理解参数A 、ω、φ的物理意义.掌握将函数图象进行对称变换、平移变换、伸缩变换.会根据图象提供的信息,求出函数解析式.二、例题分析:【例1】(2004年某某卷)设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( A )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312t t y ππ++=【思路串讲】本题主要考查三角函数的图象与性质以及分析问题与解决问题的能力.“会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型”,此类问题的求解一般是先找出周期,定出A 与是的值,最后确定 的值.【标准答案】A【例2】 函数y=Asin (ωx+φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点和最低点横坐标差3π,又图象过点(0,1),求这个函数的解析式.分析 求函数的解析式,即求A 、ω、φ的值.A 与最大、最小值有关,易知A=2,ω与周期有关,由图象可知,相邻最高点与最低点横坐标差3π,即T 2=3π.得 T=6π,所以ω=13.所以y=2sin(x 3+φ),又图象过点(0,1),所以可得关于φ的等式,从而可将φ求出,易得解析式为y=2sin(x 3 +π6).【例3】 右图为某三角函数图像的一段(1)试用y=Asin (ωx+φ)(2)求这个函数关于直线x=2解:(1)T=13π3- π3=4π.∴ω=2πT = 12.又A=3,由图象可知所给曲线是由y=3sin x2沿x 轴向右平移 π3而得到的.∴解析式为 y=3sin 12 (x -π3).(2)设(x ,y)为y=3sin(12 x -π6 )关于直线x=2π对称的图像上的任意一点,则该点关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12x -π6)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)- π6]=-3sin(12 x +π6).点评 y=sin(ωx+φ)(ω>0)的图象由y=sin ωx 的图象向左平移(φ>0)或向右平移(φ<0)|φ|ω个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用. 【例4】 已知函数y=12cos 2x+ 32sinxcosx+1 (x ∈R).(1)当y 取得最大值时,求自变量x 的集合;(2)该函数图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?【思路串讲】本题主要考查三角函数的图象和性质、利用三角公式进行恒等变形的技能以及运算能力.解题突破口:利用三角公式进行恒等变形化简为)sin()(ϕω+=t A x f ,(1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化.必须搞清A 、ω、φ和图象的哪些因素有关;y=sin ωx 和y=sin(ωx+φ)两图象间平移变换的方向和平移的单位数量极易搞错,解题时要倍加小心.解 (1)y= 12·1+cos2x 2 + 32·12 sin2x +1= 12sin(2x+π6)+ 54.当2x+π6 =2k π+π2 ,即x=k π+π6,k ∈Z 时,y max = 74.(2)由y=sinx 图象左移π6个单位,再将图象上各点横坐标缩短到原来的12(纵坐标不变),其次将图象上各点纵坐标缩短到原来的12(横坐标不变),最后把图象向上平移 54个单位即可.点评 (1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化. 【例5】已知函数)cos (sin sin 2)(x x x x f +=.(I )函数)(x f 的最小正周期和最大值;(II )在给出的直角坐标系中,画出函数]2,2[)(ππ-=在区间x f y 上的图象.【思路串讲】本题主要考查三角函数的图象和性质、利用三角公式进行恒等变形的技能、“五点”法作图以及运算能力. 解题突破口:要求函数数)(x f 的最小正周期和最值,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式. 要画出函数]2,2[)(ππ-=在区间x f y 上的图象.主要用“五点”法作图.【标准答案】(I )x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=)42sin(21)4sin 2cos 4cos2(sin 21πππ-+=-⋅+=x x x所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x83π- 8π-8π 83π 85π y1 21- 1 21+ 1故函数)(x f y =在区间]2,2[ππ-上的图象是【例6】(2003年卷)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期;(Ⅱ)若]2,0[π∈x ,求)(x f 的最大值、最小值.【思路串讲】本题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力. 解题突破口:要求函数数)(x f 的最小正周期和最值,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式.【标准答案】(Ⅰ)因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T ……6分(Ⅱ)因为,20π≤≤x 所以.45424πππ≤+≤x 当442ππ=+x 时,)42cos(π+x 取得最大值22;当ππ=+42x 时,)42cos(π+x 取得最小值-1.所以)(x f 在]2,0[π上的最大值为1,最小值为-.2……13分【例7】(2003年春季卷)已知函数)(,2cos 4sin 5cos 6)(24x f xx x x f 求-+=的定义域,判断它的奇偶性,并求其值域.【思路串讲】本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力.解题突破口:要求函数数)(x f 的定义域,转化为02cos ≠x ,要求函数数)(x f 的值域,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式.【标准答案】由Z k k x k x x ∈+≠+≠≠,42,2202cos ππππ解得得.所以)(x f 的定义域为}.,42|{Z k k x R x x ∈+≠∈ππ且因为)(x f 的定义域关于原点对称,且)2cos(4)(sin 5)(cos 6)(24x x x x f ---+-=-)(),(2cos 4sin 5cos 624x f x f xx x 所以=-+=是偶函数.当xx x x f Z k k x 2cos 4sin 5cos 6)(,,4224-+=∈+≠时ππ1cos 32cos )1cos 3)(1cos 2(222-=--=x xx x ,所以)(x f 的值域为}221211|{≤<<≤-y y y 或. 三、训练反馈:1.将y=cosx 的图象作关于x 轴的对称变换,再将所得的图象向下平移1个单位,所得图象对应的函数是 ( D )A .y=cosx+1B .y=cosx -1C .y=-cosx+1D .y=-cosx -12.函数f(x)=sin3x 图象的对称中心的坐标一定是 ( B ) A . (12k π,0), k ∈Z B .(13k π,0), k ∈ZC .(14k π,0), k ∈ZD .(k π,0),k ∈Z3.函数y=cos(2x+π2)的图象的一个对称轴方程为 ( B )A .x=- π2B .x=- π4C .x= π8 D .x=π4.为了得到函数y=3sin(3x+π4),x ∈R 的图象,只需把函数y=3sin(x+π4)的图象上所有点( B )A .横坐标伸长到原来的3倍,纵坐标不变B .横坐标缩短到原来的13倍,纵坐标不变C .纵坐标伸长到原来的3倍,横坐标不变D .纵坐标缩短到原来的13倍,横坐标不变.5.要得到y=sin(2x -π3)的图象,只需将y=sin2x 的图象 ( D )A .向左平移π3个单位B . 向右平移π3个单位C .向左平移π6个单位D . 向右平移π6个单位6.函数y=12sin(2x+θ)的图象关于y 轴对称的充要条件是 ( B )A .θ=2k π+π2B .θ=k π+π2 C .θ=2k π+πD .θ=k π+π(k ∈Z)7.先将函数y=sin2x 的图象向右平移π3个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 ( D ) A .y=sin(-2x+π3) B .y=sin(-2x -π3)C .y=sin(-2x+ 2π3)D . y=sin(-2x -2π3)8.右图是周期为2π的三角函数y=f(x)的图象,那么f(x)可以写成 ( D )A .sin(1+x)B . sin(-1-x)C .sin(x -1)D . sin(1-x)9.y=tan(12x -π3)在一个周期内的图象是 (A )10.已知函数y=2cosx(0≤x ≤2π)的图象与直线y=2围成一个封闭的平面图形,则该封闭图形面积是.4π-BACD11.将y=sin(3x -π6)的图象向(左、右)平移个单位可得y=sin(3x+π3)的图像.左,π612.已知函数y=Asin(ωx+φ),在同一个周期内,当x=π9时取得最大值12,当x=4π9时取得最小值- 12,若A >0,ω>0,|φ|<π2,求该函数的解析表达式. y=12 sin(3x+π6)13.已知函数y=3sinx+cosx ,x ∈R .(1)当y 取得最大值时,求自变量x 的取值集合; (2)该函数的图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?(1){x |x=π3+2k π,k ∈Z}; (2)将y=sinx 的图象向左平移π6,得到函数y=sin(x+π6)的图象,再将所得图象上各点横坐标不变,纵坐标伸长到原来的2倍,得到函数y=2sin(x+π6)的图象.word 11 / 11。

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。

专题5.3 三角函数的图象与性质(原卷版)

专题5.3 三角函数的图象与性质(原卷版)

专题5.3 三角函数的图象与性质题型一 三角函数的值域题型一 三角函数的值域例1.(2023春·重庆铜梁·高一铜梁中学校校考期中)求2()2cos 2sin 3R f x x x x =--+∈()的最小值是_____例2.(2023·上海·高三专题练习)已知函数()1πsin 223f x x ⎛⎫=- ⎪⎝⎭,ππ,44x ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的值域为______.练习1.(2023春·北京·高一清华附中校考期中)当0,2x π⎛⎤∈ ⎥⎝⎦时,()14sin sin f x x x =+的最小值为( ) A .5 B .4C .2D .1练习2.(2023春·江苏镇江·高三江苏省扬中高级中学校联考期中)函数π()cos (sin ),[0,]4f x x x x x =∈的最大值与最小值的和为( )A B C D .3练习3.(2022·高三课时练习)函数y =tan(π-x ),x ∈(,)43ππ-的值域为________.练习4.(2023·全国·高三专题练习)函数()sin 2sin 1cos x xf x x=+的值域__________.练习5.(2023·福建龙岩·统考模拟预测)已知()23sin 8cos2xf x x =-,若()()f x f θ≤恒成立,则sin θ=( )A .35B .35 C .45D .45-题型二 求三角函数的周期性,奇偶性,单调性,对称性例3.(2023春·北京·高三北京一七一中校考期中)下列函数中,最小正周期为π的奇函数是( )A .sin2cos2y x x =+B .sin cos y x x =+C .πsin 22y x ⎛⎫=+ ⎪⎝⎭D .πcos 22y x ⎛⎫=+ ⎪⎝⎭例4.(2023春·海南海口·高三海口一中校考期中)(多选)已知函数()π2sin 26f x x ⎛⎫=-- ⎪⎝⎭则( )A .函数()f x 的最小正周期为2πB .函数()f x 的图像关于直线π6x =-对称 C .函数()f x 为偶函数D .函数()f x 的图像向左平移ϕ个单位后关于y 轴对称,则ϕ可以为5π6练习6.(2023春·全国·高三专题练习)(多选)若函数44()sin cos f x x x =+,则( ) A .函数()f x 的一条对称轴为π4x =B .函数()f x 的一个对称中心为π,04⎛⎫⎪⎝⎭C .函数()f x 的最小正周期为π2D .若函数3()8()4g x f x ⎡⎤=-⎢⎥⎣⎦,则()g x 的最大值为2练习7.(2023春·安徽六安·高三六安市裕安区新安中学校考期中)(多选)函数()π2sin 2f x x =+⎛⎫ ⎪⎝⎭,则以下结论中正确..的是( )A .()f x 在π0,2⎛⎫⎪⎝⎭上单调递减B .直线 π6x =为()f x 图象的一条对称轴C .()f x 的最小正周期为2πD .()f x 在π0,2⎛⎫ ⎪⎝⎭上的值域是(练习8.(2023春·江西·高三校联考期中)(多选)已知函数π()cos 25x f x ⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的图象关于2π,05⎛⎫- ⎪⎝⎭对称B .()f x 的图象关于直线8π5x =对称 C .3π5f x ⎛⎫+ ⎪⎝⎭为奇函数D .()f x 为偶函数练习9.(2023·北京海淀·高三专题练习)函数()cos π6f x x ω=+⎛⎫ ⎪⎝⎭在[]π,π-的图象如图所示.则(1)()f x 的最小正周期为__________; (2)距离y 轴最近的对称轴方程__________.练习10.(2023·北京海淀·高三专题练习)函数()()()cos sin f x x a x b =+++,则( ) A .若0a b +=,则()f x 为奇函数B .若π2a b +=,则()f x 为偶函数C .若π2b a -=,则()f x 为偶函数 D .若πa b -=,则()f x 为奇函数题型三 解三角不等式例5.(2023春·广东佛山·高三佛山一中校考阶段练习)不等式tan 1x >-的解集是________.例6.(2023春·辽宁本溪·高三校考阶段练习)已知函数()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)用五点法画出函数()f x 在2,33ππ⎡⎤-⎢⎥⎣⎦上的大致图像,并写出()f x 的最小正周期;(2)1≤.练习11.(2023秋·广东深圳·高三统考期末)已知函数()()lg 2cos 1f x x =-,则函数()f x 的定义域为( )A .ππ2π,2π,Z 33k k k ⎛⎫-+∈ ⎪⎝⎭B .ππ2π,2π,Z 33k k k ⎡⎤-+∈⎢⎥⎣⎦C .Z ππ,ππ2,266k k k ⎛⎫-+∈ ⎪⎝⎭D .Z ππ,ππ2,266k k k ⎡⎤-+∈⎢⎥⎣⎦练习12.(2023春·广东深圳·高一深圳市光明区高级中学统考期中)已知函数()()2sin (0,0π)f x x ωϕωϕ=+><<的部分图象如图所示.(1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)若()f x >x 的取值范围.练习13.(2021春·高三课时练习)解不等式1tan x ≤≤-练习14.(2023春·辽宁铁岭·高三铁岭市清河高级中学校考阶段练习)已知某地某天从6时到22时的温度变换近似地满足函数π510sin π2084y x ⎛⎫=-+ ⎪⎝⎭.(1)求该地这一天该时间段内温度的最大温差;(2)若有一种细菌在15C 到25C 之间可以存活则在这段时间内,该细菌最多能存活多长时间?练习15.(2023春·江西南昌·高三校考阶段练习)函数lgsin y x =_________.题型四 由三角函数的值域(最值)求参数例7.(2023·全国·高三专题练习)已知函数()()11sin 06f x a x x a =-≠,且()7π6f x f ⎛⎫≤ ⎪⎝⎭恒成立,则()f x =______例8.(2023春·上海青浦·高三上海市朱家角中学校考期中)设函数sin y x =定义域为[],a b ,值域为11,2⎡⎤--⎢⎥⎣⎦,则b a -的最大值为______练习16.(2023春·江苏镇江·高三江苏省镇江中学校考期中)已知()π0,sin sin3a f x x a x ⎛⎫>=-- ⎪⎝⎭=a __________.练习17.(2023春·辽宁朝阳·高三朝阳市第一高级中学校考期中)已知函数()cos f x x x =-的定义域为[,]a b ,值域为[1,2]-,则b a -的取值范围是( ) A .π,π3⎡⎤⎢⎥⎣⎦B .π5π,26⎡⎤⎢⎥⎣⎦C .π24π,3⎡⎤⎢⎥⎣⎦D .2433ππ,⎡⎤⎢⎥⎣⎦练习18.(2023·上海·高三专题练习)若函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,则ω的取值范围是__________.练习19.(2023·湖北襄阳·襄阳四中校考模拟预测)若函数()sin cos()f x x x ϕ=++的最小值为ϕ的一个取值为___________.(写出一个即可)练习20.(2023春·北京·高三北师大二附中校考期中)已知函数()ππ2sin 25f x x ⎛⎫=+ ⎪⎝⎭,若对任意的实数x ,总有()()()12f x f x f x ≤≤,则12x x -的最小值是( ) A .2 B .4C .πD .2π题型五 根据单调求参数例9.(2021·高一课时练习)若不等式tan x a >在ππ,42x ⎛⎫∈ ⎪⎝⎭- 上恒成立,则a 的取值范围为( ) A .1a > B .1a ≤ C .1a <- D .1a ≤-例10.(2023·山东烟台·统考二模)已知函数()()()cos 202πf x x ϕϕ=+≤<在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ϕ的取值范围为( ). A .4ππ3ϕ≤≤ B .π4π23ϕ≤≤ C .4π2π3ϕ≤≤ D .4π3π32ϕ≤≤练习21.(2023秋·云南楚雄·高三统考期末)已知函数()()πcos 03f x x ωω⎛⎫=-> ⎪⎝⎭,若()f x 在区间3π0,2⎛⎫⎪⎝⎭上为单调函数,则ω的取值范围是______.练习22.(2023春·河南南阳·高三南阳中学校考阶段练习)(多选)若函数cos2y x =与函数()sin 2y x ϕ=+在π0,4⎡⎤⎢⎥⎣⎦上的单调性相同,则ϕ的一个值为( )A .π6B .3π4C .4π3-D .4π3练习23.(2023春·四川成都·高三成都市第二十中学校校考阶段练习)已知函数 tan y x ω=在ππ,22⎛⎫- ⎪⎝⎭内是减函数, 则( ) A .01ω<< B .10ω-≤< C .1ω≥ D .1ω≤-练习24.(2023春·辽宁·高二辽宁实验中学校考阶段练习)若函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在,63ππ⎛⎫⎪⎝⎭上不单调,则实数ω的取值范围是______.练习25.(2023·河北承德·统考模拟预测)已知1ω>,函数π()cos 3f x x ω⎛⎫=- ⎪⎝⎭.(1)当2ω=时,求()f x 的单调递增区间; (2)若()f x 在区间ππ,63⎡⎤⎢⎥⎣⎦上单调,求ω的取值范围.题型六 根据对称求参数例11.(2023春·河北石家庄·高三石家庄市第十五中学校考阶段练习)若()ππcos 232f x x ϕϕ⎛⎫⎛⎫=++< ⎪⎪⎝⎭⎝⎭是奇函数,则ϕ=_________.例12.(湖南省名校2023届高三考前仿真模拟(二)数学试题)函数()()()sin cos f x x x ϕϕ=++的图象的一条对称轴方程是π4x =-,则ϕ的最小正值为( )A .π6B .π4C .π3D .π2练习26.(2023·全国·高三专题练习)(多选)若函数()ππsin cos sin sin 36f x x x ϕϕ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭的图象关于坐标原点对称,则ϕ的可能取值为( ) A .π3-B .π6-C .π3D .2π3练习27.(2023·重庆·统考模拟预测)已知函数π()sin()(0)3f x x ωω=+>,若对于任意实数x ,都有π()()3f x f x =--,则ω的最小值为( )A .2B .52C .4D .8练习28.(2023春·重庆渝中·高三重庆巴蜀中学校考期中)已知函数()2s πsin co 2f x x x x ⎛⎫=+ ⎪⎝⎭.(1)设[0,π)θ∈,函数()f x θ+是偶函数,求θ的值;(2)若()f x 在区间,π3m ⎡⎤-⎢⎥⎣⎦上恰有三条对称轴,求实数m 的取值范围.练习29.(2023·全国·高三专题练习)已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,若()0f =π6x =为()f x 图象的一条对称轴,则ω的最小值为______.练习30.(2022·高三课时练习)已知()()3sin f x x ωϕ=+对任意x 都有()()33ππ+=-f x f x ,则3f π⎛⎫⎪⎝⎭等于________.题型七 由图象确定三角函数解析式例13.(2023春·陕西安康·高三陕西省安康中学校考阶段练习)已知函数()()πcos 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则( )A .()7ππ2cos 123f x x ⎛⎫=+⎪⎝⎭ B .()ππ2cos 243f x x ⎛⎫=+ ⎪⎝⎭C .()11ππ2cos 243f x x ⎛⎫=-⎪⎝⎭ D .()11ππ2cos 243f x x ⎛⎫=+⎪⎝⎭例14.(2022春·福建·高二统考学业考试)(多选)函数()()sin 0y A x A ωϕ=+>的一个周期内的图象如图所示,下列结论正确的有( )A .函数()f x 的解析式是()π2sin 23f x x ⎛⎫=- ⎪⎝⎭B .函数()f x 的最大值是2C .函数()f x 的最小正周期是πD .函数()f x 的一个对称中心是π,06⎛⎫⎪⎝⎭练习31.(2023春·四川成都·高三石室中学校考期中)如图,函数()()sin f x A x =+ωϕ(0A >,0ω>,π<ϕ)的部分图象与坐标轴的三个交点分别为()1,0P -,Q ,R ,且线段RQ 的中点M 的坐标为31,22⎛⎫- ⎪⎝⎭,则()2f -等于( )A .1B .-1CD .练习32.(2023春·吉林长春·高三东北师大附中校考阶段练习)函数()()πsin (0,0,)2f x A x A ωϕωϕ=+>><的部图象如图所示,则ω=______,ϕ=______;练习33.(2023春·辽宁沈阳·高三沈阳二十中校联考期中)(多选)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭ 的部分图像如图所示,下列说法正确的是( )A .()f x 的图像关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图像关于直线5π12x =-对称 C .将函数2cos2y x =的图像向右平移π12个单位长度得到函数()f x 的图像D .若方程()f x m =在π,02⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m 的取值范围是(2,-练习34.(湖南省部分名校联盟2023届高三5月冲刺压轴大联考数学试题)(多选)如图是某质点作简谐运动的部分图象,位移y (单位:mm )与时间t (单位:s )之间的函数关系式是()sin 0,0,0,2y A t A πωϕωϕ⎛⎫⎛⎫=+>>∈ ⎪ ⎪⎝⎭⎝⎭,则下列命题正确的是( )A .该简谐运动的初相为π6B .该简谐运动的频率为12πC .前6秒该质点的位移为12mmD .当42π,33t ⎡⎤∈⎢⎥⎣⎦时,位移y 随着时间t 的增大而增大练习35.(2023春·河北衡水·高三衡水市第二中学期末)已知函数()()tan f x A x ωϕ=+π02ϕϕ⎛⎫>< ⎪⎝⎭,,()y f x =的部分图象如图,则 7π24f ⎛⎫= ⎪⎝⎭( )A .2+BC .D .题型八 描述三角函数的变换过程例15.(2022春·福建·高二统考学业考试)为了得到函数π()2cos 3f x x ⎛⎫=+ ⎪⎝⎭的图像,只需把曲线()cos f x x =上所有的点( )A .向左平移π3个单位,再把纵坐标伸长到原来的2倍B .向右平移π3个单位,再把纵坐标伸长到原来的2倍C .向左平移π3个单位,再把纵坐标缩短到原来的12D .向右平移π3个单位,再把纵坐标缩短到原来的12例16.(北京市2023届高三高考模拟预测考试数学试题)要得到cos 2xy =的图像,只要将sin 2xy =的图像( )A .向左平移π2个单位B .向右平移π2个单位C .向左平移π个单位D .向右平移π个单位练习36.(2021·高三课时练习)函数ππ()2sin(),0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示, 为了得到这个函数的图象,只要将2sin y x =的图象上所有的点 ( )A .向右平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向右平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向右平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向右平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变练习37.(2023春·江西赣州·高三校考期中)(多选)要得到函数y x =的图象,只需将函数π24y x ⎛⎫=+ ⎪⎝⎭的图象上所有的点的( )A .先向左平移π8个单位长度,再横坐标伸长到原来的2倍(纵坐标不变)B .先向左平移π4个单位长度,再横坐标缩短到原来的12倍(纵坐标不变)C .先横坐标伸长到原来的2倍(纵坐标不变),再向左平移π4个单位长度D .先横坐标伸长到原来的2倍(纵坐标不变),再向左平移π8个单位长度练习38.(2023春·贵州·高三校联考期中)为了得到函数πsin 28y x ⎛⎫=- ⎪⎝⎭的图象,只要将函数πcos 24y x ⎛⎫=-- ⎪⎝⎭的图象( )A .向左平移5π8个单位长度 B .向右平移5π8个单位长度 C .向左平移5π16个单位长度 D .向右平移5π16个单位长度练习39.(2023春·重庆渝中·高三重庆巴蜀中学校考期中)为得到函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图象,只需把函数()cos g x x =图象上的所有点的( )A .横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向左平移π6个单位长度B .横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向右平移π12个单位长度 C .横坐标缩短到原来的12,纵坐标不变,再把得到的图象向左平移π6个单位长度D .横坐标缩短到原来的12,纵坐标不变,再把得到的图象向右平移π12个单位长度练习40.(2023春·辽宁朝阳·高二校联考期中(多选))已知函数()()2sin (π0,)f x x ωϕϕω><=+的部分图象如图所示,则()f x 的图象可以由函数()2sin g x x =的图象( )A .先纵坐标不变,横坐标变为原来的12,再向左平移11π12个单位长度得到 B .先纵坐标不变,横坐标变为原来的2倍,再向右平移π12个单位长度得到 C .先向右平移π12个单位长度,再纵坐标不变,横坐标变为原来的12得到 D .先向右平移π6个单位长度,再纵坐标不变,横坐标变为原来的12得到题型九 求图象变换前(后)的函数解析式例17.(2023·陕西榆林·统考模拟预测)将函数cos2y x =的图象向右平移π20个单位长度,再把所得图象各点的横坐标缩小到原来的12(纵坐标不变),所得图象的一条对称轴为x =( ) A .π80B .π60C .π40D .π20例18.(2023·江苏南通·统考模拟预测)将函数()πsin 13f x x ⎛⎫=++ ⎪⎝⎭的图象上的点横坐标变为原来的12(纵坐标变)得到函数()g x 的图象,若存在()0,πθ∈,使得()()2g x g x θ+-=对任意x ∈R 恒成立,则θ=( )A .π6B .π3C .2π3D .5π6练习41.(2023·河南郑州·模拟预测)把函数()y f x =图象上所有点的纵坐标不变,横坐标伸长到原来的2倍,再把所得曲线向右平移π4个单位长度,得到函数πcos 3y x ⎛⎫=- ⎪⎝⎭的图象,则()f x =( ) A .15πsin 212x ⎛⎫+ ⎪⎝⎭B .πsin 212x ⎛⎫- ⎪⎝⎭C .5πsin 212x ⎛⎫+ ⎪⎝⎭D .1πsin 212x ⎛⎫- ⎪⎝⎭练习42.(2023·辽宁·校联考三模)(多选)已知函数()()cos 202f x x πϕϕ⎛⎫=+-<< ⎪⎝⎭图像的一条对称轴为8x π=,先将函数()f x 的图像上所有点的横坐标伸长为原来的3倍,再将所得图像上所有的点向右平移4π个单位长度,得到函数()g x 的图像,则函数()g x 的图像在以下哪些区间上单调递减( ) A .[],2ππ B .[]2,ππ--C .79,22ππ⎡⎤⎢⎥⎣⎦D .9,42ππ⎡⎤--⎢⎥⎣⎦练习43.(2023春·重庆铜梁·高三铜梁中学校校考期中)(多选)将函数π3sin()3y x =+的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移π3个单位长度,得到函数()y g x =的图象,下列结论正确的是( ) A .函数()y g x =的图象关于点π,06⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在π0,2⎡⎤⎢⎥⎣⎦上单调递增D .函数()y g x =的图象关于直线5π12x =对称练习44.(2023·江西上饶·校联考模拟预测)已知π3是函数()sin cos f x x a x =+的一个零点,将函数()2y f x =的图象向右平移π12个单位长度后所得图象的表达式为( ) A .7π2sin 26y x ⎛⎫=- ⎪⎝⎭B .π2sin 212y x ⎛⎫=+ ⎪⎝⎭C .2cos 2y x =-D .2cos2y x =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学 三角函数的图像和性质练习题
1.若cosx=0,则角x 等于( )
A .k π(k ∈Z )
B .
2π+k π(k ∈Z ) C .2π+2k π(k ∈Z ) D .-2π+2k π(k ∈Z ) 2.使cosx=m
m -+11有意义的m 的值为( ) A .m ≥0
B .m ≤0
C .-1<m <1
D .m <-1或m >1 3.函数y=3cos (
52x -6π)的最小正周期是( ) A .5
π2 B .2π5 C .2π D .5π 4.函数y=2sin 2x+2cosx -3的最大值是( )
A .-1
B .21
C .-21
D .-5
5.下列函数中,同时满足①在(0,
2π)上是增函数,②为奇函数,③以π为最小正周期的函数是( )
A .y=tanx
B .y=cosx
C .y=tan 2x
D .y=|sinx|
6.函数y=sin(2x+π6
)的图象可看成是把函数y=sin2x 的图象做以下平移得到( ) A.向右平移π6 B. 向左平移 π12 C. 向右平移 π12 D. 向左平移π6
7.函数y=sin(π4
-2x)的单调增区间是( ) A. [kπ-3π8 , kπ+3π8 ] (k∈Z) B. [kπ+π8 , kπ+5π8
] (k∈Z) C. [kπ-π8 , kπ+3π8 ] (k∈Z) D. [kπ+3π8 , kπ+7π8
] (k∈Z) 8.函数 y=15
sin2x 图象的一条对称轴是( )
A.x= - π2
B. x= - π4
C. x = π8
D. x= - 5π4
9.函数 y=15 sin(3x-π3
) 的定义域是__________,值域是________,最小正周期是________,振幅是________,频率是________,初相是_________.
10.函数y=sin2x 的图象向左平移 π6
,所得的曲线对应的函数解析式是____ _____.
11.关于函数f(x)=4sin(2x+π3
),(x∈R),有下列命题: (1)y=f(x)的表达式可改写为y=4cos(2x-π6
); (2)y=f(x)是以2π为最小正周期的周期函数;
(3)y=f(x)的图象关于点(-π6
,0)对称; (4)y=f(x)的图象关于直线x=-π6
对称;其中正确的命题序号是___________. 12. 已知函数y=3sin (21x -4
π). (1)用“五点法”作函数的图象;
(2)说出此图象是由y=sinx 的图象经过怎样的变化得到的;
(3)求此函数的最小正周期;
(4)求此函数的对称轴、对称中心、单调递增区间.
13. 如图是函数y =A sin(ωx +φ)+2的图象的一部分,求它的振幅、最小正周期和初
相。

14. 已知函数.1cos sin 32sin 2)(2++=x x x x f 求:
(1))(x f 的最小正周期;(2))(x f 的单调递增区间;(3))(x f 在]2,
0[π上的最值.
参考答案:
1.B 2. B 3.D 4.C 5.A 6.B 7.D 8.B
9.(-∞,+ ∞),(-15 ,15 ), 2π3 ,15 ,15 ,32π ,-π3
; 10.y=sin2(x+π6
); 11.(1)(3)
12.解:(1)
-4y
(2)方法一:“先平移,后伸缩”.
先把y =sin x 的图象上所有的点向右平移4π个单位,得到y =sin (x -4
π)的图象;再把y =sin (x -
4π)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin (21x -4π)的图象;最后将y =sin (21x -4
π)的图象上所有点的纵坐标伸长到原来的3倍(横坐
标不变),就得到y =3sin (21x -4
π)的图象. 方法二:“先伸缩,后平移”. 先把y =sin x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin (
21x )的图象;再把y =sin (
21x )图象上所有的点向右平移2π个单位,得到y =sin 21(x -2π)= sin (4π2-x )的图象;最后将y =sin (21x -4
π)的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin (
21x -4π)的图象. (3)周期T =2
1π2π2=ω=4π,振幅A =3,初相是-4
π. (4)由于y =3sin (21x -4
π)是周期函数,通过观察图象可知,所有与x 轴垂直并且通过图象的最值点的直线都是此函数的对称轴,即令
21x -4π=2π+k π,解得直线方程为x =2
π3+2k π,k ∈Z ; 所有图象与x 轴的交点都是函数的对称中心,所以对称中心为点(2
π+2k π,0),k ∈Z ; x 前的系数为正数,所以把21x -4π视为一个整体,令-2π+2k π≤21x -4π≤2
π+2k π,解得[-2π+4k π,2
π3+4k π],k ∈Z 为此函数的单调递增区间. 13. A =1,T=34π,φ=-4
3π 14. 解:(Ⅰ)因为1cos sin 32sin 2)(2++=x x x x f
1cos sin 322cos 1++-=x x x
22cos 2sin 3+-=x x
,2)6
2sin(2+-=π
x
所以)(x f 的最小正周期.2
2ππ==T (Ⅱ)因为,2)62sin(2)(+-
=πx x f 所以由),(226222Z k k x k ∈+≤-≤-
πππππ 得)Z k (3
k x 6k ∈π+π≤≤π-π 所以)(x f 的单调增区间是).](3,6[Z k k k ∈+-
ππππ (Ⅲ)因为.65626,20ππππ≤-≤-≤
≤x x 所以 所以.1)6
2sin(21≤-≤-πx 所以].4,1[2)62sin(2)(∈+-=π
x x f
即)(x f 的最小值为1,最大值为4.。

相关文档
最新文档