实验5-1 齿轮齿圈径向跳动的测量
齿轮齿圈径向跳动的测量实验报告

齿轮齿圈径向跳动的测量实验报告
引言:
齿轮齿圈径向跳动是齿轮齿圈制造和装配过程中的一个重要指标,其大小和分布情况会直接影响齿轮齿圈的精度和使用寿命。
因此,对齿轮齿圈径向跳动进行准确测量是十分必要的。
实验目的:
本实验旨在通过测量齿轮齿圈径向跳动来分析其分布情况,为优化制造和装配工艺提供数据支持。
实验原理:
齿轮齿圈的径向跳动是指在轴向和周向的测量范围内,齿轮齿圈中心点相对于理论中心点的最大偏移量。
实验中,将齿轮齿圈固定在测量装置上,利用外径测量仪等设备对其进行测量,得到齿轮齿圈径向跳动的数据。
实验步骤:
1. 准备测量装置和测试设备,包括外径测量仪、齿轮齿圈夹持器等。
2. 将待测齿轮齿圈夹持在装置上,确保其稳固无松动。
3. 进行径向跳动测量,逐步轮转齿轮齿圈,记录不同位置的径向跳动值。
4. 将测得的数据进行整理和统计,分析其分布情况。
实验结果:
根据实验测量结果,齿轮齿圈径向跳动值在不同位置存在一定的
差异,但总体来说,跳动值分布较为均匀,未出现明显的异常情况。
结论:
通过对齿轮齿圈径向跳动的测量和分析,可以得出其分布情况较为均匀的结论。
这对于制造和装配工艺的优化提供了较为实际的参考意义。
同时,实验中使用的测量方法和设备也可为相关领域的研究和开发提供依据。
齿圈径向跳动实验报告

齿圈径向跳动实验报告齿圈径向跳动实验报告引言:齿圈径向跳动是指齿圈在运动过程中产生的径向偏移现象。
这种现象在机械工程领域中非常常见,对于机械设备的正常运行和寿命有着重要的影响。
因此,本次实验旨在通过对齿圈径向跳动的测量和分析,探究其产生的原因,并提出相应的解决方案。
实验目的:1.测量齿圈径向跳动的幅值和频率。
2.分析齿圈径向跳动产生的原因。
3.提出减少齿圈径向跳动的解决方案。
实验装置和方法:实验装置由一台旋转机械设备和相应的测量仪器组成。
首先,我们将齿圈安装在机械设备上,并通过电机驱动齿圈旋转。
然后,使用光学传感器对齿圈的径向跳动进行测量。
在实验过程中,我们通过调节电机的转速和加载不同的负载来模拟实际工作条件。
实验结果:通过实验测量,我们得到了齿圈径向跳动的幅值和频率数据。
实验结果显示,齿圈径向跳动的幅值随着转速的增加而增加,但在一定范围内幅值变化不大。
而齿圈径向跳动的频率则与转速呈正相关关系,随着转速的增加而增加。
讨论:齿圈径向跳动产生的原因是多方面的,其中包括齿圈本身的制造误差、装配误差、工作负载不均匀等。
首先,齿圈的制造误差会导致齿圈的几何形状不规则,从而引起径向跳动。
其次,装配误差会使得齿圈与其他部件之间的配合不完美,进一步增加了径向跳动的可能性。
最后,工作负载不均匀会使得齿圈在运动过程中承受不均匀的力,从而引起径向跳动。
解决方案:针对齿圈径向跳动问题,我们可以采取以下几种解决方案。
首先,优化齿圈的制造工艺,减少制造误差,提高齿圈的几何精度。
其次,加强装配过程的控制,确保齿圈与其他部件之间的配合精度。
最后,通过合理设计工作负载分布,减少齿圈受力不均匀的情况,从而降低径向跳动的发生。
结论:通过本次实验,我们对齿圈径向跳动进行了测量和分析,并提出了相应的解决方案。
齿圈径向跳动是机械工程领域中一个重要的问题,对于机械设备的正常运行和寿命有着重要的影响。
通过优化制造工艺、加强装配过程的控制以及合理设计工作负载分布,我们可以有效地减少齿圈径向跳动的发生,提高机械设备的工作效率和寿命。
齿轮径向跳动的测量实验报告

齿轮径向跳动的测量实验报告齿轮径向跳动的测量实验报告引言:齿轮作为现代机械中不可或缺的传动元件,其运行状态对机械设备的性能和寿命有着重要影响。
而齿轮径向跳动作为齿轮运行中的一种常见问题,对齿轮传动效率和稳定性产生不利影响。
因此,本实验旨在通过测量齿轮径向跳动的方法,深入分析其产生原因,并探索相应的改善方案。
一、实验目的本实验的目的是通过实际测量齿轮径向跳动的数值,了解齿轮径向跳动的产生原因,并提出相应的改进方案。
二、实验装置与方法1. 实验装置:本实验使用了一台标准的齿轮传动装置,包括两个齿轮和一个电动机。
齿轮采用了标准的齿轮制造工艺,具有一定的精度和质量保证。
2. 实验方法:首先,将两个齿轮装配在传动装置上,并通过电动机驱动齿轮运转。
然后,使用激光传感器对齿轮的径向跳动进行实时测量。
在测量过程中,记录并分析齿轮径向跳动的变化规律。
三、实验结果与分析经过一系列实验测量与数据记录,我们得到了齿轮径向跳动的数值,并进行了进一步的分析。
1. 齿轮径向跳动的数值:实验结果显示,齿轮径向跳动的数值在不同工况下有所差异。
在正常运行状态下,齿轮径向跳动的数值较小,通常在0.01mm以下。
而在高速运转或负载较大的情况下,齿轮径向跳动的数值会明显增大,甚至超过0.1mm。
2. 齿轮径向跳动的原因:通过对实验结果的分析,我们发现齿轮径向跳动的主要原因是齿轮的制造和装配误差,以及齿轮与轴之间的间隙。
制造误差包括齿轮的几何形状和表面质量等方面的偏差,而装配误差则包括齿轮的安装位置和相对角度等方面的误差。
这些误差会导致齿轮在运转中产生不稳定的径向力,从而引起齿轮径向跳动。
3. 改进方案:为了减小齿轮径向跳动的数值,我们可以采取以下改进方案:(1)提高齿轮的制造精度:通过优化齿轮的制造工艺和加工设备,减小齿轮的制造误差,提高齿轮的几何形状和表面质量,从而减小齿轮径向跳动的数值。
(2)优化齿轮的装配方式:在齿轮的装配过程中,采用精确的定位和调整方法,确保齿轮的安装位置和相对角度的准确性,减小齿轮的装配误差,从而减小齿轮径向跳动的数值。
径向跳动测试方法

径向跳动测试方法1. 嘿,你知道吗?用千分表来进行径向跳动测试就很不错哟!就像医生拿着听诊器给病人检查一样,千分表能精准地检测出工件的跳动情况呢。
比如在检测一个齿轮的时候,把千分表触头轻轻放在齿轮表面,那转动起来就能看到跳动的数据啦!2. 还有哦,使用专门的跳动测量仪也超棒呀!这就好比是给工件做了一次超级全面的体检呢。
就像我们量身高体重一样准确。
比如说在检查一根轴的时候,把它放在测量仪上,那结果不就一目了然了嘛!3. 哇塞,利用光学测量法来进行 radial 跳动测试也很神奇呢!这就跟我们用眼睛去发现美好一样。
比如说检查一个精密零件的表面,通过光学仪器一下就能看清它的跳动细节啦,是不是很厉害!4. 嘿,你想过没有,三坐标测量机也能搞定 radial 跳动测试呀!这就好像是个万能的检测大师。
像检测一个复杂形状的工件时,三坐标测量机就能大显身手啦,轻松找到跳动的问题所在!5. 还有那种比较传统的手动检测法呢,也别小瞧它呀!就像是老手艺一样有它独特的魅力哟。
例如在一些简单的工件检测中,手动检测就能很好地发挥作用呀!6. 激光测量法听说过吗?那可太牛啦!就如同有一双火眼金睛在盯着工件呢。
比如对一个高速旋转的零部件进行检测,激光测量就能快速又准确地给出 radial 跳动的数据咯!7. 干涉测量法也值得一试呀!这就像是给工件拍了一张超级清晰的照片。
就像检测一个很薄的片状工件的跳动时,干涉测量法就能展示它细微的跳动变化呢。
8. 涡流检测法也能用来做 radial 跳动测试哦!就好像是个神奇的探测器。
比如说对一个金属工件进行检测,涡流检测就能敏锐地察觉到跳动情况啦!9. 哎呀呀,这么多种 radial 跳动测试方法,都各有各的厉害之处呀!大家可以根据实际情况选择合适的方法哟,这样才能更好地检测出工件的质量问题呢!。
实验齿轮齿圈径向跳动.doc

实验二齿轮齿圈径向跳动的测量实验人员:李洲,刘自成,龚佳健实验温度:t=17℃实验时间:4月6日指导教师:杨浪萍,张楚书一、实验目的1、熟悉测量齿圈径向跳动误差的方法;2、加深理解齿圈径向跳动误差的定义。
二、实验内容用齿圈径向跳动检查仪测量齿轮的齿圈径向跳动误差F。
r三、实验仪器说明及测量原理测量齿圈径向跳动误差可用齿圈径向跳动检查仪、万能测齿仪等测量。
图2.1为跳动检查仪的外形图。
被测齿轮与心轴一起装在两顶针之间,两顶针架装在滑板上。
转动手轮,可使滑板作纵向移动。
扳动提升手柄,可使指示表放下进入齿槽。
为了测量不同模数的齿轮,仪器备有不同直径的球形探测头。
图2.1齿圈径向跳动检查仪齿圈径向跳动误差F,是指在齿轮一转范围内,测头在齿槽内或轮齿上,r于齿高中部双面接触,测头相对于齿轮轴线的最大变动两。
如图 2.2所示。
为了使测头球面在被测齿轮的分度圆附近与齿面接触,球形测头的直径d p应按下式选取:d=1.68m(2-1)p式中m为齿轮模数(mm)图2.2测量原理四、测量步骤1、根据被测齿轮的模数,选择适当的球形测头装入指示表的测量杆下端;2、将被测齿轮和心轴装在一起的两顶尖之间,拧紧顶尖座锁手轮和顶尖锁紧3、旋转手轮,调整滑板位置,使球形测量头位于齿宽中部。
借升降螺母和提升手柄。
使是指表下降,直至测头伸入齿槽内且与齿面接触。
调整指示表,使其指针压缩约1-2 圈,拧紧表架后面的紧固旋钮;4、球形测头伸入齿槽最下方即可读数,每测完一齿,抬起提升手柄,使球形测头进入第二个齿槽与齿面接触,以此类推,逐齿测量并记录指示表的读数;5、根据齿轮的技术要求,查出齿圈径向跳动公差F r ,判断被测齿轮的合格性。
五、被测对象图2.3 被测对象齿轮基本参数见表1-1。
表2-1齿轮基本参数六、被模数m 齿数Z 压力角α齿轮精度径向跳动误差测数据记录员:刘3 18 20 12 171μm自成表2-2第一次测量数据序号读数(um)序号读数(um)1 28 10 1352 22 11 1303 61 12 1124 64 13 1035 91 14 866 104 15 617 124 16 208 131 17 99 114 18 3齿圈径跳误差F r (um)135-3=132合格性结论合格,在公差范围内。
齿轮径向跳动测量

齿轮径向跳动检测一、实验目的、1、了解卧式径向检查仪工作原理及使用方法。
2、学会使用卧式径向检查仪检测齿轮径向跳动。
二、实验原理图2-11-底座;2-工作台固紧螺丝;3-顶针固紧螺丝;4-被测齿轮;5-升降螺母6-指示表抬起手柄;7-指示表;8-测量头;9-中心顶针;图2-2齿圈径向跳动误差ΔFr一转范围内,处于齿槽内或轮齿上、与齿高中部双面接触是在齿轮的测头在齿槽内或齿轮上,于齿高中部双面接触,测头相对于齿轮轴心线的最大变动量。
见图2-2a,以齿轮基准孔的轴线o为中心,转动齿轮,使齿槽在正上方,再将球形测头(或用圆柱)插入齿槽与左右齿面接触,从千分表上读数,依次测量所有齿。
将各次读数记在坐标图上,如图2-2b所示,取最大读数与最小读数之差作为齿圈径向跳动误差。
三、实验步骤1、查阅仪器附件盒表格,根据被测齿轮选取球形测头,并将测头装入表的测杆下端。
2、 把擦净的被测齿轮装在仪器的中心顶尖上,安装后齿轮不应有轴向窜动!借助升降螺母5与抬起手柄6调整指示表,使指示表有一到二圈的压缩量; 3、 球形测头伸入齿槽最下方即可读数,读完数,向后扳拨杆,抬起千分表转过一齿,再放下,开始测第二齿。
如此依次测量各个齿面,把指示表的读数记下,并绘制出齿圈径向跳动图,取最大读数与最小读数之差,算出齿圈径向跳动误差ΔF r (r F ∆=max r -min r )。
4、 根据齿轮的技术要求,查出齿圈径向跳动公差F r ,判断合格性:合格条件:r F ∆≤r F 为合格四、 实验数据记录及处理 1、齿轮齿数Z =30,齿顶圆da =48.02mm2、根据da=(2h a*+z )m ,得m 标准值为1.5mm∴d=mz=45mm4、∴ r max =4.2umr min =-3.2um5、所以 r F ∆=max r -min r =7.4um6、查表,得F r=23um ∴r F ∆≤r F 检验合格。
实验 齿轮径向跳动测量_学生用

实验七 齿轮径向跳动测量一、实验目的1. 熟悉测量齿轮径向跳动的方法。
2. 加深理解齿轮径向跳动的定义。
二、实验内容用齿轮径向跳动测量仪测量齿轮齿圈径向跳动。
三、测量原理及测量仪器说明径向跳动F r是指测头(球形、圆柱形或锥形)相继置于齿槽内时,从它到齿轮轴线的最大和最小径向距离之差,如图1。
检查时,测头在近似齿高中部,与左右齿面同时接触。
齿轮径向跳动误差可用齿轮径向跳动检查仪、万能测齿仪或普通偏摆检查仪等仪器测量。
本实验采用齿轮径向跳动测量仪来测量。
该仪器是手动、纯机械齿轮测量仪器,利用两顶尖定位齿轮,用手动转动齿轮,测头逐齿在齿轮的径向测量其跳动误差。
其外观如图2。
图1 测量径向跳动的原理 图2 齿轮径向跳动测量仪外观图仪器主要由I—仪座、II—测量滑座、III—滑板、IV—顶尖座四部分组成。
顶尖座可在滑板上自由滑动,以适应不同的齿轮轴长度;滑板可在底座上滑动,可使测头对准齿轮的不同轴向位置;测量滑座可在底座上滑动,对应不同直径的齿轮。
各可移动部件都能在任意位置可靠锁紧。
图3 齿轮径向跳动测量仪组成示意图该仪器组成如图3所示,全套测量装置包括:1.顶尖座锁紧手柄;2.滑板锁紧手柄;3.测头定位机构;4.手轮;5.测头后退手柄;6.转角锁紧手柄;7.测量滑座锁紧手柄;8.保护螺钉;9.滑板移动手轮;10.调平地脚螺钉;11.顶尖后退手柄;12.待测齿轮;13.测力调节螺钉。
该仪器可测齿轮直径≤220mm,可测模数为0.5—8 mm。
指示表分辨率为0.001mm。
仪器备有不同直径的测头(锥形),用于测量各种不同模数的齿轮:序号 1 2 3 4 5 6 7 8 9 10 测头直径mm 0.8 1.2 2 3 4 5 6 8 10 12测头选取原则为:使测头与被测齿轮的齿槽双面接触,接触点在被测齿轮的中径附近,按下列公式进行计算:D p=D b×[tg(α+90°/Z)- tgα]也可按简化公式计算:D p=(1.5~1.8)×m(建议取D p=1.68×m)式中,D p为测头直径,D b为基圆直径,Z为齿数,m为齿轮模数,α为压力角。
实验五 齿轮齿图径向跳动的测量

实验五齿轮齿图径向跳动的测量
一、测量原理及器具
齿圈径向跳动误差ΔFr是在齿轮一转范围内,将量头依次插入齿槽中,测得量头相对于齿轮旋转轴线径向位置的最大变动量。
可用齿圈径向跳动检查仪(如图3—29)、万能测齿仪或普通偏摆检查仪上带小圆柱和千分表进行测量(如图3-30)。
二、仪器主要技术参数
型号:DD300
被测齿轮模数范围:1~16 m m
测量最大直径:300 m m
顶针最大高度:150 m m
图8=1 用齿圈径向跳动检查仪测量齿圈跳动图8-2 用偏摆检查仪测量齿圈跳动
三、测量步骤
1、安装齿轮:将齿轮套在检验心轴上,用仪器的两顶尖顶在检验心轴的两顶尖孔内,心轴与顶尖之间的松紧应适度,即保证心轴灵活转动而又无轴向窜动。
2、选择测量头:测量头有两种形状,一种是球形测量头,另一种是锥形或V形测量头。
若采用球形测量头时,应根据被测齿轮模数按下表选择适当直径的测量头。
也可用试选法使量头大致在分度圆附近与齿廓接触。
3、零位调整:搬动手柄6放下表架,根据被测零件直径转动螺母4,使测量头插入齿槽内与齿轮的两侧面相接触,并使千分表具有一定的压缩量。
转动表盘,使指针对零。
4、测量:测量头与齿廓相接触后,由千分表进行读数,用手柄6抬起测量头,用手将齿轮转过一齿,再重复放下测量头,进行读数如此进行一周,若千分表指针仍能回到零位,则测量数据有效,千分表示值中的最大值与最小值之差,即为齿圈径向跳动误差ΔFr。
否则应重新测量。
四、填写测量报告单
按步骤完成测量并将被测件的相关信息、测量结果及测量条件填入测量报告单7~12中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验6 齿轮齿圈径向跳动的测量
一、实验目的
1.学会在齿轮跳动仪上测量齿轮的齿圈径向跳动量
2.加深理解齿圈径向跳动量对齿轮传动精度的影响
二、实验内容
用齿圈径向跳动检查仪,测量齿轮的齿圈径向跳动
三、计量器具及测量原理
齿轮跳动检查仪是一种多用途的测量仪器,可供检查有中心孔的圆柱、圆锥表面和端面、6级或6级以下精度有中心孔的带轴内外啮合圆柱齿轮、圆锥齿轮和蜗轮蜗杆等的径向跳动或端面跳动量。
1、仪器主要度量指标
测量范围模数0.3~5mm
最大直径~300mm
指示表值范围0~1mm
分度值0.001mm
2、仪器结构
齿圈径向跳动误差可用齿圈径向跳动检查仪(如图4-1)、万能测齿仪或普通偏摆检查仪等仪器测量。
本实验采用齿圈径向跳动检查仪来测量,该仪器的结构如图4-2所示。
本仪器主要由顶针架和测量支架两大部分组成。
顶针架是安装被测工件的;测量支架是安装百分表的,其上有刻度值,当测量圆柱齿轮时,其上的刻线指向0,若测量圆锥齿轮则需转动相应的节锥角。
3、工作原理
齿圈径向跳动误差ΔFr是在齿轮一转范围内,测头在齿槽内或在轮齿上,于齿高中部双面接触,测头相对于齿轮旋转轴线径向位置的最大变动量。
如图6-1所示。
如下图6-1所示,以齿轮基准孔的轴线O为中心,转动齿轮,使齿槽在正上方,再将测头插入齿槽与左右齿面接触,从百分表上读数,依次测量所有齿,取最大读数与最小读数之差作为齿圈径向跳动量ΔFr。
四、测量步骤
1.安装工件
根据被测齿轮心轴的长短,先将左顶针架固定在滑板的适当位置,分别锁紧左锁紧螺钉2和3,以使顶针架和顶针固定;调整右顶针架的位置,使其顶针顶住心轴中心孔时,松紧
适度,无轴向窜动,然后锁紧右边螺钉2和3.以上操作必须用手托住齿轮,勿使齿轮落下砸
2.选择测头
测头直径亦可按式d = 1.68m决定。
使测头在齿轮分度圆处接触。
3.零位调整
旋转纵向移动手轮1,调整滑板位置,使指示表测量头位于齿宽的中部,然后锁紧滑板。
扳动手柄6使测头下降并对准齿轮上某一齿槽,然后转动升降螺母4使测量支架向下移动,以百分表的测头与齿槽双面接触、指针大致转过1—2圈为宜,随后转动测量支架后面的固紧螺钉使其固定;用手转动百分表表壳使表中的零线与指针重合,扳动手柄6将测头提起再放下,如此两、三次始终指向零位则调零工作结束。
4.测量
调零结束后,记下第一个读数;扳动手柄6提起测头后将齿轮转过一齿,再将扳手6轻轻放下,使测头与第二个齿槽接触,从百分表上读取第二个读数,依次逐齿测量直至全部,最后当齿轮转回到调零槽时,表上读数应与第一个读数相同(百分表指针仍能回到零位),
则测量数据有效。
若偏差超过±1格时应检查原因,并重新测量。
5.测量数据记录与处理:百分表示值中的最大值与最小值之差,即为齿圈径向跳动误差ΔFr。
按国家标准从GB/T10095—1998确定被测齿圈径向跳动的公差等级。