数学分析2005年

合集下载

2005年数学考研真题分类解析

2005年数学考研真题分类解析

第一部分 高等数学一、函数、极限与连续1.(数二)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k=43 .【分析】 题设相当于已知1)()(lim=→x x x αβ,由此确定k 即可.【详解】 由题设,2cos arcsin 1lim)()(limkxxx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k21143cos 1arcsin lim2==-+→kxxx x x ,得.43=k【评注】 无穷小量比较问题是历年考查较多的部分,本质上,这类问题均转化为极限的计算. 2.(数二)设函数,11)(1-=-x xe xf 则( )(A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;0)(l i m 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).【评注】 应特别注意:+∞=-+→1lim1x xx ,.1lim 1-∞=--→x x x 从而+∞=-→+11lim x x x e ,.0lim 11=-→-x xx e3.(数二)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→xxx dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用洛必塔法则,但分子分母求导前应先变形. 【详解】 由于⎰⎰⎰=-=-=-00)())(()(xxxut x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→x xxx xxx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 00)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f xduu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f【评注】 本题容易出现的错误是:在利用一次洛必塔法则后,继续用洛必塔法则⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=.21)()()()(lim='++→x f x x f x f x f x错误的原因:f(x)未必可导. 4.(数三、数四)极限12sinlim 2+∞→x x x x = 2 .【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 12s i nl i m 2+∞→x x x x =.212lim 2=+∞→x x xx【评注】 若在某变化过程下,)(~)(x x αα,则 ).()(lim )()(lim x x f x x f αα=5.(数三、四)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则. 【详解】 )1(1lim)111(lim 20xxx xx ex e x x xex --→-→-+-+=--+=2201limxex x xx -→+-+ =xex xx 221lim-→-+=.2322lim=+-→xx e【评注】 本题属基本题型,在里用罗必塔法则求极限的过程中,应注意利用无穷小量的等价代换进行简化.二、导数与微分1.(数一)设函数nnn xx f 31lim)(+=∞→,则f(x)在),(+∞-∞内( )(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim)(3=+=∞→nnn xx f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xx x f n nn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).【评注】 本题综合考查了数列极限和导数概念两个知识点. 2.(数二)设xx y )sin 1(+=,则π=x dy= dx π- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是]s i n 1c o s )s i n 1[l n ()s i n 1l n (xx x x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y ys i n 1c o s )s i n 1l n (1+++=',于是 ]sin 1cos )sin 1[ln()sin 1(xx x x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.3.(数二)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是( )(A)32ln 81+. (B) 32ln 81+-.(C) 32ln 8+-. (D) 32ln 8+.【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t ,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy ,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).【评注】注意本题法线的斜率应为-8. 此类问题没有本质困难,但在计算过程中应特别小心,稍不注意答案就可能出错.三、中值定理与导数的应用 1.(数一)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f 【评注】 中值定理的证明问题是历年出题频率最高的部分,而将中值定理与介值定理或积分中值定理结合起来命题又是最常见的命题形式. 2.(数一)曲线122+=x xy 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可. 【详解】 因为a=212lim)(lim22=+=∞→∞→xx xxx f x x ,[]41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。

苏州大学考研真题数学分析2005(含答案)

苏州大学考研真题数学分析2005(含答案)

1 2
2
f (x)dx 0
0
以下分三种情况讨论:
( a ) 当 x M x 0时 f ( x M ) f (x 0 ) 0 m a x x[0,2 ] f ( x ) 0 L (b) 当 x M x 0时 ,由 f(x) 的 周 期 性 , 得 2 f(x0 ) f (x M ) f(x0 ) f (x M ) f(x0 2 ) f (x M ) L (x0 x M ) L (x0 2 x M ) 2 L (c )当 x M < x 0时 , 由 f ( x ) 的 周 期 性 , 得 2 f(x0 ) f (x M ) f(x M ) f (x0 ) f(x M 2 ) f (x0 ) L(x0 x M ) L(x M 2 x0 ) 2 L 从 而 由 ( a ) , ( b ) ,(c )知 道 m a x xR f ( x ) L
则 f ( x0 ) 0.证 明 : f ( x )在[0,1]上 只 有 有 限 个 零 点 。
证 明 : 设 若 不 然 f ( x )在 [0,1]上 有 无 穷 多 个 零 点 , 不 妨 设 { x n } [0,1], f (x n ) 0, n 1, 2
则 存 在 { x n }的 一 个 子 列{x nk } , 使 得 x nk x0 ( k )且 f (x nk ) 0, 从 而 f ( x0 ) 0
4(. 16) 将 方 程 x u

y
u

0变 为 以 极 坐 标 r, 为 自 变 量 的 形 式 , 其 中 极 坐 标
y
x
变 换 为 x=rcos ,y=rsin ,(r 0)

2005年华东师大数分试题及解答

2005年华东师大数分试题及解答

2005年数学分析一.(每题6分,共24分)判断下列命题的真伪(正确的命题请简要证明,错误的命题请举出反例)1.A a n n =∞→lim 的一个充要条件是:存在正整数N ,对于任意正数ε,当N n >时均有ε<-A a n .2.设()x f 在[)+∞,a 上连续,()x f 在[)+∞,a 上一致连续,那么()()2x f 在[)+∞,a 上一致连续.3.设0>n a ,01lim =∞→na nn ,那么正项级数∑∞=1n n a 收敛. 4.()y x f ,在点()00,y x 沿任意方向导数都存在,则函数()y x f ,在点()00,y x 连续. 二.(每题8分,共64分)计算下列各题;1. 求极限⎪⎭⎫ ⎝⎛-→x x n 220sin 11lim 2. 求极限n n n n 22cos 2sin lim +∞→3. 求曲线y x x y 2=,在()1,1处的切线方程. 4. 设()x f 在R 上连续,()()⎰=te t dx xf tg 2,求()t g '.5. 求dxdy y x y x ⎰⎰≤++12243.6. 设()11,1=f ,()a f x =1,1',()b f y =1,1',()()()()y x f x f x f x g ,,,=,求()1'g .7. 设S 是有向曲面1222222=++c z b y a x 外侧,求第二型曲面积分⎰⎰S zdxdy .8. 设椭球面0,0,0,1222222>>>=++z y x cz b y a x 的切平面与三个坐标平面所围成的几何体的最小体积.三.(第一题至第四题每题12分,第五题14分,共62分)证明以下个题: 1.设()x f 在有限区间()b a ,上一致连续,求证:()x f 在区间()b a ,上有界.2.已知n a n 112=-,⎰+=121n n n dx x a ,求证:()∑∞=-11n n na 条件收敛.3.设()x f 在区间[]b a ,连续,()0>x f .求证:函数列(){}nx f 在[]b a ,上一致收敛于1.4.设()y x f ,在[][]d c b a ,,⨯上连续,求证:()[]()y x f y g b a x ,max ,∈=在[]d c ,上连续.5.设()x f 在区间[)+∞,a 上的有界连续函数,并且对于任意实数c ,方程()C x f =至多只有有限个解,求证:()x f x +∞→lim 存在.2005年数学分析答案一、判断下列命题的真伪,正确的命题请简要证明,错误的命题请举出反例(每题6分,共24分):1.错误。

南京理工大学2005硕士数学分析试题

南京理工大学2005硕士数学分析试题

南京理工大学2005年硕士研究生入学考试试题数学分析一、(10分)设0>n a ,n=1,2, )(,0∞→≠→n a a n ,证 1lim =∞→n n n a 。

二、(15分)求积分⎰⎰∑⋅ds n F 其中),,=(xy yz xy F ,∑为半球面,0z 1z y x 222≥,=++和圆1y x 0z 22≤+,=的外侧三、(15分)设f 为一阶连续可微函数,且)(0f ''存在,f (0)=0, 定义⎪⎩⎪⎨⎧≠'0 x x f x10 x 0f x g )(=)()=( 证 g 是一个可微,且g '在0点连续。

四、(15分)证明 级数∑∞1n x n 2e =- 在),+(∞0上不一致收敛,但和函数在),+(∞0上无穷次可微。

五、(15分)设〕,〔b a C f ∈,证明,0>∀ε存在连续折线函数g ,使得 ε<)()-(x g x f ,〕〔b a,x ∈∀。

六、(15分)设),(t x u 为二元二阶连续可微函数且u 的各一阶偏导关于x 是以1为周期函数,且2222xu t u ∂∂∂∂=,证明⎰∂∂∂∂E 1022dx x u t u 21t ))+()(()=(是一个与t 无关的函数。

七、(15分)设f 为〕,+〔∞1上实值函数,且f (1)=1,)()(+)=(1x x f x 1x f 22≥',证明)(+x f lim x ∞→存在且小于41π+。

八、(15分)设∑∞1n n n x a=为一幂函数,在(-R ,R )上收敛,和函数为f ,若数列{}j x 满足0x x R 21>>>> 且0lim =∞→j j x , 1,2j 0x f j =,)=(,证明 210n 0a n ,,=,= 九、(15)设f 是 〕〔〕,〔b a b a ⨯⨯上的二元连续映射,定义{}〕,〔),()=(b a y y x f max x g ∈,证明 g 在〔a ,b 〕上连续。

数学分析教材和参考书

数学分析教材和参考书

教材和参考书教材:《数学分析》(第二版),陈纪修,於崇华,金路编高等教育出版社, 上册:2004年6月,下册:2004年10月参考书:(1)《数学分析习题全解指南》,陈纪修,徐惠平,周渊,金路,邱维元高等教育出版社, 上册:2005年7月,下册:2005年11月(2)《高等数学引论》(第一卷),华罗庚著科学出版社(1964)(3)《微积分学教程》,菲赫金哥尔兹编,北京大学高等数学教研室译,人民教育出版社(1954)(4)《数学分析习题集》,吉米多维奇编,李荣译高等教育出版社(1958)(5)《数学分析原理》,卢丁著,赵慈庚,蒋铎译高等教育出版社(1979)(6)《数学分析》,陈传璋等编高等教育出版社(1978)(7)《数学分析》(上、下册),欧阳光中,朱学炎,秦曾复编,上海科学技术出版社(1983)(8)《数学分析》(第一、二、三卷),秦曾复,朱学炎编,高等教育出版社(1991)(9)《数学分析新讲》(第一、二、三册),张竹生编,北京大学出版社(1990)(10)《数学分析简明教程》(上、下册),邓东皋等编高等教育出版社(1999)(11)《数学分析》(第三版,上、下册),华东师范大学数学系,高等教育出版社(2002)(12)《数学分析教程》常庚哲,史济怀编,江苏教育出版社(1998)(13)《数学分析解题指南》林源渠,方企勤编,北京大学出版社(2003)(14)《数学分析中的典型问题与方法》裴礼文编,高等教育出版社(1993)复旦大学数学分析全套视频教程全程录像,ASF播放格式,国家级精品课程,三学期视频全程教师简介:陈纪修-基本信息博士生导师教授姓名:陈纪修任教专业:理学-数学类在职情况:在性别:男所在院系:数学科学学院陈纪修-本人简介姓名:陈纪修性别:男学位:博士职称:教授(博士生导师)高校教龄22年,曾获2001年上海市教学成果一等奖、获2001年国家级教学成果二等奖、获2002年全国普通高等学校优秀教材一等奖、2002年获政府特殊津贴;获宝钢教育奖(优秀教师奖);被评为“九五”国家基础科学人才培养基金实施和基地建设先进工作者。

2005年数学一考研数学试题答案与解析

2005年数学一考研数学试题答案与解析

2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线的斜渐近线方程为【分析】本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】因为a=,,于是所求斜渐近线方程为(2)微分方程满足的解为.【分析】直接套用一阶线性微分方程的通解公式:,再由初始条件确定任意常数即可.【详解】原方程等价为,于是通解为=,由得C=0,故所求解为(3)设函数,单位向量,则=.【分析】函数u(x,y,z)沿单位向量}的方向导数为:因此,本题直接用上述公式即可.【详解】因为,,,于是所求方向导数为=(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则.【分析】本题是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】=(5)设均为3维列向量,记矩阵,,如果,那么 2 .【分析】将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】由题设,有=,于是有(6)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则= .【分析】本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】=+++=二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数,则f(x)在内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ]【分析】先求出f(x)的表达式,再讨论其可导情形.【详解】当时,;当时,;当时,即可见f(x)仅在x=时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有(A)F(x)是偶函数f(x)是奇函数.(B) F(x)是奇函数f(x)是偶函数.(C) F(x)是周期函数f(x)是周期函数.(D) F(x)是单调函数f(x)是单调函数. [ A ]【分析】本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】方法一:任一原函数可表示为,且当F(x)为偶函数时,有,于是,即,也即,可见f(x)为奇函数;反过来,若f(x)为奇函数,则为偶函数,从而为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=, 排除(D); 故应选(A).(9)设函数, 其中函数具有二阶导数,具有一阶导数,则必有(A) . (B).(C) . (D) . [ B ]【分析】先分别求出、、,再比较答案即可.【详解】因为,,于是,,,可见有,应选(B).(10)设有三元方程,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数z=z(x,y).(B)可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y).(C)可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】本题考查隐函数存在定理,只需令F(x,y,z)=, 分别求出三个偏导数,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】令F(x,y,z)=, 则,,,且,,. 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设是矩阵A的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) . (B) . (C) . (D) . [ B ]【分析】讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】方法一:令,则,.由于线性无关,于是有当时,显然有,此时,线性无关;反过来,若,线性无关,则必然有(,否则,与=线性相关),故应选(B).方法二:由于,可见,线性无关的充要条件是故应选(B).(12)设A为n()阶可逆矩阵,交换A的第1行与第2行得矩阵B, 分别为A,B的伴随矩阵,则(A)交换的第1列与第2列得. (B) 交换的第1行与第2行得.(C) 交换的第1列与第2列得. (D) 交换的第1行与第2行得.[ C ]【分析】本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】由题设,存在初等矩阵(交换n阶单位矩阵的第1行与第2行所得),使得,于是,即,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为1 b 0.1已知随机事件与相互,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b的取值.【详解】由题设,知 a+b=0.5事件与相互,即 a=, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设总体N(0,1)的简单随机样本,为样本均值,为样本方差,则(A) (B)(C) (D) [ D ]【分析】利用正态总体抽样分布的性质和分布、t分布及F分布的定义进行讨论即可.【详解】由正态总体抽样分布的性质知,,可排除(A);又,可排除(C); 而,不能断定(B)是正确选项.因为,且相互独立,于是故应选(D).三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设,表示不超过的最大整数. 计算二重积分【分析】首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】令,.则==(16)(本题满分12分)求幂级数的收敛区间与和函数f(x).【分析】先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】因为,所以当时,原级数绝对收敛,当时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 则 由于 所以 从而 (17)(本题满分11分)如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线与分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分【分析】题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】由题设图形知,f(0)=0, ; f(3)=2,由分部积分,知==(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I)存在使得;(II)存在两个不同的点,使得【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I )令,则[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在 使得,即.(II ) 在和上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点,使得,于是(19)(本题满分12分)设函数具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有;(II )求函数的表达式.证明(I )的是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求的表达式,显然应用积分与路径无关即可.【详解】 (I )l 2 C o X l 3如图,将C 分解为:,另作一条曲线围 .(II ) 设,在单连通区域内具有一阶连续偏导数,由(Ⅰ)知,曲线积分在该区域内与路径无关,故当时,总有.①②比较①、②两式的右端,得由③得,将代入④得 所以,从而(20)(本题满分9分)已知二次型的秩为2.(I ) 求a 的值;(II ) 求正交变换,把化成标准形;(III ) 求方程=0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(I I )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (II I )利用第二步的结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为,,得a=0.(这里 可求出其特征值为.解 ,得特征向量为:,解 ,得特征向量为:由于已经正交,直接将,单位化,得:令,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:=③④(III)由=0,得(k为任意常数).从而所求解为:x=Qy=,其中c为任意常数.(21)(本题满分9分)已知3阶矩阵A的第一行是不全为零,矩阵(k为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A的秩.【详解】由AB=O知,B的每一列均为Ax=0的解,且(1)若k, 则r(B)=2, 于是r(A), 显然r(A), 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:为任意常数.(2) 若k=9,则r(B)=1, 从而1)若r(A)=2, 则Ax=0的通解为:为任意常数.2)若r(A)=1,则Ax=0 的解方程组为:,不妨设,则其通解为为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为求:(I) (X,Y)的边缘概率密度;(II)的概率密度【分析】求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】(I)关于X的边缘概率密度===关于Y的边缘概率密度===(II)令,1)当时,;2)当时,=;3) 当时,即分布函数为:故所求的概率密度为:(23)(本题满分9分)设为来自总体N(0,1)的简单随机样本,为样本均值,记求:(I)的方差;(II)与的协方差【分析】先将表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求与的协方望的计算,同样应注意利用数学期望的运算性质.【详解】由题设,知相互独立,且,(I)==(II)=====。

苏州大学2005年数学分析解答(0)

1.(20')1lim(0)limlimlim 11(2)lim (),()0,()()()()()()()0,()n n n n x aa b bb f a f a f x f a x a f a x a f a f a →∞→∞→∞→∞→<≤<≤==='''-≠'---''''''≠求下列极限()解:因而因此其中存在解:由于存在,从而f(x)=f(a)+f (a)(x-a)+f (a)222222(())211()()(()())lim ()lim ()()()()()(()())()()()()()((()))2lim (()()()((()))2limx ax ax ax o x a x a f a f x f a f x f a x a f a f x f a x a f a x a x a f a o x a x a x a f a o x a →→→+-'----=''-----''''--+-=-''''-+-=f (a)(x-a)+f (a)f (a)(x-a)+f (a)22222()(())2()()()((()))21()()2lim()2[()]()(()(())2ax ax a o x a x a x a f a o x a f a f a x a f a f a f a o x a →→-''+--''''-+-''-''==--'''''++--f (a)f (a)(x-a)+f (a)f (a)000002.(18')()[01]()()0()0.()[0,1]()[0,1]}[0,1],()0,1,2}{},()()0()0()limx x f x f x f x x f x f x f n x k f f x f x →='≠⊂==→→∞=='=k k k n n n n n n 设在,上可微,且的每一个零点都是简单零点,即若则f 证明:在上只有有限个零点。

2005数学分析解答

2005数学分析解答D解:112022000111011ln()|ln(1)ln [(1)ln(1)(1)ln ]|2ln 2y yDdxdy dxdy x y dy y x y x y dy ydyy y y y y y ==+++=+-=++-+-+=⎰⎰⎰⎰⎰⎰⎰5、计算第二类曲线积分:22C ydx xdyI x y--=+⎰,22:21C x y +=方向为逆时针。

解:22220022222tan 2222cos ,[0,2)2sin cos cos 222113cos 22cos 2213(2)(1)12arctan 421(2)(1)2311421C x x y ydx xdy I d x y x x x x d x dx x x x x ππθθθπθθθθθθθθ+∞+∞=-∞-∞=⎧⎪∈⎨=⎪⎩---=−−−→=+++-+-++−−−−−→=--++++=-⎰⎰⎰换元万能公式代换226426212dx d x ππ+∞+∞-∞-∞+=-+++⎰6、设a>0,b>0,证明:111b ba ab b ++⎛⎫⎛⎫≥ ⎪⎪+⎝⎭⎝⎭。

证明:1111()1111(1)111()'()1[ln(1)]0()()()b bxb b bbxa a ab f x b b x a a b f b b b a a b f b b b a b a b a b f x Taylor x x x a b f x ++++-⎛⎫⎛⎫⎛⎫≥=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭+-⎛⎫⎛⎫=+=+ ⎪ ⎪++⎝⎭⎝⎭-⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭---⎛⎫=++-> ⎪+-⎝⎭,构造函数展开可以证明所以递增,从而得证一、 设f(x)为[a,b]上的有界可测函数,且2[,]()0,a b f x dx =⎰证明:f(x)在[a,b]上几乎处处为0。

证明:反证法,假设A={x|f(x)≠0},那么mA>0。

2005年考研数学试题详解及评分参考介绍

n n ®¥
3n
= x lim(
n ®¥
3
1 x
3n
+ 1) = x ,故 f (x) = lim n 1 + x
n ®¥
1 n
ì ï 1, =í 3 ï îx ,
x £1 x >1
.
于是有 f -¢( -1) = lim -
- x3 - 1 = -3, x ®1 x +1 1 -1 f -¢(1) = lim = 0, x ®1- x - 1
2005 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2005 年数学试题详解及评分参考
z , Fz¢ = - ln y + e xz x ,于是有 y Fx¢(0,1,1) = 2 ¹ 0 , Fy¢(0,1,1) = -1 ¹ 0 , Fz¢(0,1,1) = 0 . 因此根据隐函数存在定理,由此 可确定相应的隐函数 x = x( y, z ) 和 y = y ( x, z ) . 故选 (D) . Fx¢ = y + e xz z , Fy¢ = x (11) 设 l1 , l 2 是 矩阵 A 的 两 个 不同 的 特征值 , 对 应的 特征 向量分 别 为 a 1 , a 2 ,则 a 1 ,
2005 年 • 第 1 页
(4) 设 W 是由锥面 z =
郝海龙:考研数学复习大全·配套光盘·2005 年数学试题详解及评分参考
整个边界的外侧,则
òò xdydz + ydzdx + zdxdy =
S
.
【答】 应填 (2 - 2)p R 3 . 【解】 由高斯公式,得
2 3 òò xdydz + ydzdx + zdxdy = 3òòò dV =3ò dq ò 4 sin j dj ò r dr = (2 - 2)p R . S W 0 0 0 2p

华南理工2005数学分析试题和解答

华南理工大学2005年攻读硕士学位研究生入学考试试题注:本题在解答过程中,参考了博士家园论坛的意见,特别是Zhubin846152 给出了3、10、11题的解答,在此表示感谢! 一、设2n 2n 1n 12a2ax x x ,0a x +-=>>+. 求极限n n x lim ∞→ 解:显然有()0a a a x x 22n 1n >≥+-=+,又11x a 2a 1x x n n 1n ≤⎪⎪⎭⎫ ⎝⎛-+=+ 即,序列为单调减小,且有下界,故存在极限,不妨设A x l i mn n =∞→,则对2n 2n 1n 2a2ax x x +-=+两边取极限,得222a 2aA A A +-=,即a A =,故a x lim n n =∞→ 二、求积分⎰+-C 4433yx dx y dy x , 其中C 是圆:1y x 22=+,逆时针为正向. 解:令[]πθθθ20,sin y ,cos x ,∈==,有()()[]πθθθθθθθθθθπππ23d 2sin 21-1d sin 2cos sin cos d sin cos y x dx y dy x 20220222222044C 4433=⎪⎭⎫⎝⎛=-+=+=+-⎰⎰⎰⎰三、讨论函数序列()tn nt sin t f n=在()∞,0上的一致收敛性.解:利用定义来做,就可以了。

2()()lim ()0(1)0,0,,0|()()||(2)0,0,0,0sin |()()||||(0,)0n n n n n f t f t f t t N f t f t t n ntf t f t nt εδδεεδδδε→∞===∀>>∀>∃=<-=≤<∀>>∀<≤∀>-==≤≤∈利用定义来做:令,根据一致收敛的定义知,上式一致收敛于四、设()y ,x z z =由方程0x z y ,y z x F =⎪⎪⎭⎫⎝⎛++所确定.证明: xy z y z y x z x -=∂∂⋅+∂∂⋅ 证明: 0x z y ,y z x F =⎪⎪⎭⎫⎝⎛++两边分别对x 和y 求偏导数, 0y z x 11F y 1z y z y 1F ,0x 1z x z x 1F x z y 11F 221221=⎪⎪⎭⎫ ⎝⎛∂∂+'+⎪⎪⎭⎫ ⎝⎛-∂∂'=⎪⎭⎫ ⎝⎛-∂∂'+⎪⎪⎭⎫ ⎝⎛∂∂+' 从而有,xF y F F F y z y z ,x F y F F x 1z F xz 2121221122'+''-'⋅=∂∂'+''-⋅⋅'=∂∂,故有 ()xy z xF y F x F y F xy z x F y F F F y z y x F y F F x 1z F x yz y x z x 21212121221122-='+'⎪⎪⎭⎫ ⎝⎛'+'-='+''-'⋅⋅+'+''-⋅⋅'⋅=∂∂+∂∂ 即,问题得证. 五、设()x f 是偶函数,在0x =的某个邻域中有连续的二阶导数,()()20f ,10f =''=,试证明无穷级数∑∞=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛1n 1n 1f 绝对收敛.证明:由题意,可写出()x f 的在0x =处的Taylor 展开式()()()()()2222x o x 1x o x !20f 0f x f ++=+''+=从而有⎪⎭⎫⎝⎛+=-⎪⎭⎫ ⎝⎛22n 1o n 11n 1f ,故, 2222222n 2n 1n 1n 1o n 1n 1o n 1=+<⎪⎭⎫⎝⎛+<⎪⎭⎫ ⎝⎛+,而级数∑∞=1n 2n 2为收敛的, 由比较判别法知,级数∑∞=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛1n 1n 1f 为绝对收敛的,问题得证.六、设曲线()()⎩⎨⎧==t y y t x x 由方程组()⎩⎨⎧=-+=-++2y 2x te 1t 12t y x y确定.求该曲线在0t =处的切线方程和法平面方程.(注:原题为法线方程,个人觉得 曲线不可能有法线,只能有法平面,平面才能有法线) 解:由题意得:0y ,1x ,2y 2x 1y x 0t ==⎩⎨⎧=-=+=有,时,当,()⎩⎨⎧-+=--++=2-y 2x te F 1t 12t y x F y21()()()()()(),3e 2t -21te 1t ,y D F ,F D ,-31te 121y ,x D F ,F D ,321e 2t 2x ,t D F ,F D 0t yy0t 210t y0t 210t y 0t 21=-==-==-=======故,有切线方程3y31x 3-t =-=,法平面()03y 1-x 33t =++-, 也即 切线方程 y 1x t -=-=,法平面1y x t =++-七、求幂级数()()∑∞=++-0n n2n x 1n n 1的收敛域,并求该级数的和.解: 收敛半径()()11n n 1lim 1R n 2nn =++-=∞→,当1x =时,级数变为()()∑∞=++-0n 2n 1n n 1, 显然为发散的.同样级数在1x -=处也发散. 从而,收敛域为()1,1-. 当()1,1x -∈时,有 ()()()()()()∑∑∑∑++=++-=∞=n n n 2n n 2n x -x -n x -n x 1n n 1x f 对第一部分,()()()()()()()()()()( ⎝⎛='⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛==∑∑∑∑∑∞=∞=+∞=∞=-∞=1n 0n 1n 0n n 21n 1n 20n n 21-n x -x -1n x -x -1n x -x -n x -x n x f第二部分,()()()()()()()()()()()20n 1n 0n n 1n 1n 0n n2x 1x x 1x -x -x -x -x -1n x -x -n x -x -n x f +='⎪⎭⎫⎝⎛+='⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛==∑∑∑∑∞=+∞=∞=-∞=故()()()()()321x 11x x x 1x x -x f +-='⎪⎪⎭⎫ ⎝⎛+=, 同样,对第三部分,()x1xx f 3+-=,从而有()()()()()333232223x 1xx x 1x 2x x x x x x x 1x x 1xx 11x x +--=+---++-=+-+++-=原式 八、求第二曲面积分: ⎰⎰+-S zdxdy ydxdz xdydz ,S 为椭球面1cz b y a x 222222=++的上半部分,其定向为下侧.解:不妨添加 交线所围的部分在0z 1cz b y a x 222222==++,方向取向上,记Q ,所围空间记体积为V,故有()abc 32-0abc 32zdxdy ydxdz xdydz dxdydz111zdxdy ydxdz xdydz zdxdy ydxdz xdydz Q VS Sππ=+-=+-++--=+--=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰',其中S '为取外法线方向为正的曲面,九、 (1) 设0a 0>, 证明积分 ()⎰∞+0222axdx关于0a a ≥一致收敛;证明:()()()()()()()()()εδπεδεπεδεππππεπθθθπθθπ<-<-=>∀=<-≤-⎪⎪⎭⎫ ⎝⎛+++=-=->∀-=⋅=⎪⎭⎫⎢⎣⎡∈=+=⎰⎰∞2121404021402142321231414124214204240222a f a f a a a ,0a a a a a a a 1a a 1a a 1a 144a 4a a f a f ,0a f ,4a d cos cos 1a 1a f 20,, tg a x ,,a x dxa f 有时,,使得,当存在即可满足,对只需取要有一致收敛,故,对要从而,则,且记也即()⎰∞+0222axdx关于0a a ≥一致收敛(2) 0a >,计算积分⎰∞+022a x dx和()⎰∞+0322axdx解:()662620462026603222202202222216a 16a 1d 814cos2cos4a 1d cos a 1cos d cos a 1a xdx2a d a 1cos d cos 11a 1a x dx ,20,, tg a x ππθθθθθθθθπθθθθπθθπππππ=⋅=+-===+==⋅=+⎪⎭⎫⎢⎣⎡∈=⎰⎰⎰⎰⎰⎰⎰∞∞则有,令十、设 ()x f 在[)∞,0上有连续的二阶导数, ()()B x f ,A x f ≤''≤. 试证明()AB 2x f ≤'.证明:利用到了一元二次函数的判别式来做的[0,)22()lim '()0'()'()max {|'()|}||,(1)||0b Taylor "()||2|||()()||'()()()|||||()22||2||(2x x f x f x f x f b f x C A f B A f x f b f b x b x b C x b x b B A x b ξ→∞∈+∞∴===≠≥-=-+-≥---⇔+-首先由于有界,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青岛科技大学2005年研究生入学考试试卷
考试科目: 数学分析 (B) (答案全部写在答题纸上)
一. 本题共2小题, 满分30分.
1. 证明∑∞
=--1
)1()1(n n n x x 在]1,0[上一致收敛.
2. 求n
n n 2124321lim -⋅⋅⋅∞→ 。

二.本题共3小题,满分30分。

1. 设)(x f 在],(b a 连续,A x f x =+→)(lim
00,则对任b a <<0有
a b A dx x x f n b
n a
n ln )(lim =⎰∞→
2. 判断级数∑
+∞
=+++1
)2()22)(12(!n n n 的敛散性 3. 证明3212arctan
n x x
n +∑∞=在),(+∞-∞一致收敛
三.本题共3小题,满分30分。

1.设)(x f 在],[ππ-连续且满足)()(ππf f =-,)(x f 有分段连续的导函数,则)(x f 的Fourier 系数满足:)1(n o a n =,)1
(n o b n = 2.对任意正数列}{n x 成立:
上极限 1)1(lim 1
_
≥++n n x x n 。

3.设)(x f 在),(+∞-∞连续, 求 dy xy f y y x dx y xy f y I L )1)(()(1222-++=
⎰, 其中L 是从点)32
,3(A 到点)2,1(B 的任何分段光滑曲线(不含0=y 的点)
四.(20分) 证明:
∑⎰∞=-=-+121
0)12(12)11ln(1n n dx x x x .
五.(20分)设),(y x f 在)}10,10|),{(1≤≤≤≤=y x y x I 上定义,在}0,10|),{(0=≤≤=y x y x I 上连续, 证明:,0>∃δ 使得),(y x f 在 }0,10|),{(δδ≤≤≤≤=y x y x I 有界。

六. (20分) 设)sin()2sin(sin )(21nx a x a x a x f n +++= , 且|sin ||)(|x x f ≤, ),,2,1(n i a i =为实常数, 求证: 1|2|21≤++n na a a .。

相关文档
最新文档