实外七年级数学竞赛考前练习题(4)(含答案)-

合集下载

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

3.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,E a+2000的值不能是().1998⨯1998+1998,b=-1999⨯1999+1999,c=-2000⨯2000+2000,CF=BC,则长方形ABCD的面积是阴影部分面积的d+2000,则a,b,c,d的大小关系是(9.有理数-3,+8,-12,0.1,0,,-10,5,-0.4中,绝对值小于1的数共有_____个;所有七年级数学竞赛(时间100分钟满分100分)一、选择题:(每小题4分,共32分)1.(-1)2000的值是().(A)2000(B)1(C)-1(D)-2000二、填空题:(每题4分,共44分)1.用科学计数法表示2150000=__________.2.有理数a、b、c在数轴上的位置如图所示:若m=│a+b│-│b-1│-│a-c│-│1-c│,则1000m=_________.A D2.a是有理数,则11若△BDF的面积为6平方厘米,则长方形ABCD的面积6(A)1(B)-1(C)0(D)-20003.若a<0,则2000a+11│a│等于().(A)2007a(B)-2007a(C)-1989a(D)1989a 是________平方厘米.F4.a的相反数是2b+1,b的相反数是3a+1,则a2+b2=____.B C5.某商店将某种超级VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”4.已知a=-1999⨯1999-1999则abc=().2000⨯2000-20002001⨯2001-2001的广告,结果每台超级VCD仍获利208元,那么每台超级VCD的进价是________.6.如图,C是线段AB上的一点,D是线段CB的中点.已知图(A)-1(B)3(C)-3(D)15.某种商品若按标价的八折出售,可获利20%,若按原价出售,则可获利()(A)25%(B)40%(C)50%(D)66.7%6.如图,长方形ABCD中,E是AB的中点,F是BC上的一点,且A D13 ()倍.E中所有线段的长度之和为23,线段AC的长度与线段CB的A C D B长度都是正整数,则线段AC的长度为_______.7.张先生于1998年7月8日买入1998年中国工商银行发行的5年期国库券1000元.回家后他在存单的背面记下了当国库券于2003年7月8日到期后他可获得的利息数为390元.若张先生计算无误的话,则该种国库券的年利率是________.8.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇.相遇后,甲、乙步行速(A)2(B)3(C)4(D)57.若四个有理数a,b,c,d满足B 1111a-1997=b+1998=c-1999=)F C度都提高了1千米/小时.当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,则A、B两地的距离是_________千米.(A)a>c>b>d(B)b>d>a>c;(C)c>a>b>d(D)d>b>a>c8.小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和.若输入-1,并将所显示的结果再次输入,这时显示的结果应当是().(A)2(B)3(C)4(D)513正数的平方和等于_________.10.设m和n为大于0的整数,且3m+2n=225.(1)如果m和n的最大公约数为15,则m+n=________.(2)如果m和n的最小公倍数为45,则m+n=________.11.若a、b、c是两两不等的非0数码,按逆时针箭头指向组成的两位数a 2.如图所示,边长为3厘米与5厘米的两个正方形并排放在一起.在大正方形中画一段以它的一个顶点为ab,bc都是7的倍数(如图),则可组成三位数abc共_______个;圆心,边长为半径的圆弧.则阴影部分的面积是多其中的最大的三位数与最小的三位数的和等于_________.b c少?(取3).三、解答题(每小题12分,共24分)1.某书店积存了画片若干张.按每张5角出售,无人买.现决定按成本价出售,一下子全部售出.共卖了31元9角3分.则该书店积存了这种画片多少张?每张成本价多少元?a - 1997 = 2. ∵a 是有理数, ∴不论a 取任何有理数, 11当选(D)时, 111998 ⨯ (1998 + 1) =- 1999 ⨯19981998 ⨯1999 = -1 ,1999 ⨯ (1999 +1) =- 2000 ⨯ (2000 +1) =- 2001 ⨯20002000 ⨯2001 = -1 ,FQ= 1 b,FG= 12 BC ·FQ= 1因△BFC 的面积= 12 a · 2 2 · b · 4 解之得 x= 36= 18ab)= 1 2 ab-(48 ab ∴ x 所以若按标价出售可获利为 3 ⎩-b 3a 1 5 ,b=- 2解之得 a=- 12 b,又∵以FC= 1 ∴ BE= 1∴a +b = 1 5 .23 a ⨯ b = ∴阴影部分的面积= 1答案:7.由 1 1 b + 1998 = 1 c - 1999 =1d + 2000 ,一、选择题1. 由-1的偶次方为正1,-1的奇次方为负1可得(-1)2000=1,所以应选(B).a + 2000 的值永远不会是0. ∴选(C).但要注意a + 2000 这个式子本身无意义, ∴不能选(D).故选(C)是正确的.3.∵ a<0,∴│a │=-a,∴ 2000a+11│a │=2000a-11a=1989a,所以应选(D).4.∵ a=- 1999 ⨯ (1999 - 1)可知a-1997=b+1998=c-1999=d+2000,由这个连等式可得:a>b,a<c,a>d;b<c,b>d,c>d,由 此可得c>a>b>d,故应选(C).8.因为当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1 之和,所以若输入-1,则显示屏的结果为(-1)2+1=2,再将2输入,则显示屏的结果为22+1=5 ,故应选择(D). 二、填空题1.∵ 2150000=2.16× 106∴ 用科学计数法表示2150000=2.15×106 .2.由图示可知,b<a<0,c>0,∴ │a+b │=-(a+b),│b-1│=1-b,│a-c │=c-a,│1-c │=1-c, ∴ 1000n=1000×(-a-b-1+b-c+a-1+c)=1000×(-2)b= 2000 ⨯ (2000 -1) 2000 ⨯1999 1999 ⨯2000 = -1,=-20003.如图所示.设这个长方形ABCD 的长为a 厘米,宽为b 厘米.即BC=a,AB=b,则其面积为ab 平方厘米. ∵ E 为AD 的中点,F 为CE 的中点,∴过F 作FG ⊥CD,FQ ⊥BC 且分别交CD 于G 、BC 于Q,则c= 2001⨯ (2001 -1)∴ abc=(-1)×(-1)×(-1)=-1,故应选(A).5.设某种商品的标价为x,进价为y.由题意可得:80%x=(1+20%)y2 y .3y = 2 ,这就是说标价是进价的1.5倍,12 y - y = 2 y ,即是进价的50%,所以应选(C).6.设长方形ABCD 的长为a,宽为b,则其面积为ab.在△ABC 中, ∵ E 是AB 的中点,12 CD= 2 4 a.1 1 1b,同理△FCD 的面积= ∴△BDF 的面积△= BCD 的面积-( △BFC 的面积△+ CDF 的面积),即1 1 ab+∴ ab=48.∴ 长方形ABCD 的面积是48平方厘米.⎧-a = 2b + 1 4.∵ a 的相反数是2b+1,b 的相反数是3a+1,由此可得: ⎨5 .a,2 3 a,∴ BF= 3a,2 212 1 ∴ △EBF 的面积为 ⨯ 21 1 6 ab △但 ABC 的面积=2 ab , 5.设每台超级VCD 的进价为x 元,则按进价提高35%,然后打出“九折”的出售价每台为x ·(1+35%)×90%元,由题意可列方程为:1 12 ab - 6 ab =3 ab ,∴ 长方形的面积是阴影部分面积的3倍,故应选(B).x · ((1+35%)×90%-50=x+2081.35×0.9x=x+2580.215x=2583∴ AC= 23 - 7CD9.绝对值小于1的数共有5个.所有正数的平方和等于89 109x=12001 ∴ 每台超级VCD 的进价是1200元.∴ 阴影部分面积=4 π R 2 = 6.由图知,图中共有六条线段,即AC 、AD 、AB 、CD 、CB 、DB.又因D 是CB 的中点, 所以CD=DB,CB=2CD,AB=AC+2CD,AD=AC+CD,由题意可得AC+AD+AB+CD+CB+DB=23,即AC+AC+CD+AC+2CD+CD+2CD+CD=23,也即 3AC+7CD=233 ,∵ AC 是正整数,∴ 23-7CD ∣3的条件是CD=2,也即23-7CD=9时,能被3整除, ∴AC=3.7.设该国库券的年利率为x,则由题意可列方程:1000×5×x=390解之得 x=7.8%所以,该国库券的年利率为7.8%.8.设甲每小时行v 1千米,乙每小时行v 2千米,则甲乙两地的距离就是2(v 1+v 2)千米.由题意可得:3.6·(v 1+v 2+2)=4(v 1+v 2),0.4(v 1+v 2)=7.2, v 1+v 2=18.∴2(v 1+v 2)=2×18=36,即A 、B 两地的距离为36千米.900 .10.∵ m 、n 为大于0的整数,且3m+2n=225,若(m,n)=15,则3m=3×15=45,2n= 2×90=180,∴ m=15,n=90∴(1)m+n=15+90=105.(2)若[m,n]=45,则m+n=45+45=90.11.若 ab , b c 都是7的倍数,则可组成 abc 的三位数共有15个,其中最大的是984,最小的是142,它们的和是1126. 三、 解答题1.∵ 每张的成本价小于5角.但又能被31元9角3分整除. 所以可设每张成本价为x 角y 分,则3193∣ xy ,显然 xy =31(分).即每张成本价为0. 31 元. 这种画片共有3193÷31=103(张).25 ⨯ 34 = 18.752.根据已知可得,S Δ ABC =S 梯形BCDE∴S Δ ABC -S 梯形BCFE = S 梯形BCDE - S 梯形BCFE ,即S Δ cdf = S Δ aef。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛(时间100分钟 满分100分)一、选择题:(每小题4分,共32分) 1.(-1)2000的值是( ).(A)2000 (B)1 (C)-1 (D)-20002.a 是有理数,则112000a +的值不能是( ).(A)1 (B)-1 (C)0 (D)-2000 3.若a<0,则2000a+11│a │等于( ).(A)2007a (B)-2007a (C)-1989a (D)1989a4.已知a=-199919991999199819981998⨯-⨯+,b=-200020002000199919991999⨯-⨯+,c=-200120012001200020002000⨯-⨯+,则abc=( ).(A)-1 (B)3 (C)-3 (D)15.某种商品若按标价的八折出售,可获利20%,若按原价出售,则可获利( ) (A)25% (B)40% (C)50% (D)66.7%6.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且CF=13BC, 则长方形ABCD 的面积是阴影部分面积的( )倍.(A)2 (B)3 (C)4 (D)5 7.若四个有理数a,b,c,d 满足11111997199819992000a b c d ===-+-+,则a,b,c,d 的大小关系是( )(A)a>c>b>d (B)b>d>a>c ; (C)c>a>b>d (D)d>b>a>c8.小明编制了一个计算程序.当输入任一有理数, 显示屏的结果总等于所输入有理数的平方与1之和.若输入-1,并将所显示的结果再次输入,这时显示的结果应当是( ).(A)2 (B)3 (C)4 (D)5二、填空题:(每题4分,共44分)1.用科学计数法表示2150000=__________.2.有理数a 、b 、c 在数轴上的位置如图所示:若m=│a+b │-│b-1│-│a-c │-│1-c │,则1000m=_________.3.如图,在长方形ABCD 中,E 是AD 的中点,F 是CE 的中点, 若△BDF 的面积为6 平方厘米,则长方形ABCD 的面积 是________平方厘米.4.a 的相反数是2b+1,b 的相反数是3a+1,则a 2+b 2=____.5.某商店将某种超级VCD 按进价提高35%,然后打出“九折酬宾,外送50 元出租车费”的广告,结果每台超级VCD 仍获利208 元, 那么每台超级VCD 的进价是________.6.如图,C 是线段AB 上的一点,D 是线段CB 的中点.已知图中所有线段的长度之和为23,线段AC 的长度与线段CB 的 长度都是正整数,则线段AC 的长度为_______.7.张先生于1998年7 月8 日买入1998 年中国工商银行发行的5 年期国库券1000元.回家后他在存单的背面记下了当国库券于2003年7月8 日到期后他可获得的利息数为390元.若张先生计算无误的话,则该种国库券的年利率是________. 8.甲、乙分别自A 、B 两地同时相向步行,2小时后在中途相遇.相遇后,甲、 乙步行速度都提高了1千米/小时.当甲到达B 地后立刻按原路向A 地返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,则A 、B 两地的距离是_________千米.9.有理数-3,+8,-12,0.1,0,13, -10,5,-0.4中,绝对值小于1的数共有_____个;所有正数的平方和等于_________. 10.设m 和n 为大于0的整数,且3m+2n=225.(1)如果m 和n 的最大公约数为15,则m+n=________. (2)如果m 和n 的最小公倍数为45,则m+n=________.EFDCBA6EFDCBAD C BA11.若a、b、c是两两不等的非0数码,按逆时针箭头指向组成的两位数,ab bc都是7的倍数(如图),则可组成三位数abc共_______个;其中的最大的三位数与最小的三位数的和等于_________.三、解答题(每小题12分,共24分)1.某书店积存了画片若干张.按每张5角出售,无人买. 现决定按成本价出售,一下子全部售出.共卖了31元9角3分.则该书店积存了这种画片多少张?每张成本价多少元?2.如图所示,边长为3厘米与5厘米的两个正方形并排放在一起. 在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧. 则阴影部分的面积是多少? ( 取3).abc答案:一、选择题1.由-1的偶次方为正1,-1的奇次方为负1可得(-1)2000=1,所以应选(B).2.∵a是有理数, ∴不论a取任何有理数,112000a+的值永远不会是0. ∴选(C).但要注意当选(D)时,112000a+这个式子本身无意义, ∴不能选(D).故选(C)是正确的.3.∵ a<0,∴│a│=-a,∴ 2000a+11│a│=2000a-11a=1989a,所以应选(D).4.∵ a=-1999(19991)199919981 1998(19981)19981999⨯-⨯=-=-⨯+⨯,b=2000(20001)200019991 1999(19991)19992000⨯-⨯=-=-⨯+⨯,c=2001(20011)200120001 2000(20001)20002001⨯-⨯=-=-⨯+⨯,∴ abc=(-1)×(-1)×(-1)=-1,故应选(A).5.设某种商品的标价为x,进价为y.由题意可得: 80%x=(1+20%)y解之得 x=32y .∴32xy=,这就是说标价是进价的1.5倍,所以若按标价出售可获利为3122y y y-=,即是进价的50%,所以应选(C).6.设长方形ABCD的长为a,宽为b,则其面积为ab.在△ABC中, ∵ E是AB的中点,∴ BE=12b,又∵以FC=13a,∴ BF=23a,∴△EBF的面积为12112326a b ab⨯⨯=,但△ABC的面积=12ab,∴阴影部分的面积=1126ab ab-=13ab,∴长方形的面积是阴影部分面积的3倍,故应选(B). 7.由11111997199819992000a b c d===-+-+,可知a-1997=b+1998=c-1999=d+2000,由这个连等式可得:a>b,a<c,a>d;b<c,b>d,c>d,由此可得c>a>b>d,故应选(C).8.因为当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1 之和,所以若输入-1,则显示屏的结果为(-1)2+1=2,再将2输入,则显示屏的结果为22+1=5 ,故应选择(D).二、填空题1.∵ 2150000=2.16× 106∴用科学计数法表示2150000=2.15×106 .2.由图示可知,b<a<0,c>0,∴│a+b│=-(a+b),│b-1│=1-b,│a-c│=c-a,│1-c│=1-c,∴ 1000n=1000×(-a-b-1+b-c+a-1+c)=1000×(-2)=-20003.如图所示.设这个长方形ABCD的长为a厘米,宽为b厘米.即BC=a,AB=b,则其面积为ab平方厘米.∵ E为AD的中点,F为CE的中点,∴过F作FG⊥CD,FQ⊥BC且分别交CD于G、BC于Q,则FQ=12CD=12b,FG=14a.因△BFC的面积=12BC·FQ=12a·12b,同理△FCD的面积=12·b·14a,∴△BDF的面积=△BCD的面积-( △BFC的面积+△CDF的面积),即6=12ab-(14ab+18ab)=18ab∴ ab=48.∴长方形ABCD的面积是48平方厘米.4.∵ a的相反数是2b+1,b的相反数是3a+1,由此可得:2131a bb a-=+⎧⎨-=+⎩解之得 a=-15,b=-25.∴a2+b2=15.5.设每台超级VCD的进价为x元,则按进价提高35%,然后打出“九折”的出售价每台为x·(1+35%)×90%元,由题意可列方程为:x·((1+35%)×90%-50=x+2081.35×0.9x=x+2580.215x=258x=1200∴每台超级VCD的进价是1200元.6.由图知,图中共有六条线段,即AC、AD、AB、CD、CB、DB.又因D是CB 的中点, 所以CD=DB,CB=2CD,AB=AC+2CD,AD=AC+CD,由题意可得AC+AD+AB+CD+CB+DB=23,即AC+AC+CD+AC+2CD+CD+2CD+CD=23,也即3AC+7CD=23∴ AC=2373CD-,∵ AC是正整数,∴ 23-7CD∣3的条件是CD=2,也即23-7CD=9时,能被3整除, ∴AC=3.7.设该国库券的年利率为x,则由题意可列方程:1000×5×x=390解之得 x=7.8%所以,该国库券的年利率为7.8%.8.设甲每小时行v1千米,乙每小时行v2千米,则甲乙两地的距离就是2(v1+v2)千米.由题意可得:3.6·(v1+v2+2)=4(v1+v2),0.4(v1+v2)=7.2, v1+v2=18.∴2(v1+v2)=2×18=36,即A、B两地的距离为36千米.9.绝对值小于1的数共有5个.所有正数的平方和等于89109 900.10.∵ m、n为大于0的整数,且3m+2n=225,若(m,n)=15,则3m=3×15=45,2n= 2×90=180,∴ m=15,n=90∴(1)m+n=15+90=105.(2)若[m,n]=45,则m+n=45+45=90.11.若,ab bc都是7的倍数,则可组成abc的三位数共有15个,其中最大的是984,最小的是142,它们的和是1126.三、解答题1.∵每张的成本价小于5角.但又能被31元9角3分整除. 所以可设每张成本价为x角y分,则3193∣xy,显然xy=31(分).即每张成本价为0. 31 元. 这种画片共有3193÷31=103(张).2.根据已知可得,SΔABC=S梯形BCDE∴SΔABC-S梯形BCFE= S梯形BCDE- S梯形BCFE,即SΔcdf= SΔaef ∴阴影部分面积=2125318.7544Rπ⨯==。

七年级数学竞赛试题(含答案)

七年级数学竞赛试题(含答案)

七年级数学竞赛试题(含答案)一、耐心填一填(每题5分,共50分)1、某天,5名同学去打羽毛球,从上午8:45一直到上午11:05,若这段时间内,他们一直玩双打(即须4人同时上场),则平均一个人的上场时间为________分2、已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,则∠AOC=___________度3、()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。

4、定义a*b=ab+a+b,若3*x=27,则x的值是________。

5、有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。

问:F的对面是_______。

FA DBCAED C6 A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是________。

7、正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为________。

8、小李同学参加了学校组织的名为“互帮互助向未来”活动,为此小李自己在家制作了四份小礼物,准备送给他的新同学,四份小礼物分别装在形状完全一样的小长方体的盒子里,每个小长方体的长、宽、高分别是3、1、1,然后把这四个小长方体盒子用漂亮的丝带捆绑成一个大长方体,那么这个大长方体的表面积可能有________ 中不同的值,其中最小值为________。

9、当a ______时,方程组223196922x y a ax y a a⎧+=+-⎪⎨-=-+⎪⎩的解是正数。

10、如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是________平方厘米。

二、细心选一选(每题5分,共30分)1、如果有2015名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2015名学生所报的数是()A、1B、2C、3D、42、俗话说“商场如战场”,“买的永远没有卖的精”。

初一数学竞赛试题及答案

初一数学竞赛试题及答案

初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A3. 如果a和b是两个不同的正整数,且a < b,那么下列哪个不等式一定成立?A. a + b > 0B. a - b < 0C. ab > 0D. a/b < 1答案:D4. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-2) × (-1)答案:A5. 一个数的绝对值是5,那么这个数可能是:B. -5C. 5或-5D. 0答案:C6. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 16D. 无法确定答案:B7. 如果一个数的平方等于9,那么这个数是:A. 3C. 3或-3D. 9答案:C8. 一个数的立方等于-8,那么这个数是:A. -2B. 2C. -8D. 8答案:A9. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10答案:A10. 一个数除以-2等于-3,那么这个数是:A. 6B. -6C. 3D. -3答案:B二、填空题(每题4分,共40分)11. 一个数的绝对值是7,这个数可能是______。

答案:7或-712. 一个数的相反数是-4,这个数是______。

答案:413. 一个数的平方等于16,这个数是______。

答案:4或-414. 一个数的立方等于-27,这个数是______。

答案:-315. 一个等腰三角形的两边长分别为4和6,那么这个三角形的周长是______。

答案:14或1616. 计算表达式(-2) × (-3) + 4的结果是______。

七年级上学期数学竞赛选拔试题(含答案)

七年级上学期数学竞赛选拔试题(含答案)

初一数学竞赛选拔考试题班级___________________姓名__________________得分_________一、填空题:(4分×15=60分)1、某人上山速度是4,下山速度是6,那么全程的平均速度是________.2、()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯. 3、甲、乙两同学从400 m 环形跑道上的某一点背向出发,分别以每秒2 m 和每秒3 m 的速度慢跑.6 s 后,一只小狗从甲处以每秒6 m 的速度向乙跑,遇到乙后,又从乙处以每秒6 m 的速度向甲跑,如此往返直至甲、乙第一次相遇.那么小狗共跑了 m .4、定义a *b =ab+a+b,若3*x =27,则x 的值是 .5、三个相邻偶数,其乘积是六位数,该六位数的首位是8,个位是2,这三个偶数分别是_______.6、三艘客轮4月1日从上海港开出,它们在上海与目的地之间往返航行,每往返一趟各需要2天、3天、5天.三艘客轮下一次汇聚上海港是_____月_____日.7、设m 和n 为大于0的整数,且3m +2n =225,如果m 和n 的最大公约数为15,m+n =_____.8、a 与b 互为相反数,且|a -b |=54,那么12+++-ab a b ab a = . 9、已知3,2,a b b c -=-=则2()313a c a c -++-=___________.10、若正整数x ,y 满足2004x =105y ,则x+y 的最小值是___________.11、数列1,1,2,3,5,8,13,21,34,55,…的排列规律:前两个数是1,从第3个数开始,每一个数都是它前两个数的和,这个数列叫做斐波那契数列,在斐波那契数列中,前2010个数中共有___________个偶数.12、若200420032002,,200320022001a b c =-=-=-,则,,a b c 的大小关系是___________. 13、任意改变7175624的末四位数字顺序得到的所有七位数中,能被3整除的数的有____个.14、有一个两位数,被9除余7,被7除余5,被3除余1,这个两位数是 .15、在自然数1,2,3,…,100中,能被2整除但不能被3整除的数有_______个.二、解答题:(8分×5=40分)1、计算:1111 (24466820042006)++++⨯⨯⨯⨯2、甲、乙两人分别从A 、B 两地同时出发相向而行,两人相遇在距离A 地10千米处.相遇后,两人继续前进,分别到达B 、A 后,立即返回,又在距离B 地3千米处相遇,求A 、B 两地的距离.3、设 3 个互不相等的有理数,既可以表示成为1,a+b,a 的形式,又可以表示为0,,a b b的形式,求20102009b a .4、a 、b 、c 、d 表示4个有理数,其中每三个数之和是-1,-3,2,17,求a 、b 、c 、d .5、将2010减去它的21,再减去余下的31,再减去余下的41,…,以此类推,直至减去余下的20101,最后的得数是多少?参考答案一、填空题:(4分×15=60分)1、某人上山速度是4,下山速度是6,那么全程的平均速度是________.【4.8】分析:设总路程是1,则平均速度=524614111=++。

七年级数学竞赛试题(含答案)-

七年级数学竞赛试题(含答案)-

七年级数学竞赛试题一、选择题:1、已知152004+-=a ,则a 是( )A 、合数B 、质数C 、偶数D 、负数 2若7a+9|b|=0,则a b 2一定是( )A 、正数B 、负数C 、非负数D 、非正数3、a 与b 之和的倒数的2003次方等于1,a 的相反数与b 之和的2005次方也等于1,则a 2003+b 2004=( )A 、22005B 、2C 、1D 、04、如图1,三角形ABC 的底边BC 长3厘米,BC 边上的高是2厘米,将三角形以每秒3厘米的速度沿高的方向向上移动2秒,这时,三角形扫过的面积是( )平方厘米。

A 、21B 、19C 、17D 、155、小明的妈妈春节前去市场买了3公斤葡萄和2公斤苹果,花了8元钱,春节后,再去市场买这两种水果,由于葡萄每公斤提价5角钱,苹果每公斤降3角钱,买7公斤葡萄和5公斤苹果共花了21元,则春节后购物时,(葡萄、苹果)每公斤的价格分别是( )元。

A 、(2.5,0.7) B 、(2,1) C 、(2,1.3) D 、(2.5,1)6、当1-=x 时,代数式8322+-bx ax 的值为18,这时,代数式269+-a b =( ) A 、28 B 、—28 C 、32 D 、—327、The sum or n different postitive integers is less than 50.The greatest possible value of n is ( )A 、10B 、9C 、8D 、7 (英汉小词典positive integer :正整数) 8、已知∠A 与∠B 之和的补角等于∠A 与∠B 之差的余角,则∠B=( )A 、75°B 、60°C 、45°D 、30°9、如图2,一个正方体的六个面上分别标有数字1,2,3,4,5,6。

根据图中三种状态所显示的数字,“?”表示的数字是( ) A 、1 B 、2 C 、4 D 、6 二、填空题:10、若正整数x ,y 满足2004x=15y ,则x+y 的最小值是___________;11、数列1,1,2,3,5,8,13,21,34,55,…的排列规律:前两个数是1,从第3个数开始,每一个数都是它前两个数的和,这个数列叫做斐波契数列,在斐波契数列前2004个数中共有___________个偶数。

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。

解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。

根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。

由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。

试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。

代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。

试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。

已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。

代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。

实外七年级数学竞赛考前练习题(3)(含答案)

实外七年级数学竞赛考前练习题(3)(含答案)

实外七年级数学竞赛考前练习题(3)(含答案)实外七年级数学竞赛考前练习题姓名一、选择题:1、线段AB=8cm,BC=5cm,那么线段AC的长度是A.13cm B.3cm C.3cm或13cm D.无法确定,B,C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25?,小红2、用A家在小明家正东,小红家在学校北偏东35?,则∠ACB等于 A.35? B.55? C.60? D.65?3、下面的语句:①两点确定一条直线;②两条直线相交,只有一个交点;③延长射线AB;④延长直线CD;⑤线段AB就是线段BA.其中正确的语句共有 A.2个 B.3个C.4个 D.5个4、已知1?a?1?a,则3?a=A.?(3?a) B.3?a C.a?3 D.3?a5、按下列程序进行计算,经过三次输入,最后输出的数是10,则最初输入的数是yes —6 >6 ?4 输入输出 N0 A.4 B.51765 C. D. 28326、编号为1、2、3、4、……、2007的2007只彩灯均亮着,每只灯各有一个开关控制.若第一次按一下所有编号是2的倍数的灯泡开关,第二次按一下编号为3的倍数的灯泡开关,第三次按一下编号为5的倍数的灯泡开关,则最后还亮着的灯有A.1004只B.535只C.469只D.6017、某轮船往返于A、B两地之间,设轮船在静水中的速度不变,那么,当水的流速增大时,轮船往返一次所用的时间( ).不变增加减少增加、减少都有可能 8、如下图,两个标有数字的轮子可以分别绕中心旋转,旋转停止时,每个轮子上的箭头各指轮子上的一个数字,若左图上方箭头指着的数字为a,右图中指着的数字为b,数对所有可能的个数为n,其中a+b恰为偶数的不同m等于 n1153A、B、C、D、26124数对个数为m,则- 1 -9、若(2x?1)4?ax4?bx3?cx2?dx?e,则a?c?e=10、一对小兔子从出生到第三个月就可以长大,并且生一对小兔子,以后每个月可以生一对小兔子,新生的小兔子三个月后又可以生小兔子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实外七年级数学竞赛考前练习题(4)
一、填空题:(每题4分)
1、 对于a 、b 两数,我们定义一种新运算“*”,得到21a -95b ,即a*b=21a -95b. 若8*x=21-91,则x=___________.
2、若(a-2)2与88|b - 1|2003 互为相反数,则a-b a+b
=_________. 3、|a|=6,|b|=7,并且ab<0,则a+ b=________.
4、在线段A B 上,A 、 B 两点之间有2003个点,则共有________条线段.
5、计算:12 + (13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+……+ (12004 +……+20032004
)=____________. 6、已知12 + 22 +32 +……+ n 2 = 16
n(n+1)(2n+1),则22 + 42 +62 +……+1002 =________. 7、春节联欢会上,电工师傅在礼堂四周挂了一圈彩灯,其排列规则是:
绿黄黄红红红绿黄黄红红红绿黄黄红红红绿黄黄红红红……
那么,第2003个彩灯是________色的.
8、美国《数学月刊》上有这样一道题:有人在如图所示的小路上行走(假设小路的宽度都是1米),当他从A 处到B 处时,一共走了_____________米.
9、某个体服装经销商先以每3件160元的价钱购进一批童装,又以每4件210元的价钱购进比上一次多一倍的童装. 他想把这两批童装全部转手,并从中获利20%,那么,他需要以每3件______元出手.
10、三位同学去买橡皮、铅笔和尺子,第一位同学买了3块橡皮、7支铅笔和1把尺子,共花了3.15元;第二位同学买了4块橡皮、10支铅笔和1把尺子,共花了4.20元;第三位同学买了1块橡皮、1支铅笔和1把尺子,花了_______元.
二、选择题(每题4分)
1、A 、B 、C 三家超市在同一条南北大街上,A 超市在B 超市的南边40米处,C 超市在B 超市的北边100米处. 小明从B 超市出发沿街向北走了50米,接着又向北走了- 60米,此时它的位置在( )
(A)B 超市; (B) C 超市北边10米 ; (C) A 超市北边30米; (D )B 超市北边10米.
2、a,b,c 是三个整数,则在 a+b 2 、b+c 2 、c+a 2
中整数的个数为( ) (A )有且只有1个; (B) 有且只有2个; (C) 有且只有3个; (D)至少有1个.
3、若A 、B 、C 三个数互不相等,则在A-B B-C 、B-C C-A 、C-A A-B
中,正数的个数一定有( ) (A ) 0个; (B) 1个; (C) 2个; (D )3个.
4、若|a|+a=0, |ab|=ab,|c|-c=0, 则化简|b|-|a+b|-|c-b|+|a-c|,得( )
(A )2c-b; (B) 2c-2a; (C)-b; (D)b.
5、若a 、b 、c 、d 四个数满足1a-2000 = 1b+2001 = 1c-2002 = 1d+2003
,则a 、b 、c 、d 四个数的大小关系为( )
(A )a>c>b>d ; (B)b>d>a>c ; (C)c>a>b>d ; (D )d>b>a>c.
6、方程px + q = 99的解为x = 1,p 、q 均为质数,则pq 的值为( )
(A)194; (B) 197; (C)199; (D)201.
7、某种商品的市场零售价,去年比前年上涨了25%. 有关部门通过宏观调控,稳定了涨幅,使得今年比前
年值上涨了15%,则今年比去年的市场零售价降低了()
(A)8%;(B)10%;(C)11%;(D)12%.
8、有A、B、C三个盒子,分别装有红、黄、蓝三种颜色的小球之一种,将它们分给甲、乙、丙三个人. 已
知甲没有得到A盒;乙没有得到B盒,也没有得到黄球;A盒中没有装红球,B盒中装着蓝球. 则丙得到的盒子编号与小球的颜色分别是()
(A)A, 黄; (B) B,蓝; (C)C,红; (D)C,黄.
9、李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中
做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒索性将第二天所剩的饮料的一半零半瓶喝完. 这三天,正好把妈妈买的全部饮料喝光,则妈妈买的饮料一共有()
(A)5瓶;(B)6瓶;(C)7瓶;(D)8瓶
10、某月中有三个星期一的日期都是偶数,则该月的18日一定是()
(A)星期一;(B)星期三;(C)星期五;(D)星期日.
三、解答题:(每题10分)
1、过年时,小刚领来家做客的表弟到文具店购物,他用自己50元的“压岁钱”个表弟买了圆珠笔、铅笔
和方格本三种文具共100件. 已知一支圆珠笔5元,一支铅笔0.1元,一个方格本1元,那么,这100件文具中,三种文具各多少?
2、一个数的首位数字是1,若把它的首位数字放到末位,所得的四位数比原数的4倍多_______,求原来
的四位数.
(1)在“________”上能填写的符合题意的正整数有多少个?
(2)当“________”上填什么数时,原四位数取最大值和最小值;并求出原四位数的最大值和最小值.
参考答案
一、填空题:
1、238/95;
2、1/3;
3、±1;
4、2009010;
5、1003503;
6、171700;
7、红;
8、118;
9、190;10、1.05.
二、选择题:
1、 C ;
2、D ;
3、B ;
4、D ;
5、C ;
6、A ;
7、A ;
8、A ;
9、C ;10、B ;
三、解答题:
1、设买圆珠笔x 支、铅笔y 支、方格本z 个,则⎩⎨⎧x+y+z=100 ①5x+0.1y+z=50 ②
, ②×10 - ①,得49x+9z=400, 所以z = 400 - 49x 9
. 取正整数解,得⎩⎨⎧x=1z=39
. 把x=1, z =39代入①,得 y=60.
2、(1)设原数的后三位为x ,“______”上所填的数为m, 则 4(1000+x)+m=10x+1.
所以, m=6x – 3999.
x 的最大值为999,此时m=1995;
因为m 为正整数,所以6x-3999>0, 则x>666.5.
因此, x 的最小值为667,此时m=3.
总之,相应的m 所取的正整数有1995-667+1=1329(个).
(2)由(1)易得,当m=1995,原数的最大值为1999;
当m=3时,原数最小值为1667.
3、有必胜策略,先取者必胜.
假设甲先取,由于54÷(4+1),商10余4,所以甲先取走4张,乙再取走n(1≤n ≤4)张,接着甲取走(5-n )张;以后每次在乙取牌后,甲所取牌数均为5减去乙所取牌数之差;最后必剩5张,由乙来取,乙无论怎么取,都得给甲剩下1 ~4张,这样,甲就能最后取走剩下的所有牌.
4、(1)设第一、二、三包分别取x 千克、y 千克、z 千克,则⎩⎨⎧x+y+z=1 ①90%y+30%z=1×45% ②
由②得,6y+2z =3 ③.
①×2 - ③,得 2x-4y = - 1, 于是y = 2x + 14
. (2)由题意知,必用第二包.
如果不用第一包,即当x=0时,y 有最小值为y = 2×0+ 14 = 14
; 如果不用第三包,即当z=0时,y 有最大值,此时,90%y+30%×0=1×45%,解得y = 12
. 所以,14 ≤ y ≤12
.。

相关文档
最新文档