线性代数论文
线性代数小论文

(学院杏林学院班级国贸102 姓名李霞学号1004123046 )线性代数小论文-----用矩阵解决经济管理学中的问题一、提要:线性代数理论有着悠久的历史和丰富的内容。
随着科学的发展,特别是电子计算机使用的日益普遍,作为重要的数学工具之一,线性代数的应用已经深入到了自然科学、社会科学、工程技术、经济、管理等各个领域。
虽然我们在学习线性代数这门课,可不免有同学要问这门课究竟要应用于生活哪一方面?由于我们是属于经济管理类的专业,因此我们学线性代数是为日后学习运筹、管理以及经济类课程打基础。
本文将举出一个矩阵在经济管理中的应用例子来解释线性代数的应用。
二、提出问题:风险型决策方法例1、某企业打算生产某产品。
根据市场预测分析,产品销路有三种可能性:销路好、一般和差,这三种情况出现的概率分别为0、3,0、45,0、25. 生产该产品有三种方案:改进生产线、新建生产线、外包生产。
各种方案的收益值在表5-4给出。
项目(1)改进生产线(2)新建生产线(3)外包生产销路好180 240 100销路一般120 100 70销路差-40 -80 16表5-4 各生产方案在不同市场情况下的收益/万元1、专业课中如何解决的最大效用值收益准则:解决风险决策常用的一个目标是使期望收益最大化。
学过概率统计之后,不难求出三种方案对应的期望收益分别为:(1)180*0.3+120*0.45+(-40)*0.25=98(2)240*0.3+100*0.45+(-80)*0.25=97(3)100*0.3+70*0.45+16*0.25=65.5因为第一种方案对应的期望效用值最大,所以选择改进生产线的方案。
2、线代课中如何解决的矩阵M=(0.3 0.45 0.25)矩阵N=(180 240 100120 100 70-40 -80 16)则:最大效用收益组成的矩阵=M*N=(98 97 65.5)因为第一种方案对应的期望效用值最大,所以选择改进生产线的方案。
线性代数的应用论文

论文:线性代数的应用与心得体会班级:姓名:学号:指导老师:完成时间:2014年10月20日目录摘要 (2)关键词 (2)一、线性代数被广泛运用的原因 (2)二、线性代数在实际中的应用 (2)1. 用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体 (2)2. 希尔密码 (2)3.在人们平常日常生活的应用——减肥配方的实现 (3)4、在城市人们出行的应用——交通流的分析 (4)5、马尔可夫链 (5)6、在人口迁移的应用人口迁徙模型 (5)三、心得与体会 (7)摘要我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,还有其主要知识:矩阵、方程组和向量;我们也应该了解其在众多的科学技术领域和实际生活中的应用都十分广泛;下面就是看一些具体实例应用,和一些心得体会;关键词线性代数;实际生活;应用实例;心得体会;;一、线性代数被广泛运用的原因为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢原因之一,大自然的许多现象恰好是线性变化的,研究的是单个变量之间的关系;例如我们高中学过的物理学科中,物理可以分为机械运动、电运动、还有量子力学的运动;而比较重要的机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,其实这又恰恰符合基本的线性微分方程;再如电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组;原因之二,之后随着科学的发展,我们不仅要研究单个之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而且由于计算机的发展,了的问题又可以计算出来,所以,线性代数因这方面的成为了解决这些问题的有力工具而被广泛应用;原因之三,在数学中线性代数与几何和代数有着不可分割的联系;线性代数所体现的观念与代数方法之间的联系,从具体概念变为出来的,对于强化人们的,增强科学性是非常有用的;二、线性代数在实际中的应用1.用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体2.希尔密码希尔密码Hill Password是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明;每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果模26;注意用作加密的矩阵即密匙在\mathbb_^n必须是可逆的,否则就不可能译码;只有矩阵的行列式和26互质,才是可逆的;例题、设明文为HPFRPAHTNECL,密钥矩阵为:3.在人们平常日常生活的应用——减肥配方的实现大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮食也没有规律,为了身体的健康就需要注意日常饮食中的营养;大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养它们的质量以适当的单位计量;设三种食物每100克中蛋白质、碳水化合物和脂肪的含量如下表,表中还给出了80年代美国流行的剑桥大学医学院的简捷营养处方;现在的问题是:如果用这三种食物作为每天 营养 每100g 食物所含营养g减肥所要求的每日营养量脱脂牛奶 大豆面粉 乳清 蛋白质 36 51 13 33 碳水化合物 52 34 74 45 脂肪73123个单位100g,表中的三个营养成分列向量为:12136511352,34,74,07 1.1a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则它们的组合所具有的营养为11223312336511352347407 1.1x a x a x a x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦使这个合成的营养与剑桥配方的要求相等,就可以得到以下的矩阵方程:123365113335234744507 1.13x x Ax b x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦用MA TLAB 解这个问题非常方便,列出程序ag763如下: A=36,51,13;52,34,74;0,7, b=33;45;3 x=A\b程序执行的结果为:0.2772 0.3919 0.2332x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦即脱脂牛奶的用量为,大豆面粉的用量为,乳清的用量为,就能保证所需的综合营养量;4、在城市人们出行的应用——交通流的分析某城市有两组单行道,构成了一个包含四个节点A,B,C,D 的十字路口如图所示;在交通繁忙时段的汽车从外部进出此十字路口的流量每小时的车流数标于图上;现要求计算每两个节点之间路段上的交通流量x 1,x 2,x 3,x 4;解:在每个节点上,进入和离开的车数应该相等,这就决定了四个流通的方程: 节点A: x 1+450=x 2+610 节点B: x 2+520=x 3+480 节点C: x 3+390=x 4+600 节点D: x 4+640=x 2+310将这组方程进行整理,写成矩阵形式:12233414= 160 = - 40 - = 210= -330x x x x x x x x ---其系数增广矩阵为:11 160 11 - 40 [,]1121011 -330A b -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦ 用消元法求其行阶梯形式,或者直接调用U0=rrefA,b,可以得出其精简行阶梯形式为1 0 0 -1330 0 1 0 -1 170 U0= 0 0 1 -1 210 0 0 0 00⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦注意这个系数矩阵所代表的意义,它的左边四列从左至右依次为变量x 1,x 2,x 3,x 4的系数,第五列则是在等式右边的常数项;把第四列移到等式右边,可以按行列写恢复为方程,其结果为:x 1=x 4+330, x 2=x 4+170, x 3=x 4+210图3 单行线交通流图0=0由于最后一行变为全零,这个精简行阶梯形式只有三行有效,也就是说四个方程中有一个是相依的,实际上只有三个有效方程;方程数比未知数的数目少,即没有给出足够的信息来唯一地确定x1,x2,x3,和x4;其原因也不难从物理上想象,题目给出的只是进入和离开这个十字路区的流量,如果有些车沿着这四方的单行道绕圈,那是不会影响总的输入输出流量的,但可以全面增加四条路上的流量;所以x4被称为自由变量,实际上它的取值也不能完全自由,因为规定了这些路段都是单行道,x1,x2,x3,和x4;都不能取负值;所以要准确了解这里的交通流情况,还应该在x1,x2,x3,和x4中,再检测一个变量;5、马尔可夫链马尔可夫链Markov Chain,描述了一种状态序列,其每个状态值取决于前面有限个状态;马尔可夫链是具有马尔可夫性质的随机变量的一个数列;这些变量的范围,即它们所有可能取值的集合,被称为“状态空间”,而的值则是在时间n的状态;如果对于过去状态的条件概率分布仅是的一个函数,则这里x为过程中的某个状态;上面这个恒等式可以被看作是马尔可夫性质;例题、6、在人口迁移的应用人口迁徙模型设在一个大城市中的总人口是固定的;人口的分布则因居民在市区和郊区之间迁徙而变化;每年有6%的市区居民搬到郊区去住,而有2%的郊区居民搬到市区;假如开始时有30%的居民住在市区,70%的居民住在郊区,问十年后市区和郊区的居民人口比例是多少30年、50年后又如何这个问题可以用矩阵乘法来描述;把人口变量用市区和郊区两个分量表示,即,ck k sk x x x ⎡⎤=⎢⎥⎣⎦其中x c 为市区人口所占比例,x s 为郊区人口所占比例,k 表示年份的次序;在k=0的初始状态:0000.30.7c s x x x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦;一年以后,市区人口为x c1= x c0+,郊区人口x s1= + x s0,用矩阵乘法来描述,可写成:11010.940.020.3 0.29600.060.980.7 0.7040c s x x Ax x ⎡⎤⎡⎤⎡⎤⎡⎤==⋅==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 此关系可以从初始时间到k 年,扩展为2120k k k k x Ax A x A x --====,用下列MATLAB 程序进行计算:A=,;, x0=; x1=Ax0, x10=A^10x0 x30=A^30x0 x50=A^50x0程序运行的结果为:1103050 0.2960 0.2717 0.2541 0.2508,,,, 0.7040 0.7283 0.7459 0.7492x x x x ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦无限增加时间k,市区和郊区人口之比将趋向一组常数 ;为了弄清为什么这个过程趋向于一个稳态值,我们改变一下坐标系统;在这个坐标系统中可以更清楚地看到乘以矩阵A 的效果;选u 1为稳态向量,T 的任意一个倍数,令u 1=1,3T 和u 2=-1,1T ;可以看到,用A 乘以这两个向量的结果不过是改变向量的长度,不影响其相角方向:110.940.02110.060.9833Au u ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦220.940.0210.920.920.060.9810.92Au u --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦初始向量x0可以写成这两个基向量u1和u2的线性组合;0120.30110.250.050.250.050.7031x u u -⎡⎤⎡⎤⎡⎤==⋅-⋅=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦因此0120.250.05(0.82)k k k x A x u u ==-式中的第二项会随着k 的增大趋向于零;如果只取小数点后两位,则只要k>27,这第二项就可以忽略不计而得到01270.250.250.75k kk x A x u >⎡⎤===⎢⎥⎣⎦适当选择基向量可以使矩阵乘法结果等价于一个简单的实数乘子,避免相角项出现,使得问题简单化;这也是方阵求特征值的基本思想;这个应用问题实际上是所谓马尔可夫过程的一个类型;所得到的向量序列x1,x2,...,x k称为马尔可夫链;马尔可夫过程的特点是k时刻的系统状态x k完全可由其前一个时刻的状态x k-1所决定,与k-1时刻之前的系统状态无关;三、心得与体会没上线性代数的时候,心中还有点忐忑,怕自己学不好;但是当真的学时,用心听老师讲的每节课,还是感觉很轻松的;然后每章结束后的习题,自己认真完成,不会的再翻翻以前学过的知识点和笔记,自己就会豁然开朗,而且死死地记住题型,考试的时候不会紧张而且游刃有余;可以总结一下,线性代数主要研究三种对象:矩阵、方程组和向量;这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法;因此,熟练地从一种理论的叙述转移到另一种中去,是学习线性代数时应养成的一种重要习惯和素质;如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性;由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易;线性代数作为数学的一门,体现了数学的思想;数学上的方法是相通的;比如,考虑特殊情况这种思路;线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况;高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路;通过思想方法上的联系和内容上的关系,线性代数中的内容以及线性代数与高等数学甚至其它学科可以联系起来;只要建立了这种联系,线代就不会像原来那样琐碎了;在线性代数的学习中,注重知识点的衔接与转换,努力提高综合分析能力;线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对再问做得好不好只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了;现在我们可以在线完成过程考核,在电脑上登录,然后有不同的题型,说是考核其实也是一种练手和复习,加强知识的巩固;每一题解答过后都会有详解,可以看到自己到底错在哪,哪里学的不好;我觉得这是一种很好的学习工具,我们一定要好好利用,来学习线性代数;了解每种题型很关键,当然都离开不了矩阵、方程组和向量,掌握它们是关键;线性代数有很多在现实生活中的应用,我们要会运用线性代数来解决现实生活中的一些事或麻烦;我们的生活中到处都存在着数学,所以用心它的魅力吧;。
线性代数小论文

摘要:分析了若矩阵A 经过行初等变换化为矩阵B ,则A 与B 的列向量组具有完全相同的线性关系,以及此性质在线性代数的主要应用。
关键词:初等变换;线性相关;线性无关;线性表示线性代数主要研究的是线性问题。
一般而言,凡是线性问题常可以用向量空间的观点和方法加以讨论,因此向量空间成了线性代数的基本概念和中心内容。
向量空间理论的核心问题是向量间的线性关系。
其基本概念有向量的线性表示、向量组线性相关与线性无关、向量组等价、向量组的极大无关组,以及向量空间的基与维数等。
这些问题通常转化为解线性方程组或解齐次线性方程组。
1 线性相关性证明设A =(α1,α2,··· ,αn ),αi ∈P m,若矩阵A 经过行初等变换化为矩阵B ,则A 与B 的列向量组具有完全相同的线性关系。
证明:设A m ×n ,A 经过行初等变换化为B ,将A ,B 分别按列分块为A =(α1,α2,…,αn ),B=(β1, β2,···,βn )。
由于对A 只进行有限次行初等变换,故可知有满秩矩阵P ,使PA =B ,即P(α1,α2, ···,αn )=(β1, β2, ···,βn ),于是有i 1βj = P αj (j=1,2,3, ···,n) (1) 设A 和B 对应的列向量组为αi 1,αi 2, ···,αi r 和βi 1, βi 2,···,βi r (1≤i 1<i 2<···<i r ≤n),由(1)式得βik = P αik (k=1,2,3, ···,r)因此,如果αi 1,αi 2, ···,αi r 有线性关系式k 1αi 1+k 2αi 2+ ···+k r αi r =0(k r 为实数),则k 1,k 2…k r 也必使得k 1βi 1+k 2 βi 2+···+k r βi r =k 1(P αi 1)+ k 2(P αi 2)+ ···+ k r (P αi r )=P (k 1αi 1+k 2αi 2+ ···+k r αi r )=P 0=0 反之,如果βi 1, βi 2,···,βi r 有线性关系式,得λ1βi 1+λ2βi 2+ ···+λr βi r =0则由P 的满秩性可知αj =P -1βj (j=1,2,3, ···,n),于是有λ1αi 1+λ2αi 2+ ···+λr αi r =λ1P -1βi 1 +λ2P -1βi 2 + ···+λr P -1βi r= P -1(λ1βi 1+λ2βi 2+ ···+λr βi r )= P -10=0这表明向量组αi 1,αi 2, ···,αi r 与向量组βi 1, βi 2,···,βi r 有相同的线性相关性,证毕。
线性代数的应用论文

线性代数的应用论文引言线性代数作为数学的一个重要分支,广泛应用于各个领域,如物理学、经济学、计算机科学等。
本论文将重点介绍线性代数在计算机科学领域的应用,包括机器学习、图像处理和网络分析等方面。
机器学习中的线性代数应用线性回归在机器学习中,线性回归是一个重要的模型。
线性回归模型可以通过最小二乘法来估计参数。
其基本原理是通过线性变换将输入数据映射到输出数据,然后通过最小化残差平方和来确定最佳拟合直线。
实质上,线性回归模型就是在求解一个方程组,而这正是线性代数的重点内容。
通过矩阵运算和求解线性方程组,可以方便地求解线性回归模型的参数。
主成分分析主成分分析 (PCA) 是一种常用的降维技术,在特征提取和数据压缩中起着重要作用。
通过线性代数的方法,可以将高维的数据变换到低维空间中,同时保留最重要的信息。
主成分分析的核心是求解数据协方差矩阵的特征向量和特征值,只保留最大的特征值对应的特征向量作为主成分。
线性代数提供了有效的算法和工具,可以快速求解特征值和特征向量,从而实现主成分分析。
图像处理中的线性代数应用图像压缩在图像处理中,图像压缩是一个重要的应用领域。
通过压缩图像,可以减少存储空间和传输带宽的消耗。
其中,离散余弦变换 (DCT) 是一种常用的压缩方法。
DCT 将图像分解为一组不同频率的正弦波信号,然后根据信号能量的大小进行量化和编码。
通过变换和编码过程,DCT 可以将图像信息进行高效地表示和存储。
而 DCT 的计算过程正是基于线性代数的矩阵运算和线性变换。
图像恢复在图像处理中,图像恢复是一个挑战性任务。
例如,在图像降噪和去模糊中,需要从受损图像中恢复原始图像。
这可以通过求解一个逆问题来实现,而逆问题通常可以表示为线性代数的形式。
例如,降噪问题可以通过求解一个线性方程组来实现,去模糊问题可以通过求解一个矩阵方程来实现。
线性代数提供了强大的工具和算法,可以有效地解决图像恢复问题。
网络分析中的线性代数应用网络表示学习网络表示学习是网络分析领域的一个重要任务。
数学与应用数学线性代数大学期末论文

数学与应用数学线性代数大学期末论文摘要:线性代数是数学的一个重要分支,广泛应用于各个领域。
本文将从矩阵运算、线性方程组和特征值与特征向量等角度,对线性代数的基本概念和应用进行探讨,并结合具体实例,展示线性代数在科学、工程和计算机等领域的重要性。
1. 矩阵运算矩阵是线性代数重要的基本工具,它由数个数构成的一个矩形阵列。
矩阵运算包括矩阵的加法、减法、乘法和转置等。
加法和减法是对应位置的元素进行运算,而矩阵乘法是对矩阵的行和列进行组合运算。
矩阵乘法特点之一是不满足交换律,即AB≠BA。
这一性质使得矩阵乘法在解决线性方程组方面具有独特的优势。
通过矩阵乘法,可以将线性方程组转化为矩阵形式,从而利用矩阵运算的特性来求解。
2. 线性方程组线性方程组是线性代数的重要应用之一,广泛应用于经济学、物理学等领域。
线性方程组的解可以通过矩阵运算得到,其中最常用的方法是高斯消元法和矩阵的逆。
高斯消元法通过不断变换线性方程组的形式,将其转化为简化的行阶梯形式,从而求解方程组的解。
而矩阵的逆则是通过对矩阵的行列式和伴随矩阵进行计算,得到矩阵的逆矩阵。
对于可逆矩阵,利用逆矩阵可以直接求解线性方程组,简化了计算过程。
3. 特征值与特征向量特征值与特征向量是线性代数中的重要概念,对矩阵的性质和变换具有深刻的影响。
特征值是矩阵的一个特征,用于描述矩阵在特定方向上的变换比例。
特征向量则是对应于特征值的向量。
通过求解特征值和特征向量,可以衡量矩阵的稳定性、变换性质以及与其他矩阵的关系。
在实际应用中,特征值与特征向量在图像处理、数据压缩等方面有着广泛的应用。
4. 应用案例线性代数作为一门工具性学科,有着广泛的应用。
本文将结合科学、工程和计算机等领域,展示线性代数在实际问题中的重要性。
以图像压缩为例,通过矩阵运算和特征值与特征向量的计算,可以将高维图像通过降维的方式减少数据量,并保持图像质量的基本特征。
该方法在数据存储和传输方面具有重要意义。
大学线性代数论文

线性代数论文 线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。
尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。
线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。
主要理论成熟于十九世纪,主要理论成熟于十九世纪,而第一块基石而第一块基石而第一块基石(二、(二、三元线性方程组的解法)三元线性方程组的解法)则早在两千年则早在两千年前出现(见于我国古代数学名著《九章算术》)。
①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位; ②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; ③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的; ④ 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。
行列式的计算方法.定义法在引进行列式的定义之前,,为了更加容易的理解行列式的定义,首先介绍排列和逆序的概念.(1) n级排列:由1,2.3…n组成的一个有序数组称为一个n级排列.(2) 在一个排列中,如果一对数的前后位置与大小顺序相反,即:前面的数大于后面的数,那么它们就称为一个逆序,一个排列中逆序的总数称为这个排列的逆序数.(3) 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列.在做好这些工作之后,来引入行列式的定义:定义:n 阶行列式<I>等于所有取自不同行不同列的n 个元素的乘积. a1j 1a2j 2a3j 3………anj n <Ⅱ>的代数和,这里j 1,j 2,j 3,……j n 为1,2,3,……,n 的一个排列,每一项<Ⅱ>都按下列规则带有符号,当j 1,j 2,j 3,……j n 是偶排列时, <Ⅱ>带有正号,当j1,j2,j3,……j n是奇排列时,<Ⅱ>带有负号. 即:例1:计算行列式:解:由行列式的定义知:=(-1)t(123)5×1×4+(-1)t(132)5×2×6+(-1)t(213)2×4×4+(-1)t(231)2×2×3+(-1)t(312)3×4×6+(-1)t(321)3×1×3=20-60-32+12+72-9=3例2计算解:由行列式的定义知:=(-1) t(j1j2…jn)1×2×3……×n=(-1)0n!=n!.由以上两个例子可以看出,若计算阶数较低(不超过三阶)的行列式及上三角(下三角)行列式运用定义法较为简单,但若是高阶非上(下)三角型的行列式按定义法计算比较繁琐因此,我们必须寻求其它的,让计算变得简洁的计算方法.按照行列式的性质将行列式化成上三角(下三角或反三角)法.运用行列式的性质是计算行列式的一个重要途径,大多数行列式的计算都依赖于行列式的性质,将行列式化成上三角(下三角或反三角)的形式,再根据行列式的定义来计算行列式. (行列式的性质见参考文献).行列式的性质告诉了我们该如何求行列式,而一切的行列式都可以根据以上性质来进行初等行变换(列变换),变成阶梯形(上三角)的行列式,再根据定义计算即可.其计算步骤可归纳如下:(ⅰ)看行列式的行和(列和),如果行列和相等,则均加到某一列(行)【直观上加到第一列 (行)】.(ⅱ)有公因子的提出公因子(ⅲ)进行初等行变换(列变换)化成上三角(下三角或反三角)的行列式.(ⅳ)由行列式的定义进行计算.由以上四步,计算一般行列式都简洁多了.。
线性代数论文

论线性代数的应用实例线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。
线性代数的理论已被泛化为算子理论。
由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是理工类、经管类数学课程的重要内容。
在日常学习、工作和生活中,有很多问题,运用线性代数的方法就可以使问题简化,以下举一些线性代数的应用实例。
一、药方配制问题问题:某中药厂用9种中草药(A-I),根据不同的比例配制成了7种特效药,各用量成分见表1(单位:克)已经卖完,请问能否用其他特效药配制出这两种脱销的药品。
(2)现在该医院想用这7种草药配制三种新的特效药,表2给出了三种新的特效药的成分,请问能否配制?如何配制?解:(1)把每一种特效药看成一个九维列向量,分析7个列向量构成向量组的线性相关性。
若向量组线性无关,则无法配制脱销的特效药;若向量组线性相关,并且能找到不含3u,6u的一个最大线性无关组,则可以配制3号和6号药品。
可使用matlab软件进行运算:在Matlab窗口输入1 2 3 4 5 6 7[10;12;5;7;0;25;9;6;8];[2;0;3;9;1;5;4;5;2];[14;12;11;25;2;35;17;16;12]; [12;25;0;5;25;5;25;10;0]; [20;35;5;15;5;35;2;10;0]; [38;60;14;47;33;55;39;35;6]; [100;55;0;35;6;50;25;10;20];u u u u u u u =======1234567 [,,,,,,]u u u u u u u u =[0u ,r]=rref(u )计算结果为0u =10100000120030000101000001100000001⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭从矩阵中可以看出,有四个零行,r=1、2、4、5、7从最简行阶梯型0u 中可以看 出,R (u )=5,向量组线性 相关,一个最大无关组为: 1u 2u 4u 5u 7u3u = 1u +22u 6u =32u +4u +5u故可以配制新药。
线性代数课堂教学论文

线性代数课堂教学论文线性代数课堂教学论文线性代数课堂教学论文【1】【摘要】本文从线性代数课程的特征出发,研究了在保持课程内容体系不变的前提下,通过把握主线、引入几何观点、结合代数发展史三个方面,来改进传统的线性代数课堂教学.结论表明,以上的改进不仅能减轻由于代数的抽象性带来的学习困难,达到更好的教学效果,同时能在课堂中提高学生的数学能力及数学素质,培养学生的创造性思维能力.【关键词】线性代数;课堂教学;教学主线;几何观点;代数史线性代数及微积分(常称为高等数学)、概率论与数理统计是当今大学生三门必修数学课.由于中学数学教材改革和新课标的实施,微积分和概率论与数理统计课程中的部分知识点已经在学生的高中阶段都有所接触,而且这两门课的大部分知识都有较为丰富的背景和应用范围.相比而言,线性代数中的行列式、矩阵概念对学生是全新的,没有在中学接触过的,就现行的大量教材来看,线性代数在内容安排上,显得逻辑性、抽象性有余,而背景性和应用性不足.加上线性代数一般都安排课时较少,所以使得学生对线性代数课程的学习更加吃力,达到的教学效果也不尽理想.本文探讨在不改变线性代数课程内容体系的前提下,如何改进课堂教学方法,以达到更好的教学效果.一、教学中必须把握两条主线如前所述,与其他两门数学课程相比较,线性代数的教材编得更为抽象,更加远离现实.学生通常会觉得概念、定义多,而且由于缺乏背景,一般会显得零散,各种概念之间的联系也较难把握.在课堂教学中,必须把握线性代数课程的两条主线,才能把这些大量的概念连起来,形成一个整体.1.第一条主线是线性方程组求解线性方程组是线性代数课程的一个主要任务,将中学的消元法经过一次抽象,就是线性代数中矩阵的初等变换概念.根据各种方程组的特点,形成了线性代数课程中一系列概念和方法.当未知数个数与方程的个数相等的时候,行列式可以派上用场,于是引出了行列式的初等变换、求值、克莱姆法则等相关概念.对一般的线性方程组,我们用秩来描述“真正起作用的方程的个数”,方程组的有解无解,有唯一解还是无穷多解,自由未知量的个数,都可以用系数矩阵的秩和增广矩阵的秩来理解了.为了对无穷多解有更深入的认识,把方程组的解看成向量,对齐次线性方程组,就需要引入向量空间的概念,这样就不难理解线性相关与线性无关、最大线性无关组这一连串的概念了.可见,抓住了线性方程组这条主线,就可以把行列式、矩阵、向量组这些概念合理地联系起来了.2.第二条主线是二次型的标准化解析几何中很重要的一个主题就是要把一些二次曲线方程化为只含有平方项的二次型,以便研究曲线的类型,这就是我们所谓的二次型化为标准二次型.利用矩阵这一工具来完成这个过程,需要从矩阵的特征值和特征向量出发,来讨论实对称矩阵的对角化问题.线性代数课程一般给出了三种化二次型为标准二次型的方法,着重讨论的是用正交变换的方法.在课堂上,抓住这样两条主线,不但可以避免概念的零碎,而且对学生掌握线性代数整个课程体系也是非常有帮助的.二、在课堂上引入几何的观点来介绍代数知识大部分线性代数教材都从知识结构的逻辑性来安排内容,使得代数知识以抽象的面孔出现在学生面前.事实上,在中学阶段,学生学习初等代数时,是非常注重代数与几何之间的结合的.数形结合不仅有利于降低学生的理解难度,也是掌握代数思想的一个必然要求.如何用几何的观点来学习代数,是一个在线性代数的课堂教学中值得思考的问题.(5)的解即为方程组(2)的满足整体误差最小的近似解,这就是最小二乘法求最优近似解的结果.从上面的例子可以看出,直观的几何意义使得很多推算得到了简化,更能让学生加深对概念和方法的理解.三、从代数发展历史的角度来讲线性代数课程前面提到,大部分教材的编排由于注重严格系统化的形式推理,都不可避免地使线性代数抽象性特征明显,我们在课堂教学中,不妨灵活处理知识的来龙去脉,站在从知识发展的历史的角度来认识这门课程,这也是引起国外越来越多大学重视的一种教学方式.SpringerVerlag出版社出版的大量大学数学教材,就是基于这一观点来编写的.2008年,普林斯顿大学出版社出版了《普林斯顿数学指南》(the Princeton Companion to Mathematics),这是一本数学综合类的普及读物,全书共有一千多页,尽量用浅显的语言,把现代数学知识的来龙去脉解释清楚.在线性代数的课堂教学中,如果能借鉴这种从知识产生历史角度来讲授知识,不仅能让学生理解知识之间的内在联系,更为可贵的是,能把很多数学大家当时对这些数学问题的思考过程呈现在学生面前,对学生创造性思维的形成过程大有益处.四、结语线性代数课程由于其自身的特征给教学带来一定的难点,如何在不改变课程知识体系的前提下,达到较好的教学效果,让学生能在抽象的代数学习中,接受知识,形成创造性思维方式,提高数学能力和素养,是每个大学数学教师面临的一个重要课题.本文从教学实践中,结合国内外相关的数学教育理论,提出了几条相应的措施.要提高教学质量,需要长时间在实践不断去完善教学手段和教学方法,唯有高质量的课堂教学,才能保证线性代数课程较好的教学效果.【参考文献】[1]同济大学数学系编.线性代数[M](第六版).北京:高等教育出版社.[2]杨小远,李尚志.大学一年级学生创新能力培养探索与实践[J].大学数学,2012(4):13-21.[3]李大潜漫谈大学数学教学的目标与方法[J].中国大学教学,2009(1):7-10.[4]刘春林,李宝娣.线性代数教学方法探索[J].衡阳师范学院学报,2012(3):153-155.[5]李尚志线性代数新教材之精彩案例(之二)[J].大学数学,2012(4):5-12.线性代数课堂教学方法【2】[摘要]在大类招生背景下,线性代数是浙江大学大类课。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于线性代数的理解
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。
线性代数的理论已被泛化为算子理论。
由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是理工类、经管类数学课程的重要内容线性代数起源于对二维和三维直角坐标系的研究。
在这里,一个向量是一个有方向的线段,由长度和方向同时表示。
这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。
这就是实数向量空间的第一个例子。
作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。
一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。
线性代数也在数学分析中扮演重要角色,特别在向量分析中描述高阶导数,研究张量积和可交换映射等领域。
向量空间是在域上定义的,比如实数域或复数域。
线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。
所有这种变换组成的集合本身也是一个向量空间。
如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。
对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。
我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。
比如微分学研究很多函数线性近似的问题。
在实践中与非线性问题的差异是很重要的。
线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。
这是数学与工程学中最主要的应用之一。
线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。
主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于中国古代数学名著《九章算术》)。
线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。
尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。
线性代数是为培养中国社会主义现代化建设所需要的高质量专门人才服务的。
线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。
”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。
我自己对线性代数的应用了解的也不多。
但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。
线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。
在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。
我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。
线性代数作为一门数学,体现了数学的思想。
数学上的方法是相通的。
比如,考虑特殊情况这种思路。
线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。
高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。
上完课后不少同学喜欢把上课的内容看一遍再做作业。
实际上应该先试着做题,不会时看书后或做完后看书。
这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。
作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。
做作业时遇到不会的题可以问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。
适当多做些题对学习是有帮助的。
线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只要能从生活实际想到甚至朦朦胧胧地想到它的“所以然”就行了。
通过思想方法上的联系和内容上的联系,线性代数中的内容以及线性代数与高数甚至其它学科可以联系起来。
只要建立了这种联系,线代就不会像原来那样琐碎。
方法真的很难讲,而方法包含许多细节的内容很难讲出来甚至我都意识不到,但它们会对学习起很大的作用。
我感觉“做完题要总结”,“上课想到老师前面”,“注重知识之间的联系”很重要。