线性代数论文
线性代数小论文

(学院杏林学院班级国贸102 姓名李霞学号1004123046 )线性代数小论文-----用矩阵解决经济管理学中的问题一、提要:线性代数理论有着悠久的历史和丰富的内容。
随着科学的发展,特别是电子计算机使用的日益普遍,作为重要的数学工具之一,线性代数的应用已经深入到了自然科学、社会科学、工程技术、经济、管理等各个领域。
虽然我们在学习线性代数这门课,可不免有同学要问这门课究竟要应用于生活哪一方面?由于我们是属于经济管理类的专业,因此我们学线性代数是为日后学习运筹、管理以及经济类课程打基础。
本文将举出一个矩阵在经济管理中的应用例子来解释线性代数的应用。
二、提出问题:风险型决策方法例1、某企业打算生产某产品。
根据市场预测分析,产品销路有三种可能性:销路好、一般和差,这三种情况出现的概率分别为0、3,0、45,0、25. 生产该产品有三种方案:改进生产线、新建生产线、外包生产。
各种方案的收益值在表5-4给出。
项目(1)改进生产线(2)新建生产线(3)外包生产销路好180 240 100销路一般120 100 70销路差-40 -80 16表5-4 各生产方案在不同市场情况下的收益/万元1、专业课中如何解决的最大效用值收益准则:解决风险决策常用的一个目标是使期望收益最大化。
学过概率统计之后,不难求出三种方案对应的期望收益分别为:(1)180*0.3+120*0.45+(-40)*0.25=98(2)240*0.3+100*0.45+(-80)*0.25=97(3)100*0.3+70*0.45+16*0.25=65.5因为第一种方案对应的期望效用值最大,所以选择改进生产线的方案。
2、线代课中如何解决的矩阵M=(0.3 0.45 0.25)矩阵N=(180 240 100120 100 70-40 -80 16)则:最大效用收益组成的矩阵=M*N=(98 97 65.5)因为第一种方案对应的期望效用值最大,所以选择改进生产线的方案。
线性代数的应用论文

论文:线性代数的应用与心得体会班级:姓名:学号:指导老师:完成时间:2014年10月20日目录摘要 (2)关键词 (2)一、线性代数被广泛运用的原因 (2)二、线性代数在实际中的应用 (2)1. 用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体 (2)2. 希尔密码 (2)3.在人们平常日常生活的应用——减肥配方的实现 (3)4、在城市人们出行的应用——交通流的分析 (4)5、马尔可夫链 (5)6、在人口迁移的应用人口迁徙模型 (5)三、心得与体会 (7)摘要我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,还有其主要知识:矩阵、方程组和向量;我们也应该了解其在众多的科学技术领域和实际生活中的应用都十分广泛;下面就是看一些具体实例应用,和一些心得体会;关键词线性代数;实际生活;应用实例;心得体会;;一、线性代数被广泛运用的原因为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢原因之一,大自然的许多现象恰好是线性变化的,研究的是单个变量之间的关系;例如我们高中学过的物理学科中,物理可以分为机械运动、电运动、还有量子力学的运动;而比较重要的机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,其实这又恰恰符合基本的线性微分方程;再如电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组;原因之二,之后随着科学的发展,我们不仅要研究单个之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而且由于计算机的发展,了的问题又可以计算出来,所以,线性代数因这方面的成为了解决这些问题的有力工具而被广泛应用;原因之三,在数学中线性代数与几何和代数有着不可分割的联系;线性代数所体现的观念与代数方法之间的联系,从具体概念变为出来的,对于强化人们的,增强科学性是非常有用的;二、线性代数在实际中的应用1.用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体2.希尔密码希尔密码Hill Password是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明;每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果模26;注意用作加密的矩阵即密匙在\mathbb_^n必须是可逆的,否则就不可能译码;只有矩阵的行列式和26互质,才是可逆的;例题、设明文为HPFRPAHTNECL,密钥矩阵为:3.在人们平常日常生活的应用——减肥配方的实现大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮食也没有规律,为了身体的健康就需要注意日常饮食中的营养;大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养它们的质量以适当的单位计量;设三种食物每100克中蛋白质、碳水化合物和脂肪的含量如下表,表中还给出了80年代美国流行的剑桥大学医学院的简捷营养处方;现在的问题是:如果用这三种食物作为每天 营养 每100g 食物所含营养g减肥所要求的每日营养量脱脂牛奶 大豆面粉 乳清 蛋白质 36 51 13 33 碳水化合物 52 34 74 45 脂肪73123个单位100g,表中的三个营养成分列向量为:12136511352,34,74,07 1.1a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则它们的组合所具有的营养为11223312336511352347407 1.1x a x a x a x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦使这个合成的营养与剑桥配方的要求相等,就可以得到以下的矩阵方程:123365113335234744507 1.13x x Ax b x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦用MA TLAB 解这个问题非常方便,列出程序ag763如下: A=36,51,13;52,34,74;0,7, b=33;45;3 x=A\b程序执行的结果为:0.2772 0.3919 0.2332x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦即脱脂牛奶的用量为,大豆面粉的用量为,乳清的用量为,就能保证所需的综合营养量;4、在城市人们出行的应用——交通流的分析某城市有两组单行道,构成了一个包含四个节点A,B,C,D 的十字路口如图所示;在交通繁忙时段的汽车从外部进出此十字路口的流量每小时的车流数标于图上;现要求计算每两个节点之间路段上的交通流量x 1,x 2,x 3,x 4;解:在每个节点上,进入和离开的车数应该相等,这就决定了四个流通的方程: 节点A: x 1+450=x 2+610 节点B: x 2+520=x 3+480 节点C: x 3+390=x 4+600 节点D: x 4+640=x 2+310将这组方程进行整理,写成矩阵形式:12233414= 160 = - 40 - = 210= -330x x x x x x x x ---其系数增广矩阵为:11 160 11 - 40 [,]1121011 -330A b -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦ 用消元法求其行阶梯形式,或者直接调用U0=rrefA,b,可以得出其精简行阶梯形式为1 0 0 -1330 0 1 0 -1 170 U0= 0 0 1 -1 210 0 0 0 00⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦注意这个系数矩阵所代表的意义,它的左边四列从左至右依次为变量x 1,x 2,x 3,x 4的系数,第五列则是在等式右边的常数项;把第四列移到等式右边,可以按行列写恢复为方程,其结果为:x 1=x 4+330, x 2=x 4+170, x 3=x 4+210图3 单行线交通流图0=0由于最后一行变为全零,这个精简行阶梯形式只有三行有效,也就是说四个方程中有一个是相依的,实际上只有三个有效方程;方程数比未知数的数目少,即没有给出足够的信息来唯一地确定x1,x2,x3,和x4;其原因也不难从物理上想象,题目给出的只是进入和离开这个十字路区的流量,如果有些车沿着这四方的单行道绕圈,那是不会影响总的输入输出流量的,但可以全面增加四条路上的流量;所以x4被称为自由变量,实际上它的取值也不能完全自由,因为规定了这些路段都是单行道,x1,x2,x3,和x4;都不能取负值;所以要准确了解这里的交通流情况,还应该在x1,x2,x3,和x4中,再检测一个变量;5、马尔可夫链马尔可夫链Markov Chain,描述了一种状态序列,其每个状态值取决于前面有限个状态;马尔可夫链是具有马尔可夫性质的随机变量的一个数列;这些变量的范围,即它们所有可能取值的集合,被称为“状态空间”,而的值则是在时间n的状态;如果对于过去状态的条件概率分布仅是的一个函数,则这里x为过程中的某个状态;上面这个恒等式可以被看作是马尔可夫性质;例题、6、在人口迁移的应用人口迁徙模型设在一个大城市中的总人口是固定的;人口的分布则因居民在市区和郊区之间迁徙而变化;每年有6%的市区居民搬到郊区去住,而有2%的郊区居民搬到市区;假如开始时有30%的居民住在市区,70%的居民住在郊区,问十年后市区和郊区的居民人口比例是多少30年、50年后又如何这个问题可以用矩阵乘法来描述;把人口变量用市区和郊区两个分量表示,即,ck k sk x x x ⎡⎤=⎢⎥⎣⎦其中x c 为市区人口所占比例,x s 为郊区人口所占比例,k 表示年份的次序;在k=0的初始状态:0000.30.7c s x x x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦;一年以后,市区人口为x c1= x c0+,郊区人口x s1= + x s0,用矩阵乘法来描述,可写成:11010.940.020.3 0.29600.060.980.7 0.7040c s x x Ax x ⎡⎤⎡⎤⎡⎤⎡⎤==⋅==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 此关系可以从初始时间到k 年,扩展为2120k k k k x Ax A x A x --====,用下列MATLAB 程序进行计算:A=,;, x0=; x1=Ax0, x10=A^10x0 x30=A^30x0 x50=A^50x0程序运行的结果为:1103050 0.2960 0.2717 0.2541 0.2508,,,, 0.7040 0.7283 0.7459 0.7492x x x x ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦无限增加时间k,市区和郊区人口之比将趋向一组常数 ;为了弄清为什么这个过程趋向于一个稳态值,我们改变一下坐标系统;在这个坐标系统中可以更清楚地看到乘以矩阵A 的效果;选u 1为稳态向量,T 的任意一个倍数,令u 1=1,3T 和u 2=-1,1T ;可以看到,用A 乘以这两个向量的结果不过是改变向量的长度,不影响其相角方向:110.940.02110.060.9833Au u ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦220.940.0210.920.920.060.9810.92Au u --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦初始向量x0可以写成这两个基向量u1和u2的线性组合;0120.30110.250.050.250.050.7031x u u -⎡⎤⎡⎤⎡⎤==⋅-⋅=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦因此0120.250.05(0.82)k k k x A x u u ==-式中的第二项会随着k 的增大趋向于零;如果只取小数点后两位,则只要k>27,这第二项就可以忽略不计而得到01270.250.250.75k kk x A x u >⎡⎤===⎢⎥⎣⎦适当选择基向量可以使矩阵乘法结果等价于一个简单的实数乘子,避免相角项出现,使得问题简单化;这也是方阵求特征值的基本思想;这个应用问题实际上是所谓马尔可夫过程的一个类型;所得到的向量序列x1,x2,...,x k称为马尔可夫链;马尔可夫过程的特点是k时刻的系统状态x k完全可由其前一个时刻的状态x k-1所决定,与k-1时刻之前的系统状态无关;三、心得与体会没上线性代数的时候,心中还有点忐忑,怕自己学不好;但是当真的学时,用心听老师讲的每节课,还是感觉很轻松的;然后每章结束后的习题,自己认真完成,不会的再翻翻以前学过的知识点和笔记,自己就会豁然开朗,而且死死地记住题型,考试的时候不会紧张而且游刃有余;可以总结一下,线性代数主要研究三种对象:矩阵、方程组和向量;这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法;因此,熟练地从一种理论的叙述转移到另一种中去,是学习线性代数时应养成的一种重要习惯和素质;如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性;由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易;线性代数作为数学的一门,体现了数学的思想;数学上的方法是相通的;比如,考虑特殊情况这种思路;线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况;高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路;通过思想方法上的联系和内容上的关系,线性代数中的内容以及线性代数与高等数学甚至其它学科可以联系起来;只要建立了这种联系,线代就不会像原来那样琐碎了;在线性代数的学习中,注重知识点的衔接与转换,努力提高综合分析能力;线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对再问做得好不好只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了;现在我们可以在线完成过程考核,在电脑上登录,然后有不同的题型,说是考核其实也是一种练手和复习,加强知识的巩固;每一题解答过后都会有详解,可以看到自己到底错在哪,哪里学的不好;我觉得这是一种很好的学习工具,我们一定要好好利用,来学习线性代数;了解每种题型很关键,当然都离开不了矩阵、方程组和向量,掌握它们是关键;线性代数有很多在现实生活中的应用,我们要会运用线性代数来解决现实生活中的一些事或麻烦;我们的生活中到处都存在着数学,所以用心它的魅力吧;。
线性代数小论文

摘要:分析了若矩阵A 经过行初等变换化为矩阵B ,则A 与B 的列向量组具有完全相同的线性关系,以及此性质在线性代数的主要应用。
关键词:初等变换;线性相关;线性无关;线性表示线性代数主要研究的是线性问题。
一般而言,凡是线性问题常可以用向量空间的观点和方法加以讨论,因此向量空间成了线性代数的基本概念和中心内容。
向量空间理论的核心问题是向量间的线性关系。
其基本概念有向量的线性表示、向量组线性相关与线性无关、向量组等价、向量组的极大无关组,以及向量空间的基与维数等。
这些问题通常转化为解线性方程组或解齐次线性方程组。
1 线性相关性证明设A =(α1,α2,··· ,αn ),αi ∈P m,若矩阵A 经过行初等变换化为矩阵B ,则A 与B 的列向量组具有完全相同的线性关系。
证明:设A m ×n ,A 经过行初等变换化为B ,将A ,B 分别按列分块为A =(α1,α2,…,αn ),B=(β1, β2,···,βn )。
由于对A 只进行有限次行初等变换,故可知有满秩矩阵P ,使PA =B ,即P(α1,α2, ···,αn )=(β1, β2, ···,βn ),于是有i 1βj = P αj (j=1,2,3, ···,n) (1) 设A 和B 对应的列向量组为αi 1,αi 2, ···,αi r 和βi 1, βi 2,···,βi r (1≤i 1<i 2<···<i r ≤n),由(1)式得βik = P αik (k=1,2,3, ···,r)因此,如果αi 1,αi 2, ···,αi r 有线性关系式k 1αi 1+k 2αi 2+ ···+k r αi r =0(k r 为实数),则k 1,k 2…k r 也必使得k 1βi 1+k 2 βi 2+···+k r βi r =k 1(P αi 1)+ k 2(P αi 2)+ ···+ k r (P αi r )=P (k 1αi 1+k 2αi 2+ ···+k r αi r )=P 0=0 反之,如果βi 1, βi 2,···,βi r 有线性关系式,得λ1βi 1+λ2βi 2+ ···+λr βi r =0则由P 的满秩性可知αj =P -1βj (j=1,2,3, ···,n),于是有λ1αi 1+λ2αi 2+ ···+λr αi r =λ1P -1βi 1 +λ2P -1βi 2 + ···+λr P -1βi r= P -1(λ1βi 1+λ2βi 2+ ···+λr βi r )= P -10=0这表明向量组αi 1,αi 2, ···,αi r 与向量组βi 1, βi 2,···,βi r 有相同的线性相关性,证毕。
线性代数的应用论文

线性代数的应用论文引言线性代数作为数学的一个重要分支,广泛应用于各个领域,如物理学、经济学、计算机科学等。
本论文将重点介绍线性代数在计算机科学领域的应用,包括机器学习、图像处理和网络分析等方面。
机器学习中的线性代数应用线性回归在机器学习中,线性回归是一个重要的模型。
线性回归模型可以通过最小二乘法来估计参数。
其基本原理是通过线性变换将输入数据映射到输出数据,然后通过最小化残差平方和来确定最佳拟合直线。
实质上,线性回归模型就是在求解一个方程组,而这正是线性代数的重点内容。
通过矩阵运算和求解线性方程组,可以方便地求解线性回归模型的参数。
主成分分析主成分分析 (PCA) 是一种常用的降维技术,在特征提取和数据压缩中起着重要作用。
通过线性代数的方法,可以将高维的数据变换到低维空间中,同时保留最重要的信息。
主成分分析的核心是求解数据协方差矩阵的特征向量和特征值,只保留最大的特征值对应的特征向量作为主成分。
线性代数提供了有效的算法和工具,可以快速求解特征值和特征向量,从而实现主成分分析。
图像处理中的线性代数应用图像压缩在图像处理中,图像压缩是一个重要的应用领域。
通过压缩图像,可以减少存储空间和传输带宽的消耗。
其中,离散余弦变换 (DCT) 是一种常用的压缩方法。
DCT 将图像分解为一组不同频率的正弦波信号,然后根据信号能量的大小进行量化和编码。
通过变换和编码过程,DCT 可以将图像信息进行高效地表示和存储。
而 DCT 的计算过程正是基于线性代数的矩阵运算和线性变换。
图像恢复在图像处理中,图像恢复是一个挑战性任务。
例如,在图像降噪和去模糊中,需要从受损图像中恢复原始图像。
这可以通过求解一个逆问题来实现,而逆问题通常可以表示为线性代数的形式。
例如,降噪问题可以通过求解一个线性方程组来实现,去模糊问题可以通过求解一个矩阵方程来实现。
线性代数提供了强大的工具和算法,可以有效地解决图像恢复问题。
网络分析中的线性代数应用网络表示学习网络表示学习是网络分析领域的一个重要任务。
数学与应用数学线性代数大学期末论文

数学与应用数学线性代数大学期末论文摘要:线性代数是数学的一个重要分支,广泛应用于各个领域。
本文将从矩阵运算、线性方程组和特征值与特征向量等角度,对线性代数的基本概念和应用进行探讨,并结合具体实例,展示线性代数在科学、工程和计算机等领域的重要性。
1. 矩阵运算矩阵是线性代数重要的基本工具,它由数个数构成的一个矩形阵列。
矩阵运算包括矩阵的加法、减法、乘法和转置等。
加法和减法是对应位置的元素进行运算,而矩阵乘法是对矩阵的行和列进行组合运算。
矩阵乘法特点之一是不满足交换律,即AB≠BA。
这一性质使得矩阵乘法在解决线性方程组方面具有独特的优势。
通过矩阵乘法,可以将线性方程组转化为矩阵形式,从而利用矩阵运算的特性来求解。
2. 线性方程组线性方程组是线性代数的重要应用之一,广泛应用于经济学、物理学等领域。
线性方程组的解可以通过矩阵运算得到,其中最常用的方法是高斯消元法和矩阵的逆。
高斯消元法通过不断变换线性方程组的形式,将其转化为简化的行阶梯形式,从而求解方程组的解。
而矩阵的逆则是通过对矩阵的行列式和伴随矩阵进行计算,得到矩阵的逆矩阵。
对于可逆矩阵,利用逆矩阵可以直接求解线性方程组,简化了计算过程。
3. 特征值与特征向量特征值与特征向量是线性代数中的重要概念,对矩阵的性质和变换具有深刻的影响。
特征值是矩阵的一个特征,用于描述矩阵在特定方向上的变换比例。
特征向量则是对应于特征值的向量。
通过求解特征值和特征向量,可以衡量矩阵的稳定性、变换性质以及与其他矩阵的关系。
在实际应用中,特征值与特征向量在图像处理、数据压缩等方面有着广泛的应用。
4. 应用案例线性代数作为一门工具性学科,有着广泛的应用。
本文将结合科学、工程和计算机等领域,展示线性代数在实际问题中的重要性。
以图像压缩为例,通过矩阵运算和特征值与特征向量的计算,可以将高维图像通过降维的方式减少数据量,并保持图像质量的基本特征。
该方法在数据存储和传输方面具有重要意义。
线性代数论文(矩阵在自己专业中的应用及举例)

矩阵在自己专业中的应用及举例摘要:I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。
II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等内容。
III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。
关键词:矩阵可逆矩阵图形学图形变换正文:第一部分引言在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的内容,而这些内容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。
因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。
在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。
在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。
在后面的文章中,我通过查询一些相关的资料,对其中一些内容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。
在线性代数中,矩阵也占据着一定的重要地位,与行列式、方程、向量、二次型等内容有着密切的联系,在解决一些问题的思想上是相同的。
尤其他们在作为处理一些实际问题的工具上的时候。
图形变换是计算机图形学领域内的主要内容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。
这些变换有着不同的作用,却又紧密联系在一起。
第二部分 研究问题及成果1. 矩阵的概念定义:由n m ⨯个数排列成的m 行n 列的矩阵数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ann an an n a a a n a a a 212222111211 称为一个n m ⨯矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。
大学线性代数论文

线性代数论文 线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。
尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。
线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。
主要理论成熟于十九世纪,主要理论成熟于十九世纪,而第一块基石而第一块基石而第一块基石(二、(二、三元线性方程组的解法)三元线性方程组的解法)则早在两千年则早在两千年前出现(见于我国古代数学名著《九章算术》)。
①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位; ②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; ③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的; ④ 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。
行列式的计算方法.定义法在引进行列式的定义之前,,为了更加容易的理解行列式的定义,首先介绍排列和逆序的概念.(1) n级排列:由1,2.3…n组成的一个有序数组称为一个n级排列.(2) 在一个排列中,如果一对数的前后位置与大小顺序相反,即:前面的数大于后面的数,那么它们就称为一个逆序,一个排列中逆序的总数称为这个排列的逆序数.(3) 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列.在做好这些工作之后,来引入行列式的定义:定义:n 阶行列式<I>等于所有取自不同行不同列的n 个元素的乘积. a1j 1a2j 2a3j 3………anj n <Ⅱ>的代数和,这里j 1,j 2,j 3,……j n 为1,2,3,……,n 的一个排列,每一项<Ⅱ>都按下列规则带有符号,当j 1,j 2,j 3,……j n 是偶排列时, <Ⅱ>带有正号,当j1,j2,j3,……j n是奇排列时,<Ⅱ>带有负号. 即:例1:计算行列式:解:由行列式的定义知:=(-1)t(123)5×1×4+(-1)t(132)5×2×6+(-1)t(213)2×4×4+(-1)t(231)2×2×3+(-1)t(312)3×4×6+(-1)t(321)3×1×3=20-60-32+12+72-9=3例2计算解:由行列式的定义知:=(-1) t(j1j2…jn)1×2×3……×n=(-1)0n!=n!.由以上两个例子可以看出,若计算阶数较低(不超过三阶)的行列式及上三角(下三角)行列式运用定义法较为简单,但若是高阶非上(下)三角型的行列式按定义法计算比较繁琐因此,我们必须寻求其它的,让计算变得简洁的计算方法.按照行列式的性质将行列式化成上三角(下三角或反三角)法.运用行列式的性质是计算行列式的一个重要途径,大多数行列式的计算都依赖于行列式的性质,将行列式化成上三角(下三角或反三角)的形式,再根据行列式的定义来计算行列式. (行列式的性质见参考文献).行列式的性质告诉了我们该如何求行列式,而一切的行列式都可以根据以上性质来进行初等行变换(列变换),变成阶梯形(上三角)的行列式,再根据定义计算即可.其计算步骤可归纳如下:(ⅰ)看行列式的行和(列和),如果行列和相等,则均加到某一列(行)【直观上加到第一列 (行)】.(ⅱ)有公因子的提出公因子(ⅲ)进行初等行变换(列变换)化成上三角(下三角或反三角)的行列式.(ⅳ)由行列式的定义进行计算.由以上四步,计算一般行列式都简洁多了.。
线性代数论文

论线性代数的应用实例线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。
线性代数的理论已被泛化为算子理论。
由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是理工类、经管类数学课程的重要内容。
在日常学习、工作和生活中,有很多问题,运用线性代数的方法就可以使问题简化,以下举一些线性代数的应用实例。
一、药方配制问题问题:某中药厂用9种中草药(A-I),根据不同的比例配制成了7种特效药,各用量成分见表1(单位:克)已经卖完,请问能否用其他特效药配制出这两种脱销的药品。
(2)现在该医院想用这7种草药配制三种新的特效药,表2给出了三种新的特效药的成分,请问能否配制?如何配制?解:(1)把每一种特效药看成一个九维列向量,分析7个列向量构成向量组的线性相关性。
若向量组线性无关,则无法配制脱销的特效药;若向量组线性相关,并且能找到不含3u,6u的一个最大线性无关组,则可以配制3号和6号药品。
可使用matlab软件进行运算:在Matlab窗口输入1 2 3 4 5 6 7[10;12;5;7;0;25;9;6;8];[2;0;3;9;1;5;4;5;2];[14;12;11;25;2;35;17;16;12]; [12;25;0;5;25;5;25;10;0]; [20;35;5;15;5;35;2;10;0]; [38;60;14;47;33;55;39;35;6]; [100;55;0;35;6;50;25;10;20];u u u u u u u =======1234567 [,,,,,,]u u u u u u u u =[0u ,r]=rref(u )计算结果为0u =10100000120030000101000001100000001⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭从矩阵中可以看出,有四个零行,r=1、2、4、5、7从最简行阶梯型0u 中可以看 出,R (u )=5,向量组线性 相关,一个最大无关组为: 1u 2u 4u 5u 7u3u = 1u +22u 6u =32u +4u +5u故可以配制新药。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华北水利水电学院题目:常见的矩阵及其计算课程名称:线性代数(第二版)专业班级:成员组成:联系方式:2012年10月20 日常见的矩阵及其计算摘要:矩阵是线性代数理论中极其重要的组成部分,是高等数学的一个基本的概念。
它在线性代数与数学的许多分支都有重要应用,许多实际问题都可以用有关理论得到解决。
矩阵,是由个数组成行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母表示其元素,其中下标都是正整数,他们表示该元素在矩阵中的位置。
关键词:常见矩阵计算方法Common matrix and calculation Abstract:The matrix in linear algebra theory is extremely important part, of higher mathematics is a basic concept. It in linear algebra and mathematical many branches have important application, many practical problems can be solved with related theory. Matrix, consisting of a line list of regular form, Usually use capital letters said matrixes of each number, are called matrix elements, usually use lowercase said its elements, the subscript are all positive integer, they said the elements in the position of the matrix.Key words:Common matrix Calculation method§1 引言常见的矩阵有单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵等,另外,还有一些特殊的矩阵,比如行矩阵和列矩阵,仅有一行的矩阵叫行矩阵(也称行向量),仅有一列的矩阵称列矩阵(也称列向量),零矩阵是矩阵中所有元素都为零的矩阵;行数和列数相等的矩阵称为方阵;主对角元以外的元素全为零的方阵称为对角矩阵;除此之外,还有单位矩阵、数量矩阵、三角矩阵、对称矩阵和反对称矩阵等。
矩阵的运算包括加法,矩阵数乘,矩阵乘法是矩阵运算的重点。
§2 常见矩阵2.1几种特殊的矩阵1.行矩阵一个 矩阵,也称为一个维行向量。
2.列矩阵一个 矩阵 ,也称为一个 维列向量;而3.方阵行数和列数相等的矩阵,如⎪⎪⎪⎪⎭⎫⎝⎛ann an an n a a a n a a a212222111211为方阵。
4.对角矩阵主对角元素以外的元素全为零,如⎪⎪⎪⎪⎪⎭⎫⎝⎛anm a a22115.单位矩阵主对角元全为1的对角矩阵,如记为 ,即: 。
6.三角矩阵一个 阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵,例如, 是一个 阶下三角矩阵,而则是一个 阶上三角矩阵。
7.对称矩阵在方阵A=(ija )n 中,如果ija =jia(i,j=1,2,…,n ),则称矩阵为对称矩阵。
8.反对称矩阵如果A 是实矩阵,则称A 为实对称矩阵。
ija =-jia(i,j=1,2,…,n ),则称矩阵为反对称矩阵。
9.数量矩阵主对角元相等的对角矩阵称为数量矩阵,例如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛c c c 00000000000 n(其中c 为常数)为n 阶数量矩阵。
2.2一般的矩阵由数域P 中mn 个数排成m 行n 列的矩形表A=⎪⎪⎪⎪⎪⎭⎫⎝⎛anm am am n a a a n a a a212222111211称为一个m ×n 矩阵,其他矩阵都是这个矩阵的特殊形式。
§3 矩阵的运算3.1矩阵的加法 如果 是两个同型矩阵(即它们具有相同的行数和列数,比如说 ),则定义它们的和 仍为与它们同型的矩阵(即), 的元素为 和 对应元素的和,即:。
给定矩阵,我们定义其负矩阵为:。
这样我们可以定义同型矩阵 的减法为:。
由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列 运算律: ( 1)交换律:;( 2)结合律:( 3)存在零元:;( 4)存在负元:。
3.2矩阵的数乘设为一个数,,则定义与的乘积仍为中的一个矩阵,中的元素就是用数乘中对应的元素的道德,即。
由定义可知:。
容易验证数与矩阵的乘法满足下列运算律:(1 );(2 );(3 );(4 )。
3.3矩阵的乘法设为矩阵,为矩阵,则矩阵可以左乘矩阵(注意:距阵德列数等与矩阵的行数),所得的积为一个矩阵,即,其中,并且。
矩阵的乘法满足下列运算律(假定下面的运算均有意义):( 1)结合律:;( 2)左分配律:;( 3)右分配律:;( 4)数与矩阵乘法的结合律:;( 5)单位元的存在性:。
若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:,。
注意:(1)矩阵的乘法不满足交换律;(2)两个非零矩阵的乘积可能是零矩阵;(3)矩阵的乘法不满足消去定律,即如果AB=CB,B≠0,不一定能推出A=C.3.4初等变换与初等方阵:1.初等变换:(1)变换矩阵的某两行;(2)把非零数k乘以矩阵的某行的所有元素;(3)把矩阵的第i行的h倍加到第j行上.以上为矩阵的三种类型的初等行变换初等行变换初等行变换初等行变换,同样可以定义矩阵的初等列变换.矩阵的初等行变换、初等列变换统称为矩阵的初等变换初等变换初等变换初等变换. 矩阵的初等行(列)变换皆可逆.2.初等方阵:由单位矩阵经过一次初等变换而得的矩阵叫做初等矩阵,初等矩阵也叫初等方阵初等方阵初等方阵初等方阵. 初等方阵共分三种.§4 一些计算方法举例4.1. 求以向量()()()'3'2'11,0,0,1,0,1,0,1,0,0,1,1-=-=-=ααα为基的向量空间3V的一组标准正交基.解 矩阵()⎪⎪⎪⎪⎪⎭⎫⎝⎛---==100010001111321αααA 对分块矩阵()E A 依次左乘342312,,T T T , 其中⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=2123023210000100001,1000313200323100001,100100002222002222342312T T T 得()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----------=2121212100233213213213320002361616123000212121212122334E A T T T则⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----------=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----------=2123021321320213216121213216121,21212121233213213210326161002121'P P取⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=23321321321,0326161,002121321P P P 则321,,P P P 就是由321,,ααα得到 的3V 的一组标准正交基.4.2 求下列齐次线性方程组的一个基础解系, 并写出全部解123412341234220,240,220.x x x x x x x x x x x x +-+=⎧⎪+++=⎨⎪---+=⎩ 解 设方程组的系数矩阵为为A , 将A 用初等行变换化为阶梯形矩阵A =12121212241100111221000--⎛⎫⎛⎫⎪ ⎪→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭因此 秩A =2, 基础解系所含向量个数=4-2=2 所以 原方程的同解方程组为1234342200x x x x x x +-+=⎧⎨-=⎩即 124342x x x x x =--⎧⎨=⎩,取2x =1, 4x =0 代入得 1x =2-, 3x =0 得解向量 1η=()2,1,0,0-;取2x =0, 4x =1 代入得1x =1-, 3x =1 得解向量2η=()1,0,1,1-.所以1η, 2η为原方程组的一个基础解系那么方程组的全部解为1122k k ηη+,其中1k ,2k 为任意常数.4.3..当c , d 取何值时, 线性方程组123451234523455123451,323,2263,5433.x x x x x x x x x x c x x x x x x x x x x d ++++=⎧⎪+++-=⎪⎨++++=⎪⎪+++-=⎩ 无解? 有解? 有解时, 求出一般解. 解 对增广矩阵作一系列初等变换:1111111111113211301226301226301226354331012265c c d d ⎛⎫⎛⎫⎪⎪------ ⎪ ⎪→ ⎪ ⎪⎪ ⎪⎪ ⎪------⎝⎭⎝⎭111111111111000000122630122630000000002000002c c d d ⎛⎫⎛⎫⎪⎪⎪ ⎪→→⎪ ⎪⎪ ⎪⎪ ⎪--⎝⎭⎝⎭.从而有:)1当0,c ≠ 或者2d ≠时, ()(),R A R A B ≠ 故方程组无解;)2当0c =, 且2d =时, ()()2R A R A B ==<n =5, 故方程组有无穷多组解,且解中含有n r -=5-2=3个自由变量;)3为求出一般解, 继续对增广矩阵施行初等变换, 并将c =0, d =2代入111111101152012263012263000003000000000d 2000000⎛⎫⎛----⎫⎪⎪⎪⎪→ ⎪ ⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭. 从而有134523452,226 3.x x x x x x x x =++-⎧⎨=---+⎩ 其中345,,x x x 为自由变量, 它们可以取任意的实数.若令314253,,,x k x k x k ===则11232123314253522263x k k k x k k k x k x k x k =++-⎧⎪=---+⎪⎪=⎨⎪=⎪=⎪⎩. 为所求一般解(其中123,,k k k 为任意实数).4.4. 用矩阵给出平面上n 个点(),i i i p x y 共线的充要条件.解 设直线为y k x b =+ (4.1.1)n 个点共线是指线性方程组(把k , b 看成未知量)1122nn kx b y kx b y kx b y+=⎧⎪+=⎪⎨⎪⎪+=⎩ (4.1.2)有解, 所以n 个点(),i i i p x y 共线⇔方程组(4.1.2)有解⇔秩111n x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=秩1111nn x y x y ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 4.5. 求二次型()12,,,n f x x x =2114ni i j i i j nX x x =≤<≤+∑∑的秩与符号差.解 设()12,,,n f x x x 对应的矩阵为A , 则A =1222212222122221⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 于是由E A λ-=[][]1(1)2(1)(1)(2)n n λλ--+-+--=[]1(1)(21)n n λλ-+--可得A 的特征值为111,21n n n λλλ-===-=- ,所以()12,,,n f x x x 的秩=n , ()12,,,n f x x x 的符号差=1(1)2n n --=-.8.设A 为n 阶满秩矩阵, 试证明: X (A 'A )'X 是一个正定二次型, 这里X =()12,,,n x x x .证明 设A 是满秩矩阵, 令'Y ='A 'X , 其中Y =()1,,n y y , 则'X =()1''AY-是非退化线性替换, 且X (A 'A )'X ='Y =22212n y y y +++(5.2.1)由(5.2.1)看出, 此二次型的正惯性指数与秩都等于n . 所以 X (A 'A )'X 是正定二次型.4.6. 设A 为m 阶实对称矩阵, 且正定. B 为m n ⨯实矩阵. TB为B 的转置矩阵.试证明:T B AB 为正定矩阵的充分必要条件是秩()B =n .证明 先证明充分性 首先()TT T B AB B AB =1,0n x Rx ⨯∀∈≠由秩B =n , 知B x ≠0, 而A 为正定矩阵, 故Tx()()()TTBAB x Bx A Bx =>0此即T B AB 为正定矩阵.再证明必要性 用反证法 若秩B <n , 则0Bx =有非零实数解0x 存在, 即B0x =0,但0x ≠0, 由T B AB 为正定矩阵, 知0<()T T 00x B AB x =()()T00Bx A Bx(5.3.1)另一方面, 因为B 0x =0, 所以()()T00B B x A x由于(5.3.1), (5.3.2)矛盾, 故秩B =n所以 T B AB 为正定矩阵的充分必要条件是秩()B =n .参考文献注1:郑广平,裘祖干 等.线性代数与解析几何[M ].上海:复旦大学出版社,2003.注2:李志慧,李永明.高等代数中的典型问题与方法[M ].北京: 科学出版社, 2008.注3:上海交通大学数学系.线性代数[M ].北京:科学出版社,2007.分工情况***负责前两部分的编写,***负责后两部分的编写,最后共同修改之后,完成本次论文。